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Local density of states of an isolated vortex in an extreme type-II superconductor
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We use Eilenberger’s quasiclassical equations to compute the self-consistent local density of states
of an isolated vortex in an extreme type-II superconductor. We include the contributions from both
the scattering states and the bound states and consider a two-dimensional Fermi surface. The local
density of states as a function of energy shows a double-peak structure: (a) there is one peak at
E =A at all distances from the vortex core and (b) a second peak at lower energies due to bound
states in the core. This low-energy peak appears at successively lower energy as one moves closer to
the core, giving rise to the enhancement of the zero-bias differential conductivity at the vortex core

reported by Hess et al.

I. INTRODUCTION

Hess and co-workers' have recently measured the
position-dependent  differential conductance o(r,V)
=dI /dV near the vortex cores in NbSe, (an extreme
type-II superconductor) using a scanning tunneling mi-
croscope (STM). The STM provides a local spectroscopy
of the vortex, and thus gives detailed information on the
core structure. The surprising experimental result was
that the differential conductance at the core o(r =0, V)
exhibited a large peak at small bias V, approximately a
factor of 2 greater than the normal-state conductance.
This result is at odds with the commonly held view that
the vortex core is “normal.”

This work has lead several authors*3 to compute the
local density of states (LDOS) for an isolated vortex using
the Bogoliubov—-de Gennes equations. They find that the
zero-bias anomaly could be explained by the presence of
low-energy (E < A) quasiparticle states which are bound
to the vortex. Unfortunately, the Bogoliubov—-de Gennes
equations are very difficult to solve for the scattered
states (E > A) and indeed only the scattered states at the
core have been computed.3 Moreover, far from the core
it becomes increasingly inefficient to solve the
Bogoliubov—de Gennes equations for the LDOS because
the important contribution from the high-angular-
momentum states becomes difficult to compute.*

An alternative method, that of the quasiclassical
Green’s functions,’ has been used by Klein® to compute
the direction-dependent local density of states for a vortex
lattice. However, Klein has used a spherical Fermi sur-
face rather than a cylindrical [two-dimensional (2D)] Fer-
mi surface which more closely models NbSe,. In a more
recent paper, Klein’ has computed the LDOS for a spher-
ical Fermi surface but has not considered the contribu-
tion from the scattering states. In this paper we solve nu-
merically the quasiclassical equations to obtain a self-
consistent local density of states for an isolated vortex in
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the limit that the magnetic field can be neglected: A>>§,
where A is the penetration depth and & is the coherence
length. The plan of the paper is as follows. In Sec. II we
introduce the quasiclassical equations and discuss their
solutions for an isolated vortex. Next, in Sec. III, we out-
line the computation of the LDOS from the direct solu-
tion of the analytically continued quasiclassical equations
for the cylindrical (2D) Fermi surface which is appropri-
ate for NbSe,.® Section III also contains the main quan-
titative results of this paper: the LDOS as a function of
energy and the local differential conductivity as a func-
tion of bias voltage.

II. THE QUASICLASSICAL EQUATIONS

The quasiclassical equations for an s-wave supercon-
ductor consist of a transport equation for the quasi-
classical Green’s function g, a normalization condition,
and a self-consistency equation (the gap equation)—see,
for example, Serene and Rainer.’ Essentially, the quasi-
classical equations exploit the fact that the Green’s func-
tion is peaked at the Fermi surface and that quantities of
interest vary on a length scale set by the coherence length
£ rather than the atomic length k; !. The quasiclassical
equations may be obtained from Gorkov’s equations'® by
(1) integrating over the energy variable E =vg(p —pr) in
the region ppr;, >>#, where the variable r,=|r;—r,|
may be though of as the separation of the quasiparticles
forming a pair, and (2) eliminating terms of order 1/kz&
from the energy-integrated Gorkov equations.!!

For convenience we shall introduce dimensionless
lengths and energies as follows: all lengths are measured
in terms of the temperature-dependent coherence length
§E(T)=%vg /Agcs(T) (this coherence length is larger by a
factor of 7 than the usual BCS temperature-dependent
coherence length) and all energies are measured in units
of the bulk BCS temperature-dependent gap Agcs(7). In
addition, we set i=1. Then the quasiclassical equation
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for an s-wave superconductor is

k-vg+[M,91=0, (1)
where the 2 X2 self-energy matrix is
o, A
A* —ow, (2)

and o,=m(2n +1kpT/Agcs(T) is the dimensionless
Matsubara frequency. The unit vector k is the direction
of the momentum of a quasiparticle on the Fermi surface:
in dimensionful units it is simply the Fermi velocity vg.
Next, the normalization condition

=1 3)
requires that @(i,R,w,, ) have the form

a d
e —a

9= , 4)

where a, d, e are functions of the coordinate R, the unit
vector k, and the Matsubara frequency w,. Finally, the
self-consistency equation is

_ wgT d2k
A(R)= —LABCS(T) 2 f *). (5)

The prime on the frequency sum denotes a high-energy
cutoff; this cutoff dependence is absorbed into the cou-
pling constant And also, the angular integration is
over half of all k directions.

