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m phase in magnetic-layered superconductors
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We show that in a system composed of alternating superconducting and magnetic layers the
ground state may be the so-called "m phase, "wherein the superconducting order parameter changes
its sign as we go from one superconducting layer to another. This phase is similar to the Larkin-
Ovchinnikov-Fulde-Ferrell phase. We find that the m phase exists, under certain conditions, in the
presence of both ferro- and antiferromagnetism.

I. INTRODUCTION

It has recently become possible to produce artificially
an entire family of layered compounds, in which super-
conducting (S) layers alternate with magnetic (M) [fer-
romagnetic (F) or antiferromagnetic (AF)] layers. Exam-
ples of such systems are superstructures of the S-F type, '

layered super conductors intercalated with magnetic
atoms, and high-temperature superconductors of the
type RBa2Cu307, where nonmagnetic R = F layers alter-
nate with magnetic R layers, such as the nonsupercon-
ducting R=pr. Sputtering technology now permits the
artificial growing of an S-M structure with layer
thicknesses as small as one lattice constant. Such systems
are interesting because they illustrate the interplay of
magnetism and superconductivity.

The case of thick, alternating magnetic and supercon-
ducting layers was investigated in Ref. 5; the authors
used quasiclassical Usadel equations to calculate the
parallel and perpendicular critical fields. Systems of al-
ternating super conducting-metallic layers with thick-
nesses of the order of one interatomic length [where mi-
croscopic Bardeen-Cooper-Schrieff'er (BCS) theory is
applicable] have also attracted considerable theoretical
attention. ' In this work, we use microscopic theory to
investigate a system of alternating superconducting-
magnetic layers. We show below that the ground state of
this system may be the so-called "~phase, "characterized
by a superconducting order parameter that changes its
sign as we go from one superconducting layer to another.

One noted case of an inhomogeneous order parameter
is the Larkin-Ovchinnikov-Fulde-Ferrell (LOFF)
phase, ' which occurs in a three-dimensional supercon-
ductor with an exchange field h that acts only on electron
spins. There is a small region of h-T phase diagram in
which it is energetically favorable to form Cooper pairs
with total momentum not equal to zero (see Ref. 10). At
the transition line, the order parameter takes the form
6= ~6~e'"', where ~k~ —$0 ', and go is the superconduct-
ing coherence length.

We present in Sec. II a model for the study of thin (on
the order of an interatomic length) alternating supercon-
ducting and magnetic layers. We use the standard BCS
approach to investigate the existence of the ~ phase. In

Sec. III we present our results in the case of ferromagnet-
ic and antiferromagnetic conducting layers, and also in
the case of insulating magnetic layers. In Sec. IV we con-
sider the effect of impurities, both with and without the
exchange field h. In Sec. V, we interpret the excitation
spectrum and show how it differs from the usual BCS
case and the results of Ref. 6. In Sec. VI, we discuss our
results and suggestions for experimental verification.

II. FORMULATiON OF THE PROBLEM

g(p)a„, (p)a„, (p)
p, n, i, o.

+t[a„; (p)a„, (p)+a„+, , (p)a„, (p)+H. c. ]

(la)

~i tl X a 1 (Pi) t — ( Pi)2
P I PPP1 cT

P2)a 1 (P2) (lb)

We consider the model of an elementary cell consisting
of one superconducting and one magnetic layer. Move-
ment of quasiparticles within the layers is, for simplicity,
described by one and the same energy spectrum g(p), and
movement perpendicular to the layers is characterized by
the transfer integral t of the tight-binding model (we con-
sider the layers to be linked only by Josephson coupling,
so that t ((T, ). We assume that the pairing constant be-
tween electrons A is equal to zero in the M layers, and
that the exchange field h, which we consider to be a con-
stant in the case of a ferromagnet, exists only on the M
layer. The exchange field on the M layer will affect T,
only by acting on the electrons which tunnel between the
layers.

We note that orbital effects of magnetic induction may
often be neglected in comparison with the effects of the
exchange field in magnetic superconductors; see Ref. 11.
We now concentrate on the model with exchange field
only.

