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Renormalization-group approach to the theory of the Fermi surface
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We describe an approach to the theory of the Fermi surface based on the renormalization group.
A notion of the quasiparticle appears naturally in the theory. The P function is finite to all orders of
the perturbation theory and we compute and discuss it to second order. The normality of the Fermi
surface is linked to the repulsivity of the quasiparticle potential; the remarkable cancellations that
occur in the P function lead one to think that a normal Fermi surface can perhaps occur, but only
when the interaction between the quasiparticles is repulsive. The approach was first proposed in an
earlier paper and we give an improved version of it here referring to the earlier work only to make
use of technical estimates derived there.

A natural approach to the theory of the Fermi surface in an interacting Fermi liquid is to slice momentum space into
layers

I, ,Io,I „I z. . . , with I, = tact of (ko, k) such that k2o+[(ki —pF2)/2m]i&po~]

and, if n ~0,

I„=I set of (ko, k)such that (2" 'Po) ~ ko2+[(k —PF)/2m] ~(2"Po) };
here po is an arbitrary momentum scale, pF is the Fermi momentum, and m is the particle mass. Then the fermion
propagator g (t, x) appearing in the perturbation theory' can be written:

ddk
—i(kot+k x)

g (t, x)= g g'"'(t, x)—:g ftn (2n') + iko+(—k pz)/2m—

Hence g'"' is the part of the propagator coming from layers at distance 0 (2"po) from the Fermi sphere [ko =0, lkl =pF
in the (d+ 1)-dimensional momentum space]. The momentum scale po used to measure the distance from the Fermi
surface will be conveniently chosen identical to the averse of the range of the potential. The preceding decomposition
of the propagator generates a representation g

+—= g„'
In order to clarify the basic difficulty, let us consider, for simplicity, the case 8=3; then the asymptotic form of g'"' is

(ifP:—pF/m), for large n and lxl+ ltl:
2

2n JFJ og'"'(t, x)-const2" t
sin(pF Ixl ) cos(pF Ixl )+

pF lxl
y(2"tPo, 2"xpo ) (2)

and y is n independent and fast decreasing (provided, as usual, the oscillations due to the sharpness of the boundary of
I„are eliminated by means of the device of introducing a smooth partition of unity mimicking the slicing). Equation (2)
is not suited for a renormalization-group analysis of the main functional integral

f Ps (d g)exp[ —V' "(f)],
where

Q+ 2

V"'(f)=fdxdy dt's, ,(x—y)g,+„P,+„f,„P,„+a,f dx dt's,+„f,„+v,fdxdtg, +„P,„2m
(3)

and Ps(dg) denotes that the functional integral of exp( —V'") has to be evaluated using Feynman rules with propaga-
tor g.

The unsuitability of the decomposition (2} stems from the fact that g'"' does not scale, i.e., it does not depend on (t, x}
via (2 tpo, 2 xylo), but it also oscillates on scale PF and, worse, it contains a scaleless singularity lxl . Hence, unlike
the analogous properly scaling decomposition met in relativistic quantum field theory or in the theory of the critical
point in Statistical Mechanics, we cannot use (2) even for assigning in an unambiguous way a dimension to the field.
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For instance, if one disregards the preceding diSculties, one might be tempted to say that the field scales like
2 " =2". This, as we shall see, would be quite misleading and, essentially, wrong. If, nevertheless, one insists in the
preceding path and defines the effective potential on scale 2 "po ' as

exp[ V(h)( lt))] fp(dg(1)). . . p(dg(a+1))exp[ V(1)(y+y(1)+. . . +y(A+1))] (4)

trying to identify relevant and irrelevant terms in some reasonable way, then one is led to think that V'"' becomes quite
singular as l( ~ —~, approaching a potential very large (~ ao ), but with very small range (~0}and integral, in its
two-body part.

This result, which is not free of unpleasant ambiguities due to the lack of scaling of (2), is bad. In fact, on one hand,
it does not sound unreasonable physically since the 5-function potential is trivial (if d) 1};hence it could be interpreted
as saying that the system tends to become noninteracting on a large scale, even though V'"' is not approaching zero.
On the other hand, the divergence of V'"' prevents a quantitative application, because the renormalization-group (RG)
approach is typically a (resummed) perturbation theory approach and does not accommodate large potentials (i.e., there
are no known techniques to deal with them}.

