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1/N expansion for the f '-f Anderson model: Wilson ratio,
Fermi-liquid relations, and charge-fluctuation energies
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We calculate the 1/Ã correction to the free energy of the f' f' An-derson model (where N is the
spin-orbit degeneracy of Tm or Pr impurities in a metal). We obtain the 1/N correction to the Wil-

son ratio (y/y) and relate this to the zeroth-order charge susceptibility. We find the Yoshimori-
Schlottmann Fermi-liquid relation is satisfied to this order in 1/N. The charge-Auctuation energy
scales obtained by expressing the results in universal form agree with earlier scaling theories.

I. INTRODUCTION

Interest in the correlated electron problem has flour-
ished over the past few years in many contexts: high-T,
systems, the metal-insulator transition, heavy ferrnions,
and valence fluctuators. The latter two fields have led
people to study dilute-magnetic-impurity problems as a
first step towards understanding the many-body renor-
malizations occurring in lattice models. Even though ex-
act numerical renormalization-group' and Bethe-ansatz
solutions have been available, the challenge has been to
describe the magnetic-impurity problem adequately
within a many-body treatment that can be treated as in-
put for (or in cotnpetition with) lattice theories.

The impurity Anderson model provides a convenient
framework for studying the range of fluctuating-valence
to local-moment behavior. For Ce or Yb impurities in
which the local state fluctuates between a magnetic
f '(f '

) and a nonmagnetic f (f '
) configuration a num-

ber of reasonable many-body treatments have been
developed, and in recent years a lot of attention has been
focused on the 1/N expansion (where N denotes the
spin-orbit degeneracy).

For the case where the two lowest atomic
configurations both are degenerate, a lot less work has
been done. Where crystal fields are such as to produce
nonmagnetic doublets, the dominant fluctuations are ex-
pected to be quad rupolar. However, if both
configurations carry magnetic moments, different physics
is involved. Variational studies of the f '-f Anderson
model by Yafet et al. showed that hybridization pro-
duced a many-body singlet ground state, in which the f '

and f components of the wave function contained in ad-
dition one and two holes, respectively, thereby screening
the overall moment. Furthermore, the energy scale
separating this singlet from higher magnetic states was
found to be very small, typically of the order of a Kondo
temperature, even with the valence well in between the f '

and f limits. The f '-f problem was treated by Read,
Dharmvir, Rasul, and Newns (hereafter referred to as
RDRN) using a 1/N expansion and similar conclusions
were reached. A singlet ground state and small

intermediate-valent energy scale were also obtained for
the f2 fAnd-erson model, perhaps a suitable starting
point for dilute uranium systems. The variational
method has been extended to the calculation of the mag-
netic response of the f '-f model. More recently the
noncrossing approximation (NCA} has been formulated
for this problem and a numerical renormalization-group
(RG) study' has confirmed that the ground state is a
many-body singlet of the type discussed earlier.

In this paper we extend the 1/N expansion procedure
formulated by RDRN in an effort to obtain reasonable
quantitative results for the low-temperature properties of
the f'-f Anderson model. Although this expansion
procedure requires we use a highly simplified model,
namely a j-j-coupling model in the limit of zero j-j cou-
pling, the recent RG results imply that the 1/N expan-
sion even at leading order reproduces the correct physics
and hence provides a good starting point. Furthermore,
experience with the Kondo problem has shown that the
1/N expansion constitutes the only reliable guide for
reordering perturbation theory so as to obtain nondiver-
gent results at low temperatures. If the correct low-
temperature behavior of this model can be obtained, the
formalism can then readily be applied to more realistic
coupling schemes.

In particular we calculate the quasiparticle energy of
the singlet state to next-leading order in 1/N and obtain
the 1/N correction to the Wilson ratio y/y. Such a sys-
tematic 1/N perturbation procedure" is known to yield
accurate results for the f f' problem (w-here exact
Bethe-Ansatz results are available} for the susceptibility,
valence, crossover number W(N), and also the y/y ra-
tio. In contrast the NCA, while providing a good
overall description as a function of temperature, has
nonanalyticity in the Fermi-liquid regime. The slave bo-
son method' of particular convenience for the ff'-
problern, when formulated in spinless terms, ' does not
recover the 1/N limit correctly. Spin-carrying tensor bo-
sons are required in this case' and do not appear to sim-
plify this problem to the extent the boson method does in
the f -f' case.