We write down the Hamiltonian of the system:
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H;„,2 = —g h o a„, (p)a„, (p),
p, n, o

(lc)

0
—Tk cu +h 0

0 co+

T co++&

G, .(q+k)
G,J(q +k)
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Fi (q)

(2)
I

where a„; (p) is the creation operator of an electron with
spin o. in the nth elementary cell and momentum p on the
layer i. i=1 in the case of an S layer and i = —1 in the
case of an M layer.

We write down the equations of motion for the opera-
tors a„; (p) and a„; (p), and from them derive
the Gor'kov equations describing the normal
[G &; (p, q, q.

', co)] and anomalous [F t3~(p, q, q', co)]
Green's functions, where we have made a Fourier trans-
form from the discrete layer indices n and m to quasimo-
menta q and q' (0 ~ q, q' ~2~). a and P are spin indices,
and i and j are layer indices (1 or —1). We assume
that the order parameter changes from cell to cell in
the following manner: b, = IEIe'"". Noting that
F tt)(p, q, q', co) =F g~(p, q, co)5(q +k —q'), we may
write the Green's functions as functions of only q, instead
of both q and q', but we must include the functions
G ti;~(p, q +k, co) in our calculations.

We may write a matrix equation for either
G&& (pq —kco) and F && (pqco), or for G&t; (pq

k, co) an—d F&t;J(p, q, co). We choose the former here,
omitting the arrows for brevity below. This choice deter-
mines the sign before the term h in the Green's function.
As will be seen below, this choice is in the end not impor-
tant; h appears in all final expressions only as h . Follow-
ing Ref. 6, we write the Gor kov equations in matrix
form:

where we have omitted the explicit dependence of the
Green's functions on p and ~, as well as spin, for brevity.

We define co+ =ico+g(p), T =2t cos(q/2)e'~
Tk =2t cos[(q +k)/2]e'i'i+ '~, co=a T(2n+1), and j is
a layer index. We may reduce this 4X4 matrix into 2X2
submatrices, and write in abbreviated form

Go '(p, q+k, co)G(p, q+k, co)+AP (p, q, co)=1,

Go '(p, q, —co, —h)P (p, q, +co)

—b, *C(p, q +k, +co, +h)=0,

(3a)

(3b)

where F (p, q, co ) is the matrix F
~ ( p, q, co ), 0 (p, q, co ) the

matrix G;J.(p, q, co) (i and j are layer indices), and

co Tq

o o ~ ~ (4)
—1

0
Tq co +h

Note that above we have written the Green's function
as an explicit function of h. The signs of h and cu in the
expression G o

'
( p, q,

—co, —h ) are the opposite of those
in the expression G (p, q +k, +co, +h ).

III. m PHASE IN FAND AF CASES

A. Ferromagnet: T —T, /T, &&1

We must choose the value of k that corresponds to the
highest T, . We find the anomalous Green's function
F» ( p, q, co ) for the S layer,

Near T, we can eliminate the term b,F ( p, q, co) in the
above system of equations because it is second order in 5;
this allows us to rewrite Eq. (3b) above as

(p, q,
—co, —h)P (p, q, co)=b, *Go(p, q +k, +co, +h) .

—
I
~ I(co +h )(co+ + h )

[(co )(co +h) —4t cos (q+k)/2][(co+)(co++h) —4t cos q/2]

from which we calculate T, . Expanding in the small pa-
rameter t /T, and integrating over momenta, we arrive at
the following equation for the critical temperature T, :

T = 4

I
4 '+h'

12~ —7' h —h+~T, t cosk
IcoI (co +h )(4co +h )

(7)
where T,0 is T, defined at t =0 in the mean-field approxi-
mation.

As is seen from (7), for h =0, maximal T, corresponds
to k=0. For h ))T,0, the coefficient of cosk has a nega-
tive sign and the ~ phase becomes energetically favorable

( k =m. ). Numerical calculations give for the critical
value of the exchange field (h, at which k changes from 0
to ~) h„;,=3.77T,O (we note that T, is equal to T,o to
second order in t/T, o) These and othe. r numerical re-
sults are summarized in Table I.

