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Formal calculation of the pick-off annihilation rate for ortho- and parapositronium
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The annihilation of a positronium atom in matter is often described as occurring through two al-

ternative channels; self-annihilation (involving the electron in the atom itself) and pick-off annihila-
tion (involving an external electron). For many years it has been debated if it is correct to assume
the same pick-off annihilation rate for orthopositronium and for parapositronium. We address this
problem with a formal calculation that takes into full account the spin variables of all the electrons
involved in the process as well as the indistinguishability of the electrons. On the basis of our re-

sults, we make clear the conditions leading to a definition of the pick-oA' rate independent of the
spin state of the positronium atom.

I. INTRODUCTION

Pick-off annihilation of positronium (Ps), a familiar
concept for anyone in the field of low-energy positron
physics, is based on the following simple model: in a
chemically inert medium, annihilation for positrons that
have formed Ps atoms may occur through two alternative
channels, namely, (a) annihilation with the electron
bound in the Ps atom itself (self-annihilation); (b) annihi-
lation with an electron of the medium (pick-off annihila-
tion). Correspondingly, the overall annihilation rate
should be given by the sum of two contributions: for
self-annihilation, the same rates of Ps in vacuo
[A,zz=(125.2 ps) ' for parapositronium (p-Ps) and

=(142.1 ns) ' for orthopositronium (o-Ps)j, and, for
the pick-off process, a rate A, ;,z,z proportional to the en-
counter probability of the Ps atom with external elec-
trons.

Clearly, the above formulation of a two-channel model
does not take into the proper account either the
modification of the Ps wave function due to the interac-
tion with the medium or the indistinguishability of the
electrons. Nevertheless, as long as the model is applied
to gases, where the overlap of the Ps electron with any
other electron of the medium is small, these weaknesses
have limited practical consequences. However, the pick-
off model has been applied to condensed matter since ear-
ly investigations on annihilation in solids and liquids (for
reviews, see Refs. 1 and 2), and maintains all its impor-
tance for modern developments in this fields. For in-
stance, it turns out to be crucial for the quantitative in-
terpretation of magnetic quenching experiments in
liquids and solids, leading to the identification and to the
characterization of positroniumlike complexes. '

Several authors (Hodges et a/ , Mogensen, .Mogensen
and Eldrup, Dupasquier, Schrader ) have discussed the
problem of a definition of the pick-off rate consistent with
electron indistinguishability and with the Pauli principle.
Unfortunately, their conclusions are in part conAicting.

The main point of discrepancy is whether the pick-oF an-
nihilation rate is, or is not, the same for ortho and para
states.

In this paper we address this question with additional
arguments. In Sec. II we make clear the terms of the
problem with a discussion of the different viewpoints; in
Sec. III we present a formal calculation of the annihila-
tion rates for a system formed by a positron interacting
with one unpaired electron and, at the same time, with a
pair of electrons in a closed shell. This is the simplest ex-
ample of a positron-multielectron complex containing at
least one unpaired electron. The results guide us to a
correct evaluation of the assumptions that have to be
made in order to simplify calculations in more general
cases.

II. DIFFERENT VIEWPOINTS
ON PICK-OFF ANNIHILATION

The Mogensen treatment of the annihilation rates for
an unperturbed Ps atom embedded in a diamagnetic
medium is based on a formalism consistent with the elec-
tron indistinguishability and the Pauli principle. In the
framework of the Hartree-Fock approximation, the wave
function of the system is taken by Mogensen as an an-
tisymmetrized linear combinations of products of the Ps
wave function with electron wave functions representing
closed-shell orbitals of the medium. The result of the cal-
culation shows that the annihilation rate is the sum of
four terms. One of these terms coincides with the intrin-
sic annihilation rate of Ps. The sum of the other three
terms represents the overall effect of the interaction with
the medium; it contains two terms specifically connected
to electron exchange, which depend on the spin state of
the system.

