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A hydrodynamic theory of both isotropic and hexatic flux liquids in high-T, superconductors is

presented. Weak microscopic pinning centers are described within the flux-flow model of Bardeen

and Stephen, while strong macroscopic pinning centers set the boundary conditions for the flow.

This model is relevant for understanding recent transport measurements by Worthington et al. in

bulk Y-Ba-Cu-0 single crystals. Flux-line entanglement leads to a large intrinsic viscosity, which

increases at the isotropic-to-hexatic transition.

I. INTRODUCTION

It is well known that the finite electrical resistance in
type-II superconductors is associated with phase slip due
to the motion of flux lines. ' In very pure high-
temperature (high-T, ) superconductors fluctuations can
melt the Abrikosov flux-line lattice over a significant por-
tion of the phase diagram. ' The resulting flux liquid has
no shear rigidity at long wavelengths, and it is hard to see
how weak point pins such as oxygen vacancies could be
very effective in suppressing flux-flow resistivity at these
elevated temperatures. It has, however, been argued
that in bulk samples entanglement of the flux lines may
yield very long viscous relaxation times, greatly affecting
the response of flux liquid to a few, widely separated
strong pins, such as twin boundaries.

The motion of the flux lines will in general be affected
both by intrinsic dynamical constraints associated with
entanglement and extrinsic constraints associated with
defects that can effectively pin the vortex lines. Defects
will dominate at low temperatures and in very disordered
samples, yielding the impurity-induced glassy state ob-
served in recent transport measurements in epitaxial films
of Y-Ba-Cu-O. In contrast, vibrating-reed experiments
and recent transport and ac-susceptibility measurements
by Worthington, Holtzberg, and Feild in bulk Y-Ba-Cu-
0 may be better interpreted in terms of melting of the
flux lattice along a line in the H-T phase diagram well
below the mean-field transition line, H, 2(T). The trans-
port data of Ref. 7 indicate that a nonvanishing critical
current develops suddenly at a line in the H-T phase dia-
gram that coincides with the irreversibility line measured
by ac susceptibility. This line is interpreted as the melt-
ing of a pinned vortex solid into a flux liquid. Above this
line the I-V curves are linear for small currents and the
data of resistance versus temperature at high fields
display two distinct regimes separated by a characteristic
shoulder that occurs at a temperature well above the
melting of the flux solid (Fig. 2). Both the shoulder and
the abrupt vanishing of the resistivity are smeared out in

experiments at higher currents. At temperatures below
the location of the shoulder and above the flux-lattice
melting point the linear resistivity is considerably re-
duced as compared to the predictions of the simple free-
flux-flow model of Bardeen and Stephen. ' The crystals
used by Worthington, Holtzberg, and Feild contain
many twins on the micrometer scale, and are otherwise
much cleaner than the samples used in Ref. 5. This sug-
gests that large-scale inhomogeneities must play an im-
portant role in reducing the flux-flow resistivity in clean
bulk crystals.

A conventional approach would try to describe the
transport data in terms of thermally activated flux flow.
From this point of view one or more of the features of the
data of Worthington, Holtzberg, and Feild would corre-
spond to the increase in the vortex friction coefficient
that occurs when the typical pinning barrier begins to
exceed the thermal energy. ' A model of thermally ac-
tivated flow of independent vortex lines would, however,
produce a small linear resistivity at all nonzero tempera-
tures, contrary to the observation that the linear resis-
tivity vanishes below a well-defined temperature. Simple
models which invoke a distribution of microscopic pin-
ning centers ' may be inadequate for the clean crystals
used in Ref. 7 for another reason: Within the model of
flux pinning and creep developed by Anderson and Kim, '

the energy barrier associated with an oxygen vacancy can
be estimated in terms of the superconductor condensation
energy per unit volume, H, /Str, where H, =H,2/v'2' is
the thermodynamic critical field. Roughly speaking,
pinning arises because this condensation energy can be
avoided if the flux line runs through the normal region
represented by an oxygen vacancy. Denoting by I the
size of the pinning region, the characteristic pinning en-