We note that tunneling between layers results in a
small (second order in t) reduction in T„as is usually the
case. ' This can be interpreted as the fact that the elec-
trons which tunnel into the M layer "feel" a zero pairing
potential, and the average A (coupling constant of the
BCS theory) of the system is lowered. It is interesting to
note that as the exchange field on the M layer grows, tun-
neling becomes energetically more costly, so that the
term second order in t falls as 1/h for large h. For very
large exchange fields, the effective transfer integral be-
comes zero, the layers uncouple, and T, returns to T,0.
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If the M layer has a narrow energy band that we model
as a constant g=E (i.e., infinite effective mass), we find
that h„;,/T, =31.6 for IEI /(AT, ) =10, and h„;,/T, =4.5

for IEI/(AT, )=l. As the band on the M layer moves
farther and farther away from the Fermi level, the
transfer of electrons from one layer to the next becomes
energetically less favorable and the field necessary to
bring about the ~ phase, h„;„increases. The sign of E
(i.e., whether the M-layer band lies above or below the
Fermi energy) does not enter into the result.

In the case of the narrow-band M layer, the term
second order in t also slightly suppresses T, . The
suppression disappears at large h and/or large E.

B. Ferromagnet: T «T,
At low temperatures, we calculate the free energy

directly. We represent the free energy of the system by a
functional V, obtained by integration over b, of the self-
consistency equation. We now write the anomalous
Green's function F, (p, q, ro, b, ) as an explicit function of
the variable 6, because we must integrate F, (p, q, ro, b, )

over b, to get the free energy X We integrate the equa-
tion of self-consistency for the order parameter:

av =——T g Ft&t(p, q, co, b. ) (g)
p, q, co

from b, =0 to b. =6( T). Integrating first by b, , we get

7= 2p+ Vk,

ego
9p= —

—,'N(0)b. ln
z +O(t ),

(9a)

(9b)

»h 'I ~
I
+» 'I ~

I

~' —&
I
~ I'& '+ 2

I
~

I

~'
I ( h 2+ g2)2+ 4h 2ni212(g 2+ ni2)

—(6+h ) (
—2)(h +g —4h ro +2/ g )+ +

( 2+ g2)3/2I(g2+ h 2)2+4h 2 2] ( 2+ F2)1/2I(h 2+ F2)2+4h 2 2)2
(9c)

h„,, /T, T—=0

TABLE I. Numerically obtained values of h„;,/T, for T=O
and T—= T„where h„;, is the value of the exchange field on the
M layer needed to produce a nonzero k such that 6 =

I
b. e'"". 6

is the order parameter on the nth S layer. E is a constant, g
and g, are the electronic spectra on the M and S layers, respec-
tively, and ~ is the scattering time. Note that h„;, is always
lower at low temperatures than at T„and that a "narrow band"
model of the M-layer's electronic spectrum will make it harder
to bring about the ~ phase in the case of a ferromagnet, while
being essential to the existence of the ~ phase in the case of the
antiferromagnet. Note also that both magnetic and nonmagnet-
ic impurities raise h„;,. The ratio h„;,/T, o was calculated in the
case of the ferromagnet and antiferromagnet, but T, /T, 0 is uni-

ty to second order in t /T, .

where N (0) is the density of states at the Fermi surface,
60 is the value of the order parameter at T=O for an iso-
lated superconducting layer, 60=1.76T,0. We assume,
due to the smallness of the term (t/T, ), that
4(T=0)=bc. To obtain VI„we have obtained the @-

dependent term of lowest order in the small parameter
(r/T, ).