Mogensen's calculation thus demonstrates that the net
difference between the annihilation rates of Ps in a medi-
um and in a vacuum depends on the spin. One might
take this difference as a definition of pick-off rate, which
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would certainly be in line with the original two-channel
model mentioned in the previous section. We are, how-
ever, against this choice, which includes in the pick-off
rate two exchange terms that cannot be properly connect-
ed to annihilation of the positron with the electrons of
the medium. This is not only disturbing for the formula-
tion of interpretative models, but is also a serious compli-
cation for applications related to magnetic quenching ex-
periments. We shall see below that a more convenient
definition is possible.

The approach of Hodges et al. is very similar to that
of Mogensen. The main difference is that the overall an-
tisymmetric wave function is built up as a combination of
terms which are mutually orthogonal in the electron
space. The advantage of this choice, which does not limit
the generality of the approach, is that the exchange terms
in the annihilation rate expression disappear. The treat-
ment of Ref. 5 has been extended by Dupasquier ' to a
more general case, including the distortion of the Ps wave
function due to the interaction of the bound electron-
positron pair with the medium. Brusa et al. have re-
cently shown that the same formalism can also be applied
to a system with two unpaired electrons.

According to Dupasquier, ' the final expression of the
annihilation rates for para and ortho states of a bound
electron-positron pair, including any possible disturbance
of the internal wave function due to exchange as well as
to electric forces, can be expressed in the form

~para +~2@+~pick-off &

~ortho +~3y+ ~pick-off '

where ~ is the contact density of the positron with an
electron occupying the unpaired state, in units of the con-
tact density in unperturbed Ps; A, „,and A,„th, are, re-
spectively, the annihilation rates of p-Ps and o-Ps in va-
Cuo kp' k ff is defined by the equation

A,p,,k,tr=( —,'A,
~ + —,'k3 )2g g,

Here, g, is the positron-electron contact density evalu-
ated for the electron in the ith full orbital, in the same
units as w.

The above equations are not in contrast with
Mogensen's results. They imply, however, a new
definition of the pick-off rate. The advantage is that one
obtains an expression which (a) is the same for ortho and
para states; (b) is directly related to the probability of en-
counter of the positron with electrons in closed-shell or-
bitals. It becomes also explicit that self-annihilation
rates, represented in (1) and (2) by the term containing
the parameter a (internal contact density), are not the
same in a medium and in a vacuum. The difference
comes from the dependence of ~ on many body interac-
tions, including exchange. As discussed in Refs. 3 and 4,
Xp k ff and ~ are experimental ly accessible by combining
lifetime and magnetic quenching measurements, ' also by
lifetime measurements alone, if the short-living para com-
ponent can be isolated with sufficient accuracy. "

The treatments of Mogensen, Hodges et al. , and Du-
pasquier refer to the same physical situation, i.e., full

closed-shell symmetry for all electrons but one. On the
basis of this assumption, all the above authors limit the
antisymmetrization of the wave function to exchange be-
tween spatial electron states. This means that the spin of
the electrons occupying full orbitals is not taken explicit-
ly into account in the wave function; in the calculation of
the annihilation rate, a "spin-averaged" state is assumed
for these electrons. According to Mogensen and to
Mogensen and Eldrup, this is only an approximation,
and not necessarily a good one. Their argument can be
presented as follows. Owing to the Pauli principle, elec-
trons repel other electrons of the same spin orientation.
Therefore, the electron of p-Ps should screen the positron
from those electrons which are more effective for annihi-
lation, i.e., those with the correct orientation for giving
fast 2y annihilation; on the contrary, the p-Ps electron
should repel only the electrons oriented for the less prob-
able 3y annihilation. According to this picture, full or-
bitals should contribute to annihilation more effectively
for o-Ps than for p-Ps.