We think that a way out of the impasse is to find a better decomposition of the propagator allowing us to see that the
fields 1i( on scale n are really propagating with a propagator g'"' smoothly depending on (2"tp 02" px0), so that no ambi-

guity could possibly be met in the RG power counting arguments.
Our proposal is to introduce quasiparticle fields P„ in terms of which the particle fields f can be written

q+(n) — d~e 'I'F "y+—(n) (5)Z
) )

ZAl

where x =(t,x) and the integral is over the unit sphere so that pFm is a Fermi sphere momentum. The quasiparticles
propagator g'"'(x, ro;x', ro') is chosen so that

g
"((x),cox', ro)=5(ro ro)—g

"(( )x— xro),

g'"'(x)= f defoe g(")(x,ro) .
(6)

Although there are Oo-many ways of representing g'"'(x) in the form (6), it is remarkable (and not totally obvious}
that, at least if d is odd, there exists one way in which g(")(x,ro) has the property that, if g„=(2"pot,2"pox)—:(r„,g'„),
for large n:

g( )(x co) 2 CdpF~ po(r 'cog )y(g )

with y exponentially decreasing in ~g„~, see Ref. 2, and we choose from now on units in which the Fermi velocity

P=pF /m is equal to 1.
The preceding relation tells us that the quasiparticle fields scale, in in all dimensions, like 2, i.e., have dimension —„

and also allows us to set up the familiar description of the effective potential in terms of relevant and irrelevant contri-
butions.

Of course we must regard the initial interaction as an interaction between quasiparticle fields rather than between
particle fields. All the effective potentials (and, consequently, all the Schwinger functions) will be described in terms of
quasiparticle fields and, eventually, one will have to perform the appropriate integrations over the quasiparticle momen-
ta copF to express the physical observables.

Taking the spin equal to zero, for simplicity, we can write the part of second and fourth degree in the P of a typical
effective potential as

~ ~ ~ ~ ~ ~

4

J=1

2

+f g dx dao e ' ' ' . ' P„+„[V2(x(,x2, ro„co2)+V3(x„x2,ro„co~)X)„+V4(x„x2,ro„ro2)d, ]Q„„
J=1

(8)

Where B„=B„+i(ro/2pF )4„.
The functions V, , which in general will be distributions involving, at worst, derivatives of 5 functions, are subject to a

ipF co.x
rather strong constraint. Namely (8) has to be such that it can be rewritten as a function of J defoe P„—„, i.e., in

terms of the particle fields.
Our prescription to identify the relevant terms in (8) is to extract them by a localization operator X. This is a linear

operator whose definition is immediatedly suggested by the theory of the scalar fields localization operators. The opera-
tor L annihilates the terms of degree & 4 in the fields. On the parts of degree 2 and 4 it is defined, on the basis of the
%'ick monomials, by



42 RENORMALIZATION-GROUP APPROACH TO THE THEORY OF. . . 9969

&:4x...4.', ,0...,0.. .:=2 ' X:4.'.,4.'.,0...0....:J=2 2 3 3 4 4 j 1 j 2 j 3 j 4

(9)

where 2)„=( 8„2)„}.
The preceding definition (9) constitutes a simplification over the definition of X in Ref. 2 Sec. 11: It would be made

possible by the remark that the sum of all the terms contributing to the P function and represented by graphs of the
type described at the end of Ref. 2, Sec. 10 do in fact add up to zero (hence the new definition ofX adopted in Sec. 11 of
Ref. 2 to deal with such graphs would not really be necessary). We still do not have a general proof of this property;
however, after checking it in a few cases, we decided to use it in this paper to present it as a conjecture. We continue
using it as it considerably simplifies the exposition, but what follows would be essentially unchanged if we used the more
involved definition of2 in Ref. 2.

Hence the relevant part of the interaction on scale h will take the following form:

VL"'= f dx dcd, dcd2e ' ':p„+„(2"vh+&cchpcdp')„, +/he), )g„„,:
4

i=1
(10)

where the 2 in front of vh is introduced for convenience, as it turns out that Ah, ah, gh are mc2rgina/, while vh is
relevant (with dimension one).

For instance, to first order, the coefficients in the relevant part of V' ' are, if Ro is the Fourier transform of A, 1(x), see
(3):

~0(1&2&~3&4 4[~0(PF(1 ~3)) ~O(PF(2 3)) ~0(PF(~1 ~4))+~0(PF(~2 ~4)))

vo=2v1 ao=a1, go= (1 . (1 1)

~h (~1&~2& ~3&~4) Ah (
Cd 1&Cd3& Cd4) Ah (Cd2& Cd3& Cd4) (12)

and

Ah{Cd&Cd & Cd )—:A, h(CO& Cd&Cd & Cd )/2 .