To calculate h„;„we find it necessary to evaluate the
sum above. Numerical calculations give h„;,=0.87T,0.
In the case of an M layer with a narrow band, we get for
E/(AT, )=1, h„;,=3.1T p, and for E/(nT, )=10,
h &&It:3 1 ~ 4T&O

A schematic phase diagram of this system is shown in
Fig. 1. The transition region between the 0 phase and the

Ferromagnet
Tight-binding

(g =g, )

Narrow band
(gm =E)

E =10~T,
E=mT,
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3.8
20.0
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FIG. 1. Schematic phase diagram of a system composed of
alternating superconducting (S) and ferromagnetic (M) layers.
Shown are the possible phases of the order parameter 5 of the
nth superconducting layer as a function of the temperature T
and the exchange field h on all the ferromagnetic layers. For
T = T„ the m phase (where the sign of 6 reverses as one moves
from one S layer to the next) appears at h =3.77T,0, for T=O, at
h=0.87T, .
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vr phase (that is, the region in which k changes smoothly
from 0 to n) is a narrow zone of width b, h = t /T, o, the
cross-hatched region in Fig. 1. The horizontal dashed
line in Fig. 1 is T,o, the value of T, for the transfer in-
tegral t equal to zero. Also shown in Fig. 1 is the depen-
dence of T, of the system on the exchange field h. To
find the dependence of the wave vector k on the exchange
field in the transition region, it is necessary to keep all
terms up to eighth order in t. It is then seen that k
changes smoothly in the transition region. We note that
the narrow transition zone is an analogy of the inhomo-
genous LOFF phase ' in our quasi-two-dimensional sys-
tern. As in the case of the LOFF phase, 0&k &m does
not necessarily imply that current Aows. If a "current-
carrying solution" b., = ~b, ~e'"" has a higher free-energy
cost than a "zero-current solution" (b,, =

~
b,

~
coskn), then

there will be no uniform movement of the condensate.

C. Antiferromagnet

In the case of an antiferromagnetic magnetic layer, we
assume that the magnetic field inside the M layer varies
spatially as he ~, where Q is the antiferromagnetic or-
dering vector, and that 2Q= K, where K is the inverse
lattice vector. We write the Gor'kov equations (for
T & T, ) for the normal Green's functions Gi(p, q +k, co)
and G; (p+ Q, q +k, co ), and for the anomalous Green's
functions F, (p, q, co) and F; (p+Q, q, ~). (We are again
using the spin convention of the Green's functions men-
tioned earlier. ) We get 4X4 matrices for both pairs of
Green's functions, since we assume that
G (p+2Q, q, co) = G (p, q, co). We calculate the anomalous
Green's function on the S layer [F» (p, q, co) ] and from it
derive the equations of self-consistency and obtain an ex-
pression for T, .

If the electronic spectra g of the M and S layers are
identical, the m phase does not appear for any reasonable
value of h (i.e., less than EF). The electron, tunneling
from the S to the M layer, "feels" an eff'ective field (aver-
aged over the path of the electron) 6 =0 on the M layer.
But if we take the energy to wave-vector relationship (c.
versus k) on the antiferromagnetic layer to be a constant
E (i.e., infinite efFective mass), then the vr phase will ap-
pear (for E of the order of T, ) when h =(T,EF)'~, which
is reachable for real materials.

0 1
5P ~ 0 U(p —p ) nn

J J
(10)

=(2') 5(q +k —q')5(p —p')F (p, q, co), (12b)

where we have written anew the spin dependence of these
functions explicitly (the aP subscript). The notation
8 &(p, q, co) means the matrix 6 i3, (p, q, co), w. here i and j
are layer indices as before.

For ( T —T, )/T, « 1, using the standard notation, we
write the following diagram equations [where we have re-
tained terms up to first order in F (p, q, co)]:

X ~ X (13a)

y ~ ~ 0

where the sum is taken over all impurities, n is the num-
ber of the elementary cell where the jth impurity is locat-
ed, and p is its coordinate within the layer. In the case
of magnetic impurities, we write U (p —p ) =u, (p—p )+u2(p —p )s cr, ' where cr are the Pauli matrices
and s is the spin of the jth impurity. The first term de-
scribes the potential scattering, and the second describes
magnetic scattering.