For an isolated vortex we can exploit the cylindrical
symmetry of the problem and adopt cylindrical coordi-
nates: p is the radial distance from the vortex core and ¢
is the azimuthal angle. Then the derivative term in Eq.
(1) has the following form for the 3D case:

k-V=cos0,d, +sinby COSl/J +—-s1m/) ) (6)

where the subscript K refers to the k coordinate system
and Yy=¢x —¢. The 2D expression is obtained by setting

=7/2.12

Unfortunately, we cannot use the cylindrical coordi-
nate system because, despite its simplicity, it is pathologi-
cal for the following reason. We have found that only
quasiparticle trajectories which do not pass through the
point p=0 give rise to the peak in the “core” DOS where
“core” refers to all points near the vortex center except
the single point p=0. However, in the cylindrical coordi-
nate system all the quasiparticle trajectories pass through
the vortex core p=0. This point is singular in that the
quasiparticles passing through this point see an infinite
centrifugal barrier and so the wave function of these
quasiparticles must vanish at the core. (As a direct
consequence, the LDOS at the core is equal to the
normal-state value.) Therefore, we transform (6) to a
Cartesian coordinate system® defined by

ry=pcosy, r =psiny . (7)

Then, the derivative term in Eq. (1) becomes
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ﬁ-v=sine,(a,” . (8)

In Fig. 1 we show the coording\tes (¢,p) and the /121-
dependent coordinates (r,r,)—k. is the projection in
the x-y plane of the unit vector k of Eq. (1). In this
Cartesian coordinate system, the trajectories are straight
lines parallel to the r| axis.

Next, we have to make a gauge choice for the gap
function. In the real gauge the Green’s functions and the
gap functions are written as

A—A(plexp(iy) ,
d—d(plexp(iy) , C)]
e—e(plexp(—iy) ,

for a singly quantized vortex and A(p) is real. This gauge
choice is useful for analytic work since then the Green’s
functions are symmetric about r, =0 (see the Appendix),
but it is not suitable for numerical solution near r, =0.
For our purposes it is more useful to adopt a gauge in
which the gap function is complex:

A=K(r“,rl)exp(i1/1)
ry

+i
(ri+r})'?

=X dl
=A(ry,r,) ("ﬁ*"‘i)ln , (10)
where the function K(r”,rl) is real. As a check on the
numerical method, we solved for the LDOS using both
gauges and found identical results except near r;, =0
where the real gauge becomes inappropriate for numeri-
cal solution.

In order to compute the LDOS we have to first solve
the quasiclassical equations self-consistently for the gap
function A(p). The transport equation (1) is difficult to
solve numerically because the finite (physical) solution
tends to get subsumed by exponentially exploding (un-
physical) solutions. One method which overcomes this

FIG. 1. The vector R denotes the position of the center of
mass of a Cooper pair and k 1 is the projection in the x-y plane
of the unit vector k of Eq. (1). The kl-dependent coordinates
(ry,r ) are used in this paper. The z axis is out of the paper.
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problem, the “explosion method,” is extensively dis-
cussed in Ref. 13. We use an alternative algorithm in
which we eliminate the exploding solutions by computing
a function orthogonal to the Green’s function rather than
the Green’s function itself. Our algorithm is rather com-
plex and Ref. 14 contains a brief explanation of the
method of solution. A fuller discussion will be presented
in a future paper.!* We find that the reduced gap func-
tion

Alp)=Aue(p)/Agcs(T)

is accurately given by A(p)=tanh(p) for temperatures
greater than T/T,=0.2. This functional form is some-
what surprising in that, in dimensionful units,

A(p)= ABCS( T)tanh[p/é’( T)] ’

where §(T)=mnépcs(T); that is, the relevant coherence
length is, in fact, 7 times as large as the BCS coherence
length. For slightly lower temperatures it differs by less
than 5% from this value (we performed a simple least-
squares comparison of the numerical results for
T/T.=0.2 and T/T.=0.1 with the hyperbolic tangent),
and we expect that even at the lowest temperatures the
spatial dependence of the gap function is essentially un-
changed from this form.!® However, we would like to
mention that earlier work by Kramer and Pesch!” on the
structure of the vortex core near H,, shows a significant
decrease in the vortex core as the temperature is reduced.
(The inclusion of the magnetic field and its associated
consequences is not responsible for the reduction in the
size of the core.) We hope to investigate this important
issue in a future paper. We have not attempted to solve
for the gap function for much lower temperatures simply
because this requires a very substantial increase in CPU
time. We shall take A(p)=tanh(p) for all subsequent cal-
culations. Now that we have determined the gap func-
tion we can solve the quasiclassical equations (1) and (3)
for the LDOS.