We start from the f ' fAnderson model (-spin j)
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[where ek denotes the conduction-electron energy (with
spin m}, V denotes the f '-f mixing element, and E„E2
are the bare energies of the f ' and f configurations], to
which an extra hybridization to the f singlet state has
been added. This allows use of the quasiparticle energy
scheme used in RDRN to obtain diagrammatic expan-
sions in powers of V for the singlet energy akin to a
Brillouin-Wigner perturbation expansion. Although we
take Vo to zero at the end of the diagrammatic resumma-
tion in powers of 1/N, the presence of the fo state allows
us to reach a state which has the correct symmetry of the
ground state. The quasiparticle energy scheme is ade-
quate as long as we are dealing with low temperatures,
and saves a lot of effort even at the 1/N level over other
perturbative resummation schemes. '

In the next section we calculate the quasiparticle ener-

gy to next-leading order in 1/N. In Sec. III we obtain ex-
pressions for the spin and charge susceptibilities (g,g,„)
and specific-heat coefficient y to leading order before ex-
tracting the 1/N correction to the Wilson ratio R =g/y.
We show that the Yoshimori-Schlottmann' ' relation
between R and y,„ is satisfied to next-leading order in
1/N In Sec. IV. we show that if we express our results in
universal form, we obtain energy scales describing the
charge fluctuations which agree with earlier scaling
theories.

II. QUASIPARTICLE ENERGY
TO NEXT-LEADING ORDER

In this section we recount the leading-order result of
RDRN, generalized to include a magnetic field, and then
proceed to discuss the 1/N corrections. Our basic quan-
tity of interest is the f singlet quasiparticle energy Eo,
which results from adding to the f' fAnderson mode-l

the extra hybridization term in Eq. (1). The diagrammat-
ic procedure is then a straightforward generalization of
the rules for the f f' Anderson mod-el; ' the increasing
time axis is taken from. left to right, and the initial f
state is occupied by a band electron (with spin) at some
time, with a matrix element Vo, and becomes vacant
later, again with a matrix element Vo. The band-electron
propagation is represented by a Fermi function f (e )

where e is the electron energy (spin) and the intermedi-
ate f ' state contributes on energy denominator
E

~ Eo E . This constitutes the lowest-order pro-
cess. The interinediate f' state can then be dressed to
leading order in 1/N by an infinite number of f ' fpro--
cesses in which another electron (with spin m') hops in
and then out of the f state. This has the effect of renor-

malizing the f '
energy denominator as follows:

E, —Eo —c, ~d (e )

2 f (E', m')=E, E——E —V
c', rn'Wm 2mm' 0 m m'

where E2 ~
—Eo —c. —c, ~ is the energy denominator

for the intermediate f state with two holes present.
Once an intermediate f state is created, however, anoth-
er possibility is that the original (spin) electron hops into
the band, so that the resulting f ' state has changed spin.
This procedure can continue indefinitely, still yielding
contributions of leading order in the 1/N expansion as
long as all the band lines are joined up to give only hole
propagators (i.e., Fermi functions}. The result of this
procedure is illustrated in Fig. 1(a). As each successive
hole line involves a different energy (and spin} the itera-
tion procedure is most easily represented in terms of a
vertex function a (e ). The quasiparticle energy is then
given by

(e )a (e )
E =V

(s )

where the vertex function a(e) satisfies the integral equa-
tion described in Fig. 1(b);

(e2, rn'}a' (e2, m'}
a~(e ) =1+V g, , (4}

d (e2)L (e„e2,m', m)

where L( ,e's; mm')=E 2 Eo s —e—' . —The in-

tegral equations of RDRN, and Yafet et al. , can be ob-
tained by setting 0=0 and absorbing the renormalized

f ' energy denominator into the vertex function a, by in-
troducing p (e )=a (e }/d (e ) and taking the
Vo ~0 limit in such a way that Eo remains finite. This
can be done by absorbing the factor Vii into p (e ) and
letting Vo tend to zero, after which the constant on the
right-hand side (rhs) of (4) drops out and the quasiparticle
energy is determined by the solutions of

f (s'„m ')P,(e', )
d (e )P (e )=V'g g L e, e, m, m

+ 0 ~ ~

FIG. 1. (a) Diagrams for the singlet energy at leading order
in terms of the vertex function a(c). Wiggly lines denote the re-
normalized f ' interval while dashed lines represent the bare f
state. Band electrons are represented by solid lines. (b) Integral
equation for the vertex function a(c.).
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FIG. 2. Lowest-order diagrams in V contributing to next-
leading order in 1/N.