The reason why we start describing V' ' is that we can
use (7) only for n 0. For n= 1 the large k's are impor-
tant and the problem is an ultraviolet one while (7) does
not hold, even qualitatively. In other words, it is interest-
ing to introduce the quasiparticle fields only to describe
the large-scale components of the particle fields. The
effective potential V' ' has to be constructed by solving
the ultraviolet problem of integrating exp( —V'"} over

The latter problem should be treated by different
methods and it can be made rather easy to study by
modifying the dispersion relation from (k —PF)/2m to a
dispersion relation diff'ering from it only for large ~k~ and
diverging very fast as ~k~ ~ ao .

In writing (10) by applying the localization operator to
(8), one could expect to find that vh, ah, gh are not con-
stant, but rather depend on co&,co2. It is, however, impor-
tant to remark that they are constant. In fact we know a
priori that the initial effective potential as well as all the
effective potentials on lower scales, can be expressed in

terms of only the particle fields. This implies not only
that vh, ah, gh depend on the cd's in a special way [namely
as in (10)], but also that the A, h depend on the cd's in a
special way. In fact, one can check that this means that
the function A, l, can be expressed in terms of a three
argument's function Ah(cd, cd', cd" ) having rotation sym-

metry and such that Ah(cd, cd', cd" )= —Ah(cd, cd", cd' ), as

To check that, with the preceding definitions of
relevant terms, the beta function is well defined, i.e., to
check the consistency of a perturbation approach based
on the RG, we simply apply (Ref. 2) the techniques sum-
marized in Ref. 4 to study the beta function. The appli-
cation is straightforward and one ends up with a recur-
sion relation, for d & 1 and, for simplicity, spin 0:

~h —
1 ~h+B1 (+h gh vh ~h )

+2'"B', ' '(~h, gh, .-h;~-h),

vh-1=»h+2'"B3'"«h 4 vh 4»
Crh —'1 +h +13 vh +2 B4 (+h gh vh ~h )

13 vh +2 B5 (crh gh vh ~h }

(13)

where B' F'-4'(x;y) denotes a formal power series in x,y
in which the x variables appear to order p or higher, and
the y appear to order q or higher; B F(x} denotes, lik-e-

wise, a formal power series in which the x variables ap-
pear to order ~p. Here e & 0 can be taken for any num-
ber (—,'.

The preceding result is formally derived in Ref. 2 to-
gether with explicit bounds on the nth order coefficients
of the formal series: The bounds are h independent and
grow like n. ; similar ideas are used in Ref. 5 to study the
perturbation theory of the Schwinger functions without
dealing with the theory of the beta function. The preced-
ing form of the right-hand side is far from the a priori
most general: In fact, the special nature of the right-
hand side reflects a large number of cancellations which
in a sense are the main technical novelty of the problem
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(which is, otherwise, a rather easy modification of the
analogous field-theory problem reviewed in Ref. 4). Such
cancellations are essential also in the analysis of the
Schwinger functions of the theory, which are directly re-
lated to the structure of the Fermi surface, Ref. 2.

There are two problems with (13). Probably the
deepest is that, even though we are dealing with a Fermi
system, we cannot eliminate the n! in the estimates of the
nth order coefficients of the series for the B functions in
(13). It follows, by the methods used in Ref. 4 to study
the beta function in the scalar field theories, that the nth
order coefficients of the preceding series are bounded by
DC'" "(n —1)! for some C,D. One could hope for
better results. For instance, if d= 1 (hence co takes only
the two values +1), the power series for the BJ probably
do converge. This seems within the range of the present-
ly known techniques, because one should notice that the
problem is very close, if d=1, to the problem of the

theory of the beta function in the Gross-Neveu model
(see Ref. 6: it seems to us that this paper implies that the
beta function is convergent; unfortunately in the quoted
reference the proof of the convergence of the beta func-
tion is not directly required so that a formal proof of the
result that we are proposing is strictly speaking not yet
available).

Coming back to d ) 1, we have illustrated only one of
the two problems that arise in this case. The second
problem is simply that the recursive relation (13} is not
easy to study even if one is ~illing to forget about the
higher-order terms and about the convergence question.
It seems of interest, therefore, to analyze the problem of
studying the structure of the recursion for A, I, obtained by
neglecting the higher-order terms as well as all the terms
involving the other running constants.