ergy is U~ =(H, /Str)1 . Taking 1=3 A for a single oxy-

gen vacancy and using the parameters of Y-Ba-Cu-0
with an applied field of 7 T, we estimate H, =2 X 10 G at
82 K and find a very small pinning energy, U~/ks =0.03
K. Even if the actual pinning energy greatly exceeds this
simple estimate, say U~/ktt =5' K, it is hard to see how
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independent weak pinning on these length scales can ex-
plain the broad resistive transition observed at liquid ni-
trogen temperatures in Y-Ba-Cu-O. Clearly collective
effects must be included in some way. There is now con-
siderable literature on collective fiux pinning and creep in
high-T, superconductors, and a number of experimental
results in thin films have been interpreted in this frame-
work. ' '" In this approach collective efFects are de-
scribed through the assumption that large rigid volumes
of flux solid are coherently pinned by weak microscopic
defects. Flux motion occurs by thermally activated
jumps of these volumes of flux solid over the correspond-
ing energy barriers. While collective pinning of the flux
solid provides an interpretation for many of the experi-
mental observations in thin superconductor films, it
seems that a more careful treatment wi11 be required for
bulk samples where the pinning volumes are physically
connected in the direction of the applied field [see, for ex-
ample, Eq. (5) below]. It seems in any case unnatural to
invoke large activated volumes of flux solid in a region
where the solid may well be thermally melted on all
scales larger than a few intervortex spacings.

Here we exploit an alternative point of view, where col-
lective effects in the flux liquid are described through a
flux liquid viscosity. Provided the barrier to flux-line
crossing is sum. ciently high, flux-line entanglement leads
to a very large flux liquid viscosity. The effect of a few
large-scale inhomogeneities (e.g., twin boundaries} that
act as "strong" pins can then be transmitted over large
distances impeding the flow of the viscous flux liquid. In
our model the hydrodynamic consequences of entangle-
ment in the flux liquid can be quite dramatic. The resis-
tivity data of Worthington, Holtzberg, and Feild can be
interpreted in terms of a viscosity which increases
abruptly at the shoulder and which diverges or jumps
discontinuously to infinity when the linear resistivity goes
to zero.

The difference between the I-V curves in films and
bulk crystals may be due to very difFerent twinning den-
sities' and to the role of entanglement in increasing the
flux liquid viscosity in thick samples. The epitaxially
grown films generally have twins with spacing of order
100 A, which would effectively act like microscopic pin-
ning centers. The crystals on the other hand, have twins
on the micrometer scale, and these twins can act as
strong pins in three dimensions. ' The enhanced pinning
properties of twin boundaries for magnetic fields aligned
with the twinning planes have been observed experimen-
tally' and discussed theoretically. '

We discuss finally the existence of two distinct vortex
liquid regimes, bounded by a shoulder in the resistivity
(see Fig. 2). '" Worthington, Holtzberg, and Feild pro-
posed that these regimes may correspond to isotropic and
hexatic fiux liquids, in agreement with our recent predic-
tion of an entangled hexatic liquid of flux lines in three di-
mensions, interposed between a low-temperature crystal-
line phase and a high-temperature isotropic liquid. ' The
hexatic flux liquid is characterized by long-range bond-
orientational order in planes normal to the applied field.
In the hexatic the torsional rigidity of the vortices in-
creases the effective viscosity of the flux lines, ' which

would lead to a shoulder in the resistivity at the
isotropic-to-hexatic transition. The shoulder could also
be explained, however, simply as the onset of significant
barriers to flux cutting. Unambiguous evidence for a hex-
atic glass of flux lines in high-temperature superconduc-
tors has, in any case, recently been observed in flux
decoration experiments on very pure single crystals of
Bi-Sr-Ca-Cu-0 at low temperature. ' These experimental
observations suggest the existence of an equilibrated hex-
atic flux liquid at higher temperatures, consistent with
the conjecture of Worthington, Holtzberg, and Feild for
clean Y-Ba-Cu-0 samples.

In this paper we present a theory of the hydrodynamics
of both isotropic and hexatic melted flux liquids on scales
large compared to the spacing between vortex lines. We
apply this model to situations where defects occur on two
well-separated energy and length scales. We assume mac-
roscopic regions of fiux liquid where the flux lines move
in the presence of weak-pinning centers (e.g., oxygen va-
cancies) of microscopic size, described within the flux
flow model of Bardeen and Stephen. ' These large regions
of flux liquid are interrupted by a few macroscopic de-
fects (twin boundaries or other large-scale inhomo-
geneities) that are well separated relative to the mean
flux-line spacing d =(n„} ' . Here n„=B/P Ois the
equilibrium two-dimensional density of flux lines with
$0=2Mc/2e the flux quantum. These strong-pinning
centers act as macroscopic obstacles, pinning the flow via
the boundary conditions in the hydrodynamic equations.