{c)

The assumption of equal g factors for local and band
electrons leads to the enormous simplification that the
magnetic field cancels out in all energy denominators,
since it appears with the same spin index equating in both
band and local energies. The only place the field appears
explicitly is then in the argument of the Fermi functions.
Looking at (5) we see that at leading-order 1/N the re-
striction on the spin sum can be dropped, and the expan-
sion at the Fermi function in the field leads to the appear-
ance of only even powers of H. It is easy to see that the
Sommerfeld expansion into terms at order T will lead to
the same expressions (apart from proportionality factors
involving Boltzmann's constant and the electron g fac-
tors) as those obtained in the field expansion. The many-
body processes involved at leading order in the 1/N ex-
pansion therefore enter identically into the calculation at

and y so that the Wilson ratio R =g/y [where
g= 1/3j(j = l)g and y=m. k& y/3] is equal to unity, as
in the large Nlimit of-the f -f ' Anderson model. How-
ever, we shall show later that at the next order in the 1/N
expansion the spin-summation restriction in (4) becomes
important for E. The origin of this restriction is the Pau-
li principle. As shown by Evans and Gehring it forces
the effective moment p,& to take different values in the
two local-moment limits.

Turning now to the next-leading-order connections we
recall that in the f -f ' problem these are obtained by in-
cluding conduction electron-hole processes. The simplest
such diagram for the f'-f problem [illustrated in Fig.
2(a)] involves dressing an intermediate f line with a
conduction-electron f ' bubble. Including the renormal-
ization of the f line (to leading order in 1/N) and insert-
ing the vertex function in the right-hand corner generates
a set of diagrams contributing to order 1/W.

Further O(1/N) graphs are obtained by cutting the in-
nermost f ' interval and innermost hole propagator in

I

(e)

ea eI e4

FIG. 3. (a)-(d) Next-leading-order contributions to Eo in
terms of the higher-order vertex functions M and M. Integral
equations for these vertex functions are represented graphically
in (e)-(f). The intervals between successive dots yield either
L (6 c) or d (he, ) as explained in the text (where hc involves the
difFerence between leftward and rightward running energies).
Lines with closed ends denote intermediate energies that are
summed over.

Fig. 2(a) and inserting an f interval. The hanging hole
lines are connected to the two remaining f '-f vertices,
producing the skeleton diagram shown in Fig. 2(b). The
hole lines have distinct spin indices, so this diagram is at
the same order in 1/N as Fig. 2(a). This insertion pro-
cedure can be extended ad infinitum Clearly this .devel-
opment parallels the vertex-renormalization procedure
occurring at leading order [Fig. 1(a)]—each insertion in-
troduces an extra energy dependence —so an integral
equation representation is expected.

We therefore introduce a function
M(c„m:cz,m', c', m) which satisfies

f (c3 m3 }M(cl m 'cz m3 c m)
M( cm, cmz': ', cm)=L( , c+)cz'+ V g d c,+c3—c' I. c,+c,+cz—c'

3

The contribution to Eo from the series of diagrams in Figs. 2(a} and 2(b} can then be written
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f (c„m) f (cz, m')[1 —f (c', rn)]M(ci, m, cz, m':c'm)a(c„m)
U2 V4

d(c )' L (c,+ cz)d (c,+ cz —c')
'2

which we represent diagrammatically in Fig. 3(a). As the overall contribution to Eo from these diagrams is of order
1/N the spin-sum restrictions on internal-energy denominators may be ignored and consequently both d(c) and
L (c)=Ez E—o c—are taken as independent of spin, whenever they appear in 0 (1/N) graphs. Further 1/N diagrams
are obtained by interchanging the ends of the outer two-hole lines in Fig. 3(a); interchanging the ends at these hole lines
at the right-hand side produces the set of graphs represented in Fig. 3(b) which contribute to Eo a term

f(c„rn)f (cz, m')[1 f—(c',m)] a .(cz)M(c„m, cz, m':c', m}
Uz V4

d (ci )d (ci+ cz —c') L(c,+cz)
C2

where M ( c„m, cz, m ', c', m } satisfies the integral equation

a(c&, m& ) f (c4, rn')M(ci, mi, c4, m':c', m
&
)a .(c4)

a c,m M c,m, c,m:c', m

4
m'