The recursion relation has, for a suitable kernel B, the
general form:

&(ro&, . . . ) —A, I, (ro&, . . . )+fB(r0), . . . ', re'i, . . . ', roi'. . +h(1 ' ' )~h(~1

+remainder consisting in higher-order or mixed terms .
I

(14}

We want to see if, at least to second order, one can find a
solution which, starting from an initial ko, evolves so that
A,z stays bounded as h ~—00, as we have discussed in
Ref. 2, this is essential for the existence of a normal Fer-
mi surface and of a normal Fermi liquid. If d= 1 and the
spin is 0, the second-order terms which come from the
contributions of two Feynrnan graphs, the direct and the
exchange graph:

with an rii independent C: In some sense B,(A, i, ) vanishes
as h ~—ac. Similarly the part containing mixed terms
in A, I, and the other running couplings also approaches
zero, at fixed co, if a„,gI„v„,A, i, stay bounded.

%'rite

i(,1, =Pcs, I, +(1 Pc )A.I, ,
—

where

PCA, (roi, Cil2, roi, 4r0)

~ ~ p + ~ ~

,'[A(re»—m3) A(ro»—rii4) A(rii2 —, m3)+A'(m2 ,m4)], '

~ ~

g . . 3th'' ~ .g''
4P 4'

A,(fili', C03}=A,(fili, coi, rgb', 603) (16)

(15)
cancel exactly so that, to second-order and neglecting
mixed terms, A,z, =A,&. A more detailed analysis of the
one-dimensional spinless model shows that, in fact, a
similar result is valid at any order and one expects that
A, i, ~k, „(AO) as h~ —ao, Ref. 2.

But the d) 1 case is different. In this case A.& is not a
number and the two contributions do not cancel each
other. Starting with A,o given by (11), we inquire whether
it is possible to make a consistent expansion in which the
running couplings evolve to zero, if one uses (14) truncat-
ed to second order.

If one assumes that A, I, stays bounded as h ~—ao, then
one can check that the parts Bd and B„which add up to
8 in (14) and come from the direct and the exchange
graphs, behave differently. Namely, if the A, I, are uni-
formly bounded, 8, (A & )~0 as Ii ~—co at fixed ro's and

and suppose, in addition, that we try to argue that the
relevant term selected in (9) actually in such that only the
part expressed with the kernel PcA, & is really relevant,
while the part expressed with the kernel (1 Pc)A, i, can-
be considered irrelevant.

Then one has to work out again the beta function
theory with the newly defined notion of relevant terms:
one can check that the new beta function is, at second or-
der, simply related to the previous one, and can be finite
to all orders if XI, (m, ;m3) becomes short ranged in the m's
as h ~—ao, for instance if

~$(ro] ~3)=f1,(2 "l~,—~, l }—f, (2 "I~i +~31 )

with fI, smooth and constant at ao. This is a strong re-
quirement and one would have to check that it is in turn
a property of the A, I, evolving under the evolution defined
by the beta function, or by a finite truncation of it, like
(14) truncated to second order.

The preceding definition of relevant terms is very ap-
pealing as it would say that the relevant part of the
effective potential is expressed by the function X& (m&, F03),
which can be regarded as the interaction potential be-
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X A, ( Cd l, Cd 2, Cd, Cd )

X A, ( Cd, Cd, Cd,3Cd4), (18)

where P&0 and 5'2'(cd, +cd2 —cd —cd'} is a distribution,
parametrized by ro, +co2, defined by

5 (Cdl+Cdi Cd Cd )

lim 2 "y(2 (cd, +cd2 —cd —cd') ) (19)

tween two Cooper pairs of quasiparticles (the first with

quasimomenta =+cd@F and the second with quasimo-
menta +cd3pF ), see also Ref. 7.

We have been able to perform only some simple con-
sistency checks, of the preceding hypothesis, that can be
described as follows. Imagine replacing (14), regarded as
a map of a function A. =A, I, into A.'=A,

I, 1, with the rela-
tion obtained in the limit h~ —~ by neglecting the
remainder. One finds, using the computations in Ref. 2
Sec. 13, that the exchange graph part of B does not con-
tribute and, in the limit h ~—oo, the direct graph contri-
bution can be written:

A (Cd i Cdi Cd3 Cd4) ~( CdliCd3i Cd3 iCd4)

p—f d Cd d Cd'5' '( Cd, +Cdi Cd
—Cd' )—

(18) for the A, h (1) is

, ( I)=A, h (I ) —Pl, h (i) (22)

V(Cdl, Cdl, Cd3, Cd4)

~( Cd l, Cd l, Cd3, Cd4 )

with the same p & 0, for all h, l, which seems a rather re-
markable recursion.