We shall use the first Born approximation and will as-
sume that U(p —p ) =(u, +u2sj cr )5(p —

p ). Thus,
transforming to the quasimomentum representation, we
get the operator of the impurity potential:

0 0
I'(q, p)=pe ""J "'J 0 Q)+Q2S~ 0

J

Below we follow the method of Abrikosov and
Gor'kov. '

After averaging over all impurity positions and the
directions of their spins s, momentum will be conserved,
i.e., we can introduce 0 &(p, q, co) and F &(p, q, co) as

0 &(p, q;p', q', co) = (2') 5(q —q')5(p —p')C(p, q, co),

(12a)

IV. IMPURITIES
~ Q ~ ~ ~ t ~ ~

q q. k q (13b)

We consider the eFect of impurities on the M layer on
the critical temperature T, and field that brings about the
m phase, h„;,. In the coordinate representation the in-
teraction between impurities and electrons is described by
the matrix operator:

where q and q +k in the above diagrams are arguments
of the Green's functions (quasimomentum perpendicular
to the layers). We have also used in (13a) and (13b) the
following notation:

~ ~ 0~
x ~ &&

= —G~p(p, g, (o) =
r

—V(P -P ) ( S(P, q, co) V(p-p!
(2z)

(14a)

~ ~ ~

x ~ x = -F ~p(p cI,co) =— (14b)
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The brackets ( ) here indicate an averaging over all im-
purities.

We must take into account that the spin dependence of
the Green's functions in the presence of the ex-
change field h may be expressed as 0 &(p, q, co )

I

=6 '(p, q, co)5 ~+8 (p, q, co)c7'ti, while the anomalous
Careen's function conserves its spin dependence
P p(p, q, co)=io~&F (p, q, co). We obtain the following
equations:

dp dqG &(p, q, co)=n f 0 0 0 0 0 0 0 0 S(S+1)0 '(p', q', co) 0 6 &+ 0 G '(p', q', co) 0 & p

0 0 0 0 S(S+1) 0 0 0 0
+ 0.,

6'p'q' '0.,
'-~ 0., G'p'q' '0., (15a)

dp dqF p(p, q, co)=n f 0 0 t 0 00.,
F"p'q' '0.,

0 0 0 0 S(S+1)
0 ~'(P' q' ' 0Q2 Qp 3

leap & (15b)

where n is the concentration of impurities.
The integral

f 0 (p', q', co)(2')'
is equal to zero, so

G &(p, q, co)=

where

0 0
isgna) 1 1

2 71 72-

=nmu, =nm [S(S+1)/3]u21

72

are the reciprocal times of potential and magnetic scattering, respectively.
Equation (13) is written in analytical form as follows:

C(p, q, co)=G (p, q, co)+0 (p, q, co)G(p, q, co)C(p, q, co),

F t(p, q, co)=P t (p, q, co)+F (p, q, co)G(p, q, co)Ctt(p, q+k, co)

+0 &&(p, q, —co)G(p, q, co)F (p, q, co—)+0 ii(p, q, co)F (p, q, co)—Ct&(p, q+k, co) .

Using Eqs. (15) and (16), we obtain the following expressions:

(16a)

and

Ct t(p, q, co) = —T* i co g h——

F (p, q, co) =Cia(p, q, —co)[b, *+Ft(p, q, co)]Ct t(p, q +k, co),

where co =co+ (sgnco/2r& )+ (sgnco/2&2) and we have used the relation

F (p, q, co)=C ti(p, q, co)b, *C tt(p, q+k, co)—.

Substituting (18) into (15b) and introducing b as the matrix element

n 0 0
~0 b

we get (including terms up to second order in t /T, )

(18)

(19)

(20)

(21)
t (1 e+'")b.*6=-

co(co+ co+ ih ) [ [2&&r2/(r, r2) ]sgnco(co—+ ih)+ 1]

Substituting b back into Eq. (18), we get an expression for the anomalous Green s function on the S-layer F» (p, q, co):
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F»(p, q, co)=
[(io )(io —h)

I T„lz][(co+)(m~ ")
I TI ]

Te Ttz( I + eik)
X (co+ —h)(co —h)+

co(co+ro+ih) [[2r&rz/(r& —rz)]sgnco(io+ih)+1]
(22)

where

co =co +(sgnro/2r&)+(sgnco/2rz)

Tk =2te ''i "'~ cos(q +k) /2,
T=2te' cosq/2 .