Interchanging the hole lines at the left-hand side (lhs) of Fig. 3(a) and swapping dummy indices yields a term

f(c„m)f(c„m') [1—f (c', m')]a(cz, m')

(9)

(10)

I
62, m

illustrated in Fig. 3(c); while the same procedure applied to Fig. 3(b) yields a contribution to Eo

f (c„m)f (cz, m')a(c„m)M(cz, m', c„m:c',m')
U V

d (c, )d (c,+cz —c')L (c,+cz)
I

K2, Nt

illustrated in Fig. 3(d).
The set of diagrams in Fig. 3 still do not constitute the full set of diagrams contributing to Eo to order 1/N. We can

show that they should be regarded as constituting renormalizations of the f ' and f intermediate states entering into
the leading-order diagrams of Fig. l. In particular Figs. 3(a) and 3(d) can be regarded as renormalizing the f inter-
mediate state as follows:

f (cz, m')S(cz, m', c»m:c', m')
d(c, m)~Z(c, m)=d(c, m) —V

L c, +cz
1

I
E2, m

and Figs. 3(b) and Fig. 3(c) renormalize the f intermediate state

(12)

ci+cz) L(cl+cz) L(cl+cz V QS(cl&ml&cz&mz'c m ) (13)

where S(c, m, cz, m':c', m) is defined as follows:

[1 f (c m)] M(cz, m', c, m:c', m')[1 —f (c', rn')]
S(c„m,cz, m':c', m )=M(c, , m, cz, m ':c', m )d (cz)

d ci+cz c d(c, +cz —c' (14)

Inserting these renormalizations into the f and f line to the left of the leading-order vertex function in Fig. 1(b) gen-
erates all the graphs in Figs. 2 and 3. Inserting these renormalizations into Eq. (5) we obtain after defining

P (c, ) =a (c„m)/Z(c„m }the following integral equations for the quasiparticle energy:

f (cz, m'}P (cz, m')
d(c„m)P (c„m}—V

m'Wm L c, +cz)
2'

(c,m')= V g I[1—f(c', m)]Q(c„m, cz, m':c', m)+[1 —f ( mc')]Q( rncz', „c:m', c}Im, ( }
L c, +cz

m'
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where Q satisfies

P(c, )+P(c2) f (c4,m4)Q(c„m, , c4, m4:c', m, )
d(c, , +c,—c')Q(c»m, , c,:c',m&)= + V'g

L(c,+c~ L c, +c2+c4—c')
4

(16)

These equations comprise the full set of (1/N) diagrams for the f ' fm-odel. They are equivalent to inserting pro-
cesses of Fig. 3 at each interval in the diagrams shown in Fig. 1(a},and summing the resulting infinite set of diagrams.

III. 1/N CORRECTIONS TO THE WILSON RATIO y/y

In this section we calculate the 1/N correction to the Wilson ratio and show its relation to the zeroth-order change
susceptibility y, . We obtain first expressions for y, y, and y, at leading order in 1/N. We shall use the integral equa-
tion (5) with the spin restriction dropped, together with the zero-field, zero-temperature version of this equation

o po(c')
d, (.)p,(.)=r f D I—0 c+c

where

(D +Eq Eoo —c—)
do(c)=E, —Eoo —c—I ln

2 00

Lo(c+ c') =E2 Eoo —c——c',
and

(17)

r=NV pp .

where p(c) and y(c, c') are the amplitudes for the f ' conduction hole and f two-hole components, and ~F.S. ) denotes
the filled Fermi sea. This state is a singlet and lies lower than any at the possible magnetic configurations at leading or-
der in 1/N. As long as p(c) is properly normalized, it is straightforward to show that the expectation value of the f oc-
cupation (the valence} is given by