We do not agree with the above argument. One has to
remember that we are discussing a system that includes
one unpaired electron and many other electrons occupy-
ing filled orbitals. The mathematical consequence of this
hypothesis, according to the Pauli principle, is the ortho-
gonality in the position space of the wave function of the
unpaired electron to the wave function of any other elec-
tron, independently of its spin orientation. Physically,
this means that the "Pauli repulsion" mentioned by
Mogensen and Eldrup acts in the same way on both elec-
trons of a filled orbital. In a formal calculation of the
pick-off rate, the delicate point is to take into account the
orthogonalization of electron states in the proper way.
This is shown in detail in the next section.

Schrader presents an evaluation of pick-off annihila-
tion rates, based on a representation of the electron orbit-
als of the medium in terms of eigenfunctions of unper-
turbed Ps. This approach gives the pick-off rate as a sum
of terms proportional to 1/n, where n is the principle
quantum number of the Ps eigenfunctions. On the
grounds of the same argument of Mogensen and Eldrup
cited above, and on the assumption that the n= 1 level is
already occupied by the Ps electron, the n = 1 term of the
sum is included in the calculation of 2y pick-off annihila-
tions for o-Ps only; on the contrary, for p-Ps the same
term, contributing only to 3y annihilations, is neglected.
Clearly, the result is a much larger value of the pick-off
rate for o-Ps than for p-Ps.

Schrader's approach is interesting. Indeed, it can be
shown that the calculation of an upper limit to the
effective electron density at the positron as a sum of Ps-
like terms is based on the orthonormality and the com-
pleteness of the set of Ps eigenfunctions (the only remark
we can make is that, in order to satisfy the requirement of
completeness, the sum should include also the contribu-
tion of the continuum states, whose weight we are unable
to estimate). However, the idea that the dominant contri-
bution to pick-off for the ortho state comes from an elec-
tron of the medium with a large projection on the Ps
n = 1 eigenstate is not convincing. According to
Schrader's picture, this eigenstate is already occupied by
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the Ps electron; in our view, the presence of a second
electron with a large projection onto the same eigenstate
is justifiable only as the result of a redox reaction between
the medium, donating an electron, and the Ps atom.
Here, however, we are discussing pick-off, not chemical
reactions. In an inert medium (e.g. , liquids like water and
hydrocarbons, or solid insulators like quartz, ice, alkali
halides) the transfer of an electron from a filled orbital of
the medium to an unfilled orbital correlated to the posi-
tron is energetically impossible, independently from the
spin orientation. If we identify approximately the empty
orbital with the n = 1 eigenstate, as Schrader suggests, we
see that the corresponding term should in no case be in-
cluded in Schrader's sum.

III. MATHEMATICAL TREATMENT

The mathematical proof of the arguments, that in the
previous section we have brought against the conclusion
that the pick-off rate must be different for o-Ps and p-Ps,
can be given in the most direct way by calculating the an-
nihilation rates of a positroniumlike system on the basis
of an antisymmetrical wave function with full account of
spin variables. This has never been done before, for the
labor it may cost with complicated algebra. However,
the task is not impossible if we consider a system with
four particles only: a positron, an unpaired electron, and
two electrons occupying the same orbital. For fixing
ideas, one may think of the collisional complex PsHe or
of the system PsLi+. Actually, it is not important at this
point to consider a specific system. We are interested
only in bringing out the dependence of annihilation rates
on the spin state, and for this we do not need to specify
the forces that keep together the four particles. In this
respect, the present approach is very general; we assume,
however, the absence of spin-orbit interactions, and this
restricts our treatment to nonrelativistic energies. Not-
ing that pick-off annihilation occurs after thermalization,
and that it involves with high probability only external
atomic shells, the restriction to the nonrelativistic case is
not a severe sacrifice. On the other hand, neglecting
spin-orbit interaction is a necessary assumption for us:
otherwise, total spin would not be a conserved observable
and the distinction of ortho and para states would be
meaningless. An approximate treatment of spin-orbit
effects on spin states can be found in Ref. 12.