Hence we see that A, h (I)~0 as h ~—~ for every an-
gular momentum 1, if the interaction is repulsive (i.e.,
A,h ( l ) & 0) and the basic picture that one should try to
prove is as follows.

Assuming that Ah(cd„cdi, cd3, cd4) stays bounded uni-
formly and smooth on scale 2" in the cd variables, it be-
comes constant as h~ —00 at fixed co„co2,co3, co4, if
Col + Cd2%0.

hoIf ~cd, +cd3~=2 ' then Ah(cd„cd&, cd3, cd4) becomes con-
stant for h «ho, while for h »hll it evolves as
kh (cdl cdl cd3 cd4). The latter evolves according to the
recursion relation:

with y being a fixed function on 8 fastly decaying at 00,
or

p fd—COA(CO»CO)A(CO, Cd, Cd3—iCd4) . (23)

CO, N 601+602 N N N

fgj, cg leo, 20

Therefore, the whole flow of the running couplings is
controlled by the function Xh(cd, cd' ), which evolves ac-
cording to (18) as

where 5„+„=1if cd i+cd2=0 and 5 +„=0otherwise.
I 2 l 2

Hence we see that only if co, +co&=0 the evolution of
A. h is nontrivial (in the above "h = —~" approximation};
and (18) yields a closed equation for

Ah(Cd, ;Cd3)= g (2l+1)Ah(1)Pi(Cd Cd3)
1=1
I odd

(21)

where PI are the Legendre polynomials and one can
check, also, that A,o(l) 0, see Ref. 2, if the initial interac-
tion potential is 0, i.e., is repulsive.

In fact it is easy to check, see Ref. 2, that the recursion

~h(l ~3) ~h(~l ~1 ~3 ~3)

Note that the (18) also implies that the knowledge for all
h of Xh(cd, ;cd3) allows us to evaluate a closed equation for
A h ( Cd l i Cd l i Cd3i Cd4 )

Hence we are led to conjecture that A, h evolves by stay-
ing essentially constant provided A h (cd, , —cd, , cd 3 cd 3 ),
i.e., the interaction between pairs of Cooper pairs does
not blow up. The latter seems in fact the only source of
instability in (14).

Furthermore the (18), regarded as a recursion relation
determining the Cooper pairs interaction A,h, (cd„cd3) in

terms of the A. h (cd„cd3) is diagonal in the angular momen-
tum representation of the Cooper pairs interaction:

(Cdlird3) ~( CdCdli3) p f A(Cdl C)dpi( CdCdI3)dCd (24)

which can be written in the angular momentum represen-
tations (21) and (22).

So we have some chance for hoping that (1} the (14)
truncated to second order implies that A, h (cd„—m, , cd3,

—cd3) ~0 as h ~—~, at least if the interaction
is repulsive, and, as a consequence of the linear evolution
(23), also Ah (cd, , —cd„cd3,cd4)~0; (2) the relevant part of
the interaction is just the part due to the Cooper pairs; (3)
the higher orders do not change the picture.

It is unfortunately hard, it seems, to show that (14)
truncated to second order admits a bounded solution,
when one tries to study it rigorously without the above-

discussed Cooper pairs approximation. The remarks on
what becomes (14), once one makes the approximation
XI, -Pckl, and one neglects the exchange graph part of B,
is only a hint at some structural properties that have yet
to be understood.

If d=1 and the spin is zero, the fact that XI, -Pci,z is

not an assumption but is a consequence of the exclusion
principle. The situation looks therefore much better.
But in this case the beta function is different and the can-
cellations that take place in d& 1 no longer occur. Al-
though the problem can be studied in detail, Ref. 2, and
one can reach a much more satisfactory set of con-
clusions, it turns out that the theory of the running con-
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stants flow is deeply different (and the Fermi surface is
generically anomalous, but insensitive to the attractivity
or repulsivity of the interaction); for this reason we do
not discuss it here, see also Ref. 3.

Finally, one can say that the approximation in which
the relevant coupling between the quasiparticles is
Az( ro; ro'}=A I(ro, —m, ro', —ro') is in some sense an exten-

sion of the ideas behind the formulation of the Luttinger
model to dimensions higher than one, see also Ref. 7.
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