(pig f f Ig) =nf=2 —f dcP(c) (19)
m

Since (17) is a homogeneous integral equation we are free to fix the arbitrary-scale factor of po(c) so that po(c) and p(c)
are equal. Then po is the f component of the wave function. Similarly, the finite-temperature equations (5), (15), and
(16) may be scaled so that p(c) is the zero-temperature, zero-field limit of p(c) and that as N~ oo the quantity p (c) in

Eq. (15) tends to this same function. This also fixes the amplitude Q (c,, c2.c'). It should be noted that all these normali-
zations leave the quasiparticle energy Ep unaffected.

Having determined the scale factors we return to Eq. (5), multiply by po(c), and then integrate over energy from D—
to 0, obtaining

f dcd(c)P(c)Po(c)= —g f dc, 'P(c' )f(c' )do(c'+Eo —Eoo)Po(c'+Eo —E„) .
rn

(20)

The Sommerfeld expansion can now be performed, remembering that Eo Eoo is of order (H—, T ) and that d (c) it-
self has a series development in H and T . After some manipulation we obtain (for H =0)

Here Eoo is the ground-state energy to leading order in 1/N, and po is the conduction-band density of states at the Fer-
mi level. We note that po(c) is unspecified up to an arbitrary factor. We shall determine this factor by the following ar-
gument. It was shown by RDRN that (17) is the same equation as that obtained by Yafet et al. for the amplitude of the
f ' conduction hole, and f two-hole components at the ground-state wave function. In the 1/N language the ground-
state wave function takes the form

~g)o=g f dcP(c)f (c)c (c)~F.s)+ g f dc f dc'y(c, c')f (c)c (c)f (c')e (c')~F.s. ), (18)—D mm

jc
(Eo — E)ofodc'Po(c')Po(c')= —H T q'(0)+O(T ),—D 3

where

o po(c')'
q(c) =d, (c)P,(.)'+r f DLo(c+c—

(21}

(22)
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The same type of development can be carried out in powers of the field with the result that

(Eo E—oo) f de'Po(E')Po(e')= —
—,'j(j +l)(gpii) H q'(0) . (23)

In terms of the quantities g and y defined earlier the Wilson ratio is unity (as explained earlier) to leading order in 1/N
because the Pauli-principle correction is negligible in this limit. Proceeding to the charge susceptibility we define a
function Pi(e) equal to dPo/dEi2 where E,2=E, E2—. This function describes the response at the f ' amplitude to a
charge in the relative positions at the bare f ' and f states. It is straightforward to show that p, (E) satisfies the integral
equation

o pi(e')
do(e)P, (e)—I f de', = —P(E}—ad(e)P'(e),—D Lo(e+e') (24)

where p'(e) denotes (d/de)p(e) and a=d (E2 Eo)—/dE, 2. It is useful at this stage to note that p'(e) satisfies the in-

tegral equation

d, (e)P (E)—I f de', =2d(e)P'(e) —I (P(e)+P(0))/(5 —e) —P(e),o, p'(e')
-D Lo(a+e') (25)

(27)

which is a restatement of the normalization condition. Integrating by parts we obtain nI =q (0). This relation can then
be differentiated with respect to E&2 to yield the charge susceptibility

which is obtained by differentiation of (17) followed by integration by parts. Multiplying (24) by po(e) and integrating
over c, as before, the terms on the lhs vanish, so that

f de d (e)Po(E)Po(e)a = —f de Po(e) (26)

Since a is simply equal to nI —2 this relation is equivalent to

f dEdo(e)Po(e}Po(e)=1,

2

=2d(0)P(0)Pi(0)+[1+a(1+I /5)]P(0) +2 f dx Pi(x) —a f dx
2

12 D5—x— D(5—x—)
(2&)

where E2 Eoo=5. T—he susceptibility and specific heat are written concisely, to leading order in 1/N as f=y =q'(0).
We turn now to the 1/N corrections and follow the analysis of Bickers for the fo-f ' Anderson model. At leading or-

der in 1/N the singlet ground state is affected in the same way by either a magnetic field or an increase in temperature.
Both bring into play excited band states through the single Fermi function in (5). Although the basic energy scale is
determined by a nonlinear bound-state equation, the spectrum at this order is that of a free electron gas and the Wilson
ratio is unity.