We proceed as follows. As a first step we define an
operator A whose expectation value is the annihilation
rate. The next step is to write the wave functions of the
different spin states of the four-particle system. Finally,
we calculate the expectation values of A for these wave
functions, and comment on the result.

The operator A is assumed to be a contact operator,
i.e., a linear combination of 5 functions of the positron-
electron relative positions. This is a widely accepted ap-
proximation, that we do not discuss here (see, for in-
stance, Ref. 6). As selection rules on annihilation require
that antisymmetric spin states (para states) of positron-
electron pairs annihilate essentially via 2y emission,
whereas symmetric spin states (ortho states) annihilate in
3y's, we find it convenient to express A in terms of the

positron-electron spin exchange operator X,. Of course,
since in our system the positron may annihilate with any-
one of the three electrons, A is a sum of three formally
identical terms A, . We thus write

A= g A, ,
i =1,3

where

(4)

1 —X, 1+2
A, =8~ao5(r —r;) '

A, z + '
A, ,~2 2y 2

The factor 8~ao is the reciprocal of the positron-electron
contact density in unperturbed Ps. It is easy to check
that the rate operator A, is diagonal with the energy and
spin eigenfunctions of Ps, with expectation values kzz for
p-Ps and k3 for o-Ps in the n = 1 energy level.

The wave functions we need for our calculation are
supposed to be energy eigenfunctions belonging to the
same eigenvalue of the spatial Hamiltonian, as well as
eigenfunctions of ~S~ and of S„where S is the total spin
of the system. We thus label these wave functions 4
with the total spin quantum number j and the azimuthal
quantum number rn; the limitation j ~ 1 comes from the
assumption that there is one unpaired electron only. Due
to the requirement of full exchange antisymmetry, 0 is
not factorable in a spatial and a spin part; the simplest
possible form is

In accordance with the limits of the present treatment,
which concerns the interaction of a positron-electron pair
with an electron pair frozen in a singlet state, we have not
included in (6) terms with reversed spatial and spin sym-
metry for the last pair of electrons, that may come from
electron exchange even in the absence of a direct spin in-
teraction. The same simplification is adopted in the clas-
sical treatment of pick-off in He by Frazer and Kreidy. '

Physically, terms with reversed symmetry correspond to
virtual triplet excitation of the electron pair initially
prepared in the singlet state. In a real situation, triplet
terms would contribute to the complete wave function

1+ —P(r, rz, r3, r, )y (p, 2)goo(3, 1)
3

1+ —P(r& 13'ri lp)g&. (p 3)goo( 1 2)
3

where the positron is indicated by p and the electrons by
numbers. The symbols g indicate two-particle eigenfunc-
tions of

~
S

~
and S, . The spatial part is represented by

the function P; a semicolon in the list of variables
separates the unpaired electron from the two electrons in
the filled orbital; for these two electrons, the spin factor is
always the singlet eigenfunction goo. This spin factor en-
sures the antisymmetry under exchange of the electrons
in the same orbital; of course P must be invariant for this
exchange, i.e.,

P(r, z;x, y) =P(r~, z;y, x) .
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with an amplitude of the order of the ratio between the
gain in electrostatic energy obtained with the excitation
and the energy required for the excitation. The gain in
electrostatic energy is approximately 75% of the London
dispersion energy for the interaction of a Ps atom in con-
tact with a polarizable system containing the other elec-
trons. According to this evaluation, we expect a triplet
amplitude of (7X 10 for Ps-He.