Tc T z+ co+io
T,o

' „2 [( +m)+h ]
(23)

We consider first the case when the exchange field h is
absent. In the case of weak scattering (T,r)) 1) we ob-
tain

The difference between magnetic and nonmagnetic im-
purities manifests itself only in the second term of this
equation, as ~, and ~2 enter with different signs. Thus,
the difference between the two types of impurities exists
only in terms of order (t/T, ) and higher.

From (22) we get the equation that defines T, . To or-
der (t /T, ) we have

The calculation is quite lengthy and involved, so we shall
proceed directly to results obtained numerically.

Impurities both magnetic and nonmagnetic enhance
h„;, (i.e., make the vr phase energetically favorable at
higher fields than in their absence). Calculations give
h„;,/T, =3.80 for ~2~T, =100 and h„;,/T, =20 for
czar T, =0.1 (purely magnetic scattering); in the case of
nonmagnetic scattering, we obtain h „;,/T, =3.79 for
7 ~7T'T = 100 and h, rjg /T 1 8 34 for ~&~T, .

V. EXCITATION SPECTRUM

As was shown in Ref. 6, for layered systems of the type
superconductor-normal metal ( S N), the -density of
superconducting electrons [obtained by summingF, , (p, q, co) over momenta and frequency] in the nor-
mal layers rises abruptly at temperatures less than t /T„
which results in the reduction of the London penetration
depth.

We obtain the following expression for the anomalous
Green's function on the M layer:

Tc 2 1 7TTc
ln = —~T t Y + (24)

F'-i-i(p q ~)=
D

where

In the opposite limit ( T,r « 1) we obtain

Tc +1+2 1
ln = —~T, t

To ' (r +rz)
(25)

D =(co+co —b, ')(io++h)(co +h) —(co )(co +h) Tl'
—(~ )(~ +h)IT I'+IT'IT I'.

i.e., we see that in the case of strong scattering the term
[r,rz/(r, +rz)]t plays the role of the effective hopping
integral. This coincides with the results of Bulaevskii and
Kuzii. "

We note that both magnetic and non magnetic impuri-
ties increase T, . This can be explained in the following
way: superconducting electrons feel a pairing potential
which is "averaged" over their path of motion. The pres-
ence of impurities, both magnetic and nonmagnetic, leads
to the reduction of the effective transfer integral. There-
fore, in the presence of impurities, superconducting elec-
trons are localized on the S layer and feel a greater cou-
pling constant than when impurities are absent.

If we retain terms of order (t/T, ) in the self-
consistency equation, we can find the dependence of T,
on k, the wave vector of the order parameter, as well as
h„;„, the critical field for the appearance of the ~ phase.

1
p;(io) = ——g Im[G, ;(p, q, co)I;„+;s],

P~V

(27)

where p, (io) is the density of quasiparticle states of ener-
gy to on layer i [note that there is no sum over i in Eq.

In the case of the ~ phase, the density of superconducting
electrons on the M layer is strictly equal to zero, because
F»(p, q, co) becomes an odd function of q, which when
integrated over q gives zero.

The authors of Ref. 6 also showed that at low tempera-
tures (T)0) for h =0, the quasiparticle excitation spec-
trum is gapless on both layers. The density of states on
the normal layer at temperatures lower than t /T, was
shown to rise as v'e, from E =0. For h small (h « T, ) but
not equal to zero, the spectrum on both layers is gapless,
but the density of states at /=0 is finite (i.e., not zero),
unlike the case of Ref. 6.

This is calculated in the following manner:
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+G, , (p, q, co) —=
2(co co+ —b, 2)

(28)

where 62=(4t cos q/2)/T, . Thus, a gapless spectrum is
obtained (due to the fact that b, —+0 for q +sr). —

For small h, we may expand the denominator in
powers of h/6 (for T « T, ) and obtain a different ex-
pression for the Green's function:

(28)].
The general case cannot be solved because finding the

poles of the Green's function exactly requires solving a
quartic equation in co. For A=0 and T « t /T„we re-
gain the Green's function of Ref. 6:

Superconducting (S) layer

I

Ferromagnetic half-layer
I

Ne t a 1 1 i c ha 1 f —
1 aye r

(h ' hcrit K%%%%%%%%%%%%%%%%%%%%%%%vlllllllllllllllll llllallllllllsll lllllllallllllllllllllllsllllllllll IllsIlllllllsllm ( h = 0 )

+l~l
I

I

Tr ansition Zone

Super conducting (S) layer

0 phase

0&k&m

FIG. 2. Experimental measurement of the ~ phase. The su-

perconducting layers on the ferromagnet side have an alternat-
ing order parameter, while those on the side of the normal metal
have a constant order parameter. The smooth change of the
phase of the order parameter in the transition region allows the
possibility of current Aow, as indicated in the figure by the label
)-

6
& &(p, q, co=0)= (g+h)

(29)

where g', =h —(2
~
T

~
/6 ). We get for the density of

states on the M layer at co=0 (evaluated at h «b, and
T«T, )

1 (hb, )'i & dx
iz4 I 4 izz~ r(2)'~' o (1— ')»~ (30)

VI. DISCUSSION

We have calculated the properties of our system in the
mean-field approximation, which is applicable to quasi-
two-dimensional systems in the case t T, /EF( T,—T)]in(t/T, ) «1. Thus, even for t « „TAuct utai osn

of the phase of the order parameter are important only in
a very narrow temperature region close to T, .

Characteristic values of the exchange field in magnetic
metals are h=100—1000 K (the Curie temperature for
the RKKY mechanism 49-h /cz and the superconduct-
ing transition temperature are both of the order 10—100
K), so that conditions for the appearance of the vr phase
are realizable.

If the superlattice consists of an even number of super-
conducting layers, then the phase of the order parameter
at the ends will differ by ~, and the entire system will
function as a Josephson ~ contact (see Ref. 16). As indi-
cated in Ref. 16, spontaneous current will Aow in a cir-
cuit containing such a n contact, and this could be ob-
served experimentally.

If h is on the order of the "gap" on the M layer, t /6,
the density of states at the Fermi level becomes on the or-
der of that of a regular metal. The M layer enters the
normal state smoothly as h increases. This can be ex-
plained as follows: in our case, there is a whole range of.
electrons that "feel" a "gap" 6 between zero and t /A.
Those with a "gap" 6 &h become normal. The number
of such electrons, and therefore the density of available
states at co =0, increase smoothly with h.

For h ))T„ the layers decouple and the 5 layer be-
comes a regular BCS superconductor with gap 6, while
the density of states on the M layer becomes that of a reg-
ular metal, a constant.

Another possibility of detecting the ~ phase would be
to introduce an inhomogenous normal layer between su-
perconducting layers. One-half of the layer would be a
ferromagnet with large exchange field h )h„;„and the
other half would be a regular metal (see Fig. 2). The su-
perconducting layers on the side of the ferromagnetic
half of the "sandwich" would have an order parameter
that alternates its sign as we go from one layer to the
next. The superconducting layers on the other side of the
"sandwich" would have a constant order parameter.
This implies that within every other superconducting lay-
er, the order parameter would change its phase from 0 to

The smooth change in phase of the order parameter
might create intralayer currents near the ferromagnet-
metal boundary that could be experimentally observable.

In conclusion, we have shown that a nonhomogenous
"n phase, " with a superconducting order parameter that
changes its sign as we move from one superconducting
layer to another, exists in a system composed of alternat-
ing S and M (both insulating and conducting) layers with
thicknesses on the order of an intratomic length. This
phase appears when h, the exchange field in the fer-
romagnet, is larger than T, . This phase will disappear if
the F layers are replaced by AF ones, except if the energy
spectrum of the AF is a single band of constant energy
close to the Fermi level. We find that both magnetic and
nonmagnetic impurities cannot bring about the vr phase,
their only effect being to increase the field necessary to
bring it about, h„;,. Our numerical results are listed in
Table I. We find that the transition from ~ phase to 0
phase is a continuous one, and that the density of states
on both layers is not only gapless, but also finite at the
Fermi level.

We note that some of these results have been published
in Ref. 17.
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