The 1/N correction break the symmetry between temperature and field, causing R to deviate from unity. The source
of this difference is the low-energy behavior of the included equal-spin electron-hole pairs. The reason field and temper-
ature couple differently to these states is that these states are bosonic at low energies. While these bosonlike energies do
yield a T contribution to the free energy, they do not couple to the magnetic field. We therefore have to extract this
boson part.

We multiply (15) by the N~ 0o limit of p(e) in Eq. (5) and integrate over energy as before. This yields the following
expression:

p(ei)[p(ei)+p(e')]
N f deif (ei)P—(ei)P'(ei)5Eo= —V g f dcif(e&, m) f de'f (e', m)

L E, +e'

(e„m) (Ez, m') (E, )
+V g f de, ,dEzdE'

(L, e+z)e

X [[1—f (E', m}]Q(e„m,ez, m':e'm)

+[1—f( me')]Q( , e2mc, , nc, ', m)), (29)

where 5EO is the 1/X correction to the quasiparticle energy. We now extract the boson term by writing the electron-
hole Fermi functions as follows:

f (e„m }[1—f (e', m}]=[f(e', m}—f (e„m)]b(e,—E'), (30)

where b (e) is the Bose function.
The remaining task is then to determine the low-energy behavior of the amplitude Q (E„E2:E')for small E, —e', which

is done by multiplying (16) by po(e) and integrating over e. This leads to the relation
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~2 1+ ~2 ~ ~2 ~1 8 +K2 61,C2.C —g 61 (31)

It follows that Q(ci, s2..s') is a singular function of e, —e'

of the form

P(Ez)q (e, )
Q(E„Ez.e')=—,+Q(e„ez', e'),

ei s
(32)

where Q(s, , s2.s') is regular in s, —s', and satisfies an in-

tegral equation similar to (16}but with a different driving
term. Making the replacement (30) in (29} requires that
we know only the e&=e.'=0 limit of this function which
satisfies

d( )Q(0, :0)—I f d'
—D LO s+ e

= (P(0)+P( e) )/I 0(e ) —(2+ a )d (s )P'(s) /r . (33)

Comparing the driving terms of (33) with those in (24)
and (25) we find that Q(O, e:0) can be written in terms of
P,(e), P'(e), and P(s):

channel is due to the charge fluctuations and the remain-
ing N —1 arise from the spin degrees of freedom. This
result is not surprising in itself. In the present f' f-
model, however, its formal derivation should require that
one start from a finite-U Anderson model with an addi-
tional three-electron repulsion

m (m &m"
9m Qm 9m (38}

which is subsequently taken to infinity. Deriving the ap-
propriate Ward identities in this case would then appear
to be more complicated. This issue is left for further
study.

We note that (35) has been invoked by Evans and
Gehring to estimate the variation of R with valence. By
numerically differentiating the ground-state energy with
respect to E&2 they estimate the change of R due to g,h to
be a fraction of a percent. These authors include a single
electron-pair correction to the f self-energy.

Q(O, e;0)=—[P,(E)—P'(e)+q'(0)P(e)/2], (34)

where the coefficient of P(s) is determined by substitution
into (29).

The above expressions are suScient to determine the
bosonic contributions to 5EO. Substituting (34) and (32}
into (29) and making use of (28) for the charge suscepti-
bility y, we obtain after much algebra

5E0=1/(2N)[y—,h
—2rp(0) /5 —q'(0) jf dy yb(y),

(35}

describing the specific-heat correction from all 0(1/N)
electron-hole-pair processes. To obtain the Wilson ratio
to next-leading order in 1/N we have to include the
Pauli-principle correction to y/y arising from the spin-
sum restriction in Eq. (5). Combining these two effects
leads to the cancellation of the second term in
parentheses in Eq. (35), and we obtain finally the Wilson
ratio to next-leading order in the 1/N expansion:

R =1+1/X —y,h/Xy . (36)

The expression is the main result of this paper. It agrees
to next-leading order in 1/N with the Fermi-liquid rela-
tion derived for the finite-U Anderson model by Yoshi-
mori' for spin —,