We come now to a crucial point of the present theory,
I

consisting in a specific condition to be imposed on the
spatial wave function in order to obtain an expression of
the annihilation rate free from exchange terms. What we
require is a sort of "internal orthogonality"; we mean
here the orthogonality, in the presence of the positron, of
electron states which correspond to position variables
separated by a semicolon in the list of variables of P.
This is expressed by the equations

p*(r~, r, ; rz, r3)5(r~ —r, )p(r~, r2; r3, r, )d r~d r, dr2dr3 0, (8)

f P*(r,r, ;r2, r3)5(r —r, )P(r, r3;r„r2)dr dr, dr2dr3 0 (8')

The integration domain 0 is the normalization 12D-
volume of the wave function P. For scattering situations,
where the wave function may not be entirely contained in
a limited space region, normalization in a box is required.
In this case, the normalization box needs to coincide with
a Wigner-Seitz cell centered on the closed-shell scatterer.

Similar relationships, obtained from Eqs. (8) and (8') by
permuting electron indexes, are implicitly satisfied when
(7), (8) and (8') are satisfied. Conditions (8) and (8') are
equivalent, within our more general formalism, to the
orthogonality of the Ps electron to filled electron orbitals
mentioned in Refs. 3 —5. These conditions are automati-
cally ensured in the independent particle approximation,
if P is written as the product of eigenfunctions belonging
to different eigenvalues of the same one-electron Hamil-
tonian. However, we do not need to restrict here the gen-
erality of our approach; in the Appendix we show that
Eqs. (7), (8), and (8') can be satisfied by a proper choice of
P which does not imply any limitation on the interaction
between the four particles of our system.

The rate operator A is diagonal with the wave func-
tions 4 . . The expectation values of A depend only on
the quantum number j; for j= 1, one has the ortho an-

I

I

nihilation rate A,„,h, and, for j=0, the para annihilation
rate X „,. From the symmetry of 4' it follows that

We thus can obtain the annihilation rates from the equa-
tions

(10)

and

The explicit calculation of (10) and (11), which in turn
implies the calculation of the expectation values of the
positron-electron spin exchange operator X &, can be car-
ried out by expressing all spin factors in (6) in terms of
eigenfunctions of X,. One can use the following rela-
tionships:

X//(p 2)Xoo(3 1)= ~[Xoo(p 1)+X/p(p 1)]X//(»3) 2[Xpo(»3)+X]o(»3)]X[/(p 1)

Xii(p 3)Xoo( *»=—
—,'IXoo(p 1)+Xio(p 1)]Xiii(»3)+—,'I: —Xoo(»3)+Xio(»3)]Xi'(p 1»

Xoo(p 2)Xoo(3 1)= 2I. Xio(p 1)X&o(»3)+Xoo(p 1)Xoo(» ) X&t(p )X& —&( ) X& —&(p 1)Xii( )1

Xoo(p, 3)Xpo(1,2)= —,'[ —Xio(p, 1)X)p(2,3)—Xoo(p, 1)X~(2,3)+X),(p, 1)X) )(2, 3)+X) )(p, 1)X))(2,3)] .

(12)

(12')

(13)

(13')

It is also convenient to have a concise notation for the
space integrals implicitly contained in (10) and (11). Con-
sistently with the definitions given in Ref. 3, leading to
Eqs. (1) and (3) we thus write the internal (K) and the
external (il) contact density parameters as

K —8'Iraof l@(r,r&, r2, r3)l 5(r —r&)dr dr&dr2dr3

(14)

il=g~ap f l@(r~,rp r3 r])l 5(r~ —r, )dr~dr, dr, dr3

= 87Tap f l
C (r& I'3'r] rp ) l 5(r& I

&
)dr&dr&dr3dr3

(15)

As for Eqs. (8) and (8'), the integration domain of the in-
tegrals in the above equations concides with the normali-
zation volume. It may be interesting to note that, in the
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case of scattering situations requiring normalization in a
Wigner-Seitz cell, the dependence on the normalization
volume is canceled by integration in Eq. (14) but not in
Eq. (15). This leads to a linear dependence of iI on the
density of the scatterers.