III. DENSITY OF STATES
The LDOS is given by

2 A
N(p,w)=N(EF)f%Re[a(k,p:iw,,—»w-i—in)] , (1)

where the analytic continuation iw,—w-+in is written
explicitly and N(Eg) is the normal-state DOS. There-
fore, in order to compute the LDOS we have to solve the
analytically continued version of the quasiclassical equa-
tion (1) for the Green’s function 9(k,p:0+in) for all
directions of k and frequencies. We used 200 values of r;
in the range —3<r, <3.

We have solved the equation for values of the frequen-
cy in the range 0 <w <2.0 and a step size w=0.05. A
smaller step size does not reveal any additional bound
states. The value of the infinitesimal 7 is chosen simply
so that the peaks in the LDOS are sharp on the scale dw.
For w <1 we chose 7=0.005. For the scattered states
®>1 we had to increase the infinitesimal to 7=0.08 in
order to damp out spurious oscillations in the Green’s
functions away from the core. This change in 7 is re-
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sponsible for the non-square-root singular behavior of the
LDOS at w=1: for comparison we include in Fig. 2 our
result for the LDOS at the core with =0.005 for all w.
We use the terms “energy” and “frequency” interchange-
ably.

We remind the reader that any enhancement in the
LDOS is due to a pole in the Green’s function and, there-
fore, the actual peak height depends on how closely one
approaches this pole in the frequency domain and, in this
sense, is arbitrary. We remark that our results are in-
dependent of the starting point of the integration, provid-
ed we begin the integration of the differential equations at
a distance greater than approximately 4§—the distance
at which the gap assumes its bulk value. Finally, we note
that our algorithm is rather efficient: the total CPU time
was only a few hours on a workstation.

There are several features worth mentioning.

(1) There is a pronounced peak in the LDOS at the
core p=0 for both =0 and 1. The zero-frequency peak
is due to the lowest-lying bound state in the vortex
core*!® and gives rise to the zero-bias peak in the
differential conductivity reported by Hess et al.! Next,
the peak at w=1 is the familiar peak in the DOS for a
bulk superconductor. Of course, the surprise is that this
peak persists even at the core, although its weight in the
frequency-integrated LDOS is substantially reduced from
the bulk case.

(2) As one moves away from the core, the low-
frequency peak gets shifted to higher frequencies and the
weight of the =1 peak increases. For p=3 the two
peaks are almost coincident, and indeed, for p~4 there
remains only one peak at w=1-—the bulk result. For
high frequencies the LDOS quickly approach 1, the
normal-state value. Note that the small bump at 0 =1.2
is due to numerical error: increasing n removes this
feature. Furthermore, the small wiggles for low frequen-
cies are an artifact of the angular integration in Eq. (11).

(3) We also computed the core LDOS for the 3D case
and found no qualitative difference: the w=1 peak is
broadened somewhat for w <1 while the low-frequency
peak is essentially unchanged. The broadening of the
o=1 peak is due to the observation that quasiparticles
moving along the vortex axis see no gap at all. In order
to see this explicitly, one merely has to rescale the r,
coordinate in the quasiclassical equations by r|—sinfgr
and notice that A—0 as sinfy —O0.

(4) The value of the infinitesimal 7 determines the
width and height of the peaks in the LDOS. Although
we have neglected all impurity scattering effects [the
self-energy matrix (2) is correct for the clean limit only]
we could follow Klein’ and treat 7 as a dirt parameter’
and fit it to the experimentally determined zero-field den-
sity of states and then use this value for all subsequent
calculations of the vortex LDOS. We find that such an
approach does not fit the experimental results.?