' and extended to the degenerate case by
Schlottman

y=(N —1)/N /+1/Ny, h . (37)

This relation is basically a statement about the number of
channels participating in the low-energy spectrum. One

I

IV. CHARGE FLUCTUATION ENERGY
SCALES TO ORDER 1/N

At the opposite end of the spectrum from the low-
energy Fermi-liquid region are the charge-fluctuation en-

ergy scales. For Anderson-type models these scales are
closely related to the ionic energy difference between f '

and f2 states, yet they also absorb all the essential depen-
dence of physical quantities on the electron bandwidth.
Since this dependence is logarithmic the simplest way to
obtain these charge-fluctuation scales is via perturbative
scaling. ' ' As pointed out by Haldane'9 for the fo-f'
problem such a scale the crossover from valence fluctua-
tion to local-moment behavior. For the f'-f case,
RDRN showed that two such scales exist, one for each
local-moment limit. They showed that the ground state,
Eq. (5), could be written purely in terms of the singlet
binding energy and the N~~ limit of the charge-
fluctuation energy scale, thereby removing the bandwidth
D from the problem. We shall see how the charge-
fluctuation scales enter at the 1/X level by focusing on
the large-energy behavior of Q(sis2. e') in Eq. (16). For
large c,

' this limiting behavior is simply found to be

(P(s
&
)+P(s2) )

Q (e„Ez.s') =
(e' —E, —E2} (Ez Eo —e, —sz)

'— (39)

so that the e' integration on the rhs of (15) yields a term
logarithmically dependent on the bandwidth. This term
may, to 1/X order, be absorbed into the denominator of
(15) which, apart from sublogarithmic 1/N corrections,
becomes

(E, E—E)p(e)=(N —1)r, f '— d e'(P(s)+P(s') )

d
E2 Eo s e—' —2r—gn—

IE'+El

(40)
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where I 0=I /N. This is similar to the single electron-
hole-pair result of Evans and Gehring except for the fac-
tor 2 multiplying the logarithm. The logarithm correc-
tion is naturally absorbed into E2 which can be replaced
by

E2 =E2 —2I ol nD/T', (41)

while the f' energy E, is renormalized by the large-
energy behavior at the integral in (40} to become E;.
Where

E) =E, (N——1)I 01nD/ T' (42)

and the energy scale T' is so far undetermined. It is
chosen in such a way that (40} and all physical qualities
obtained from it be independent of E, E2 a—nd lnD.
Since the remaining integral on the right-hand side con-
verges for ~D~ ) (E& —E2 ~

we may write (40) in the form

TE—e —(N —1)I'Oln P(e)
( T*+E s}—

(43)

apart from 1/N sublogarithmic corrections. The singlet
binding energy is given by E=E, Ewhile t—he charge-
fluctuation energy scale T' satisfies

T'=E E, +(N——3)I' ln(D/T'),

which is the exact scaling-invariant quantity obtained by
RDRN. Measuring the singlet binding energy relative to
the f2 state gives a similar scaling invariant, but with E,
and Ez reversed. The O(1/N) calculation presented here
therefore reproduces the perturbative scaling invariants
found earlier.

In summary, we have formulated integral equations for
the singlet quasiparticle energy of the f'-f Anderson
model in a j-j-coupling scheme (in the limit of zero j-j
coupling) to next-leading order in the 1/N expansion.
For the low-energy properties we find that the specific
heat, spin, and charge susceptibilities satisfy the same
Fermi-liquid relation as in the f -f' Anderson model.
As regards high-energy properties, the electron band-
width and ionic energy difFerence can be eliminated in
favor of charge-fiuctuation energy scales which agree
with results from perturbative scaling theory. The
present formulation in terms of Goldstone diagrams can
be simply extended to more realistic coupling schemes
with the knowledge that both high- and low-energy prop-
erties are adequately described. Solution of the integral
equations will yield static properties such as specific heat
and spin susceptibility as a function of valence. Spectral
properties can be calculated within this procedure and
multiplet splittings should also be included. Such calcu-
lations should help determine whether impurity Ander-
son models or conventional band-theory descriptions are
more appropriate for rare-earth systems other than ceri-
um. A plethora of experimental data awaits such calcula-
tions.
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