Taking into account that the exchange terms in (10)
and (11) are suppressed by conditions (8) and (8'), one ob-
tains the annihilation rates as sums of three terms. The
first one comes from the first term of (6), and corresponds
to annihilation with the unpaired electron (self-
annihilation of quasi-Ps); the other two, coming from the
remaining terms of (6), are identical, and correspond to
annihilation with electrons in the filled orbital (pick-off'
annihilation). The final result is

(16)

(17)

We thus retrieve, for the case of a single filled orbital, the
result of Refs. 3 and 4, reported above in Eqs. (1)—(3).
However, the important difference of the present treat-
ment compared to Refs. 3 and 4 is that we have not
adopted any simplification concerning the contribution of
filled orbitals to annihilation. This shows that the identi-
ty of the pick-off rate for ortho and for para states is not
an artifact due to a cavalier approximation, but the
consequence of the proper symmetry and orthogonality
requirements of the spatial wave function.

The four-particle system discussed in the present work
reproduces, at a reduced level of formal complexity, all
the important features of the interaction of a bound
electron-positron pair with a system with an arbitrary
number of paired electrons. Thus, in the nonrelativistic
limit, in agreement with Refs. 3 and 4 we confirm that

(i) a definition of the pick-off annihilation rate con-
sistent with the electron indistinguishability is possible
even by taking full account of the spin of all the elec-
trons;

(ii) the above definition implies the calculation of the
pick-off rate on the basis of a wave function of the system
chosen in accordance with specific conditions [Eqs. (7),
(8), and (8') in the case of a four-particle system] which
suppress exchange terms;

(iii) with this definition, and if the closed-shell symme-
try of the interacting system is not perturbed by the Ps
atom, the pick-off rate does not depend on the spin state;

(iv) the final result coincides with that obtained by tak-
ing an average spin state for electrons occupying filled or-
bital;

(v) the eff'ect of exchange forces is implicitly present in
the conditions (7), (8), and (8') (or their equivalent) for
the wave function; therefore it affects the overall annihi-
lation rate (self-annihilation as well as pick-off);

(vi) in consequence of (v), the variations of the overall
annihilation rates due to the presence of an environment
depend on the spin state, in agreement with Mogensen's
result; our Eqs. (1) and (2) give

APPENDIX

and

E is an exchange of the position
of the last two electrons in a list .

Taking into account the electron exchange degeneracy of
the ground level, we use R and E for obtaining a com-
plete set of ground-state eigenfunctions:

Pi =( I+EN

g~=R ( I+E)g, $2=R (1 —E)g,

g, =R (I+E)g, g'3=R (1 E)g . —
(Al)

A properly chosen linear combination of these eigenfunc-
tions gives the final wave function P. According to (7),
however, the eigenfunctions gi, gz, (3, which are antisym-
metric for the exchange of the last two electrons in the
list of variables, are not to be included in the linear com-
bination. We are thus left with the expression

(A2)
i =1,3

The three equations to be used for determining the
coefficients C, are the normalization condition, and Eqs.
(8) and (8'), i.e.,

&ply) =1,
& PIS(r, —r, )lRy) =O,

(ply(r, —r, )lR'y) =O .

(A3)

(A4)

(A5)

For writing explicitly these equations in terms of the
coefficients C, , we adopt the following concise notation:

(A6)

(A7)

We thus obtain

g C,*CJa, =1, (A3')

g C;*C P, +,=0, (A4')

g C;*C.p; +2=0 .
17J

(A5')

As anticipated in Sec. III, Eqs. (7), (8), and (8') do not
limit the generality of our approach. Indeed, the four-
particle ground-state eigenfunction P of the spatial Ham-
iltonian H can be obtained from another generical
ground-state eigenfunction g as explained below.

Let us define the following operators:

R is a rotation of electron position
by one step in a list

7
=(i~—1)7(,3 +Xi;,i,n

&p„,—A2~=(7~ —1 )A2 +7(,„,,q,~,

(18)

where, of course, the indexes are to be counted modulo 3.
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