(5) The differential conductivity is given by

V) _ 1 dI
oy oy dV

Ns(p,E)

e —3f (E +eV)
J BN e

da(eV)

) (12)
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FIG. 2. The local density of states as a function of energy for a cylindrical (2D) Fermi surface. The distance from the core p is in
units of £(T)=mépcs(T) and for w <1, =0.005 while for w>1, 7=0.08 (see text): (a) p=3.0, (b) p=2.0, (c) p=1.0, (d) p=0.6, (e)
p=0.3, (f) p=0.0, (g) p=0.0 but 7=0.005 for all . The LDOS is normalized to the normal-state value and the energy is in units of

Apcs(T).
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where V is the bias voltage and e is the electron charge.
Figure 3 shows the differential conductivity (normalized
by the normal-state value) for T/T,=0.2; that is, ap-
proximately the experimental temperature in Ref. 1. The
differential conductivity does not show the sharp features
of the corresponding LDOS because it is smeared out by
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the Fermi function; the small weight of the @ =1 peak is
lost in the integration. Recently, Hess et al.?’ have re-
peated the experiment at a much lower temperature of
T =140 mK. However, at such low temperatures, dirt
effects dominate and smear out the differential conduc-
tivity.
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FIG. 3. The differential conductivity vs bias voltage for a 2D Fermi surface at T/7T,=0.2. The differential conductivity is normal-
ized by the normal-state value and the bias voltage is in units of Apcs(T): (a) p=3.0, (b) p=1.0, (c) p=0.6, (d) p=0.3, and (¢) p=0.0.
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IV. CONCLUSIONS

We have presented the results of a self-consistent cal-
culation of the LDOS for an isolated vortex. There are
two main conclusions: (1) The relevant coherence length
for the gap function is 7 times as large as the BCS coher-
ence length. (2) The LDOS is a double-peaked function
in frequency with the position of the low-frequency peak
dependent on the distance from the vortex core, and the
second peak is always at 0 =1.
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APPENDIX

In this appendix we reproduce for completeness the an-
alytic calculation of the LDOS for small  and r, found
in Refs. 6 and 21. The quasiclassical equations are

a'=—puleA—dA*),
d'=—2u(—aA+Qd),
e'=—2u(ad*—Qe),

a=(1—de)'”?,

(A1)

where pu=(sinfg)”! and Q=—iw+7, and the prime
denotes differentiation with respect to r,. For a singly
quantized vortex we see from Eq. (10) that the gap func-
tion has the following symmetries:

Alr)=—=Aa(=r),

(A2)
Alr)*=A(—r,) .

Therefore, under the transformation r— =, the equa-
tions remain self-consistent if the following relations
hold: d(—r )=e(rj)and a(r))=a(—r|).

We may now reduce the problem to the solution of one
differential equation, say the equation for d in (13) and
the normalization

a=[1+d(rpd(—r]1'"*.

First, we decompose the anomalous Green’s function d
into symmetric and antisymmetric functions

d=S+4 (A3)
such that S(r )=S(—r/)and 4(r))=—A4(—r;). Then
the problem reduces to solving the equations
'=2u(aA cosp—2Q4) ,
A'=2u(i2aA siny—2QS) , (A4)

a=(1+8*+ 4%,
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We shall solve these equations for small w and r,. We
may assume S >>(1— A4?%)!/2 for r, not too large, as we
shall presently verify. The normalization gives a = —|S]|
(fixing the sign to give a convergent solution), so that the
solution of (16) for small w,r, is

S=Bexp[—ul(r)],
A=—2uB fr”drfl(iKsimM-Q)exp[—u(r|'|)] , (A5)

1
u =2,uf ! dr A(ry,r,) .

In order to determine the constant B we have to solve for
d in bulk, say at 7, =r,. In the real gauge

o A
dR(r”——rO)—W
and d =exp(iy)dg. Thus,
ro
A(r0)=i—S(r0) . (A7)
ry

That is, far away from the vortex core, for ry>>r),
A >>S, so that the Green’s function at r|=r is

alrg)=[1—A%ry]""2. (A8)
However, for r, =0 and 0 =0, Eq. (17) gives
a(r))=—S(r)) . (A9)
Finally, equating (20) and (21) at r =7 gives
S:ry)+ A%ry)=1 (A10)
which determines the constant B:
B=|exp[ —2u(ry)]
+ 2,ufr0dr|’|exp[ —u(ry]
271-1/2
X (iA sinp+Q) (A11)

We can now determine the LDOS for small w and r,.
For simplicity, take the limit 7,— c in Eq. (A11) and no-

tice that near resonance w=A siny, the antisymmetric
function 4 =0 [see Eq. (17)], so that

a=Bexp[—ul(r)]. (A12)
Next, using the identity
1/(z +in)=P(1/z)—imd(z)

we immediately obtain the real part of a:
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PLpos < Re(a)
=mexp[ —u(r))]8(Z), (A13)

where p; pog represents the LDOS and

E=2u [ “drjexp[—u(r}))Bsing—a) . (A14)
Thus, we see that the bound-state energy is proportional
to r; and independent of p=sinfy, in agreement with
our numerical results.
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