II. HYDRODYNAMIC MODES

Our starting point is a set of linearized hydrodynamic
equations for a melted liquid of fiexible flux lines in three
dimensions. The external field H is aligned with the z
direction. There are three hydrodynamic variables in an
isotropic flux liquid, the areal vortex density n„(r, t) and
the two components of a tangent field r(r, t }, describing
the instantaneous tilt of the lines. They are given by

n, (r, t ) = g 5"'[r~—r;(z, t )], (2.1)

(2.2)

a, n, +V~.j„=o, (2.3)

where j,=n, v is the vortex current density and v the
vortex flow velocity. The dynamics of the tangent field is
governed by the equation'

B,r +Bttj & =B,j, (2.4)

where j & is the antisymmetric tangent flux tensor. Fi-

with r=(r&, z } and r,.(z) a two-dimensional vector denot-
ing the position of the ith vortex line in the xy plane. The
fields n„(r, t) and r(r, t ) allow us to describe the local B
fields parallel and perpendicular to z in ter ns of quan-
tized vortex lines. Since vortices are only created or des-
troyed at the boundaries, the vortex density obeys a con-
tinuity equation
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nally, if fiux lines cannot start or stop inside the sample,
the flux density and the two components of the tangent
field are not independent dynamical variables, but are re-
lated by a kind of continuity equation in the timelike
variable z,

B,n, +V~.~=O . (2.5)

In the isotropic melted flux liquid we have therefore only
two independent hydrodynamic variables. The flux-line

velocity is overdamped, and relaxes rapidly due to in-

teractions with the underlying lattice and via thermally
activated jumps between weak-pinning centers.

In the flux-line hexatic discussed in Ref. 16 there is an
additional hydrodynamic mode associated with the slow-

ly decaying bond-orientational order parameter. Denot-
ing by 8 a smoothed version of the microscopic bond-
angle field, the corresponding hydrodynamic equation is
readily constructed using standard methods, '

8,8=—,'z (Vi Xv)+aiVi8+K, B,8, (2.6)

where the irreversible couplings a~ and x, can be ex-
pressed as the products of a kinetic coefficient and the
hexatic stiffness constants. '

Equations (2.3) and (2.4) must be supplemented with
constitutive equations for the current density j„and the
tangent flux tensor j &. The constitutive equation for j,
is presented here as an equation of motion for v which is
obtained by balancing the force per unit volume acting on
a small volume of the fiux-line liquid,

—yv —y p, an„zXv+p, an„zXv+(r)V&+rl, B, )v+rl&V&(V v) no V—
5FL 5'

5n„(r) ' 5r(r)

,'(z X V—i)—(EiVf+EC, B,)8+ fr =0, (2.7)

where a=2mB/2m is the quantum of circulation and

p, =mn„with n, the three-dimensional density of super-
conducting electrons. The first two terms in (2.7)
represent the effective frictional forces per unit volume
arising from the interaction of the normal core electrons
in or near the vortex cores with the underlying crystal
lattice. The effective drag has both a component along
the flux-line velocity and one orthogonal to it. ' The
coefficient y is a friction per unit volume. It is related to
the fiux-line mobility p by y=n„/p Weak .point pins,

with pinning energies U kz T, are assumed to be incor-

porated into y. As an approximation, one can take

n'W2
U

2e g (T)

where o„ is the normal-state conductivity and g, is the
superconducting coherence length. ' The coefficient y' is
dimensionless. The third term in Eq. (2.7) is the linear-
ized Magnus force per unit volume on the flux-line con-
tinuum. The drag normal to v and the Magnus force
determine the Hall angle HH, according to tan8H=b,
with

b, = (y' —1)p,an 0/y .

In both the conventional and the high-T, superconduc-
tors y'= 1, i.e., the second and third terms in (2.7) cancel
and the Hall angle is very small. Below we will for sim-
plicity assume y'=1 and neglect the Hall effect. Al-
though the viscous couplings g, g„and gb would be
small in a liquid of point vortices, flux-line entanglement
will produce much larger values of g when there are
significant barriers to line crossing. The sixth term in
(2.7) represents reversible forces (the first is just a pres-
sure force) that are easily obtained from the free energy
of an isotropic flux-line liquid,

0 2
r r' c( r —r' 5n„r gpg„r

1

2(n, )2

+c44(r r')r(r) —r(r')], (2.8}

The antisymmetric tangent fiux tensor can be written
as19

J r, =r, (a.~, a,~.), —
where I z. is a kinetic coefficient. Because (2.9) describes
diffusion of the component of the magnetic field in the xy
plane, we can estimate I z- from the relaxation rate of an
overdamped helicon, '

C2

4n.o „
Equations (2.3)—(2.9) are a closed set of linearized hy-

drodynamic equations for the flux-line hexatic. The cor-
responding equations for the isotropic flux liquid are ob-
tained by dropping (2.6) and the bond-angle field gra-
dients in (2.7).

In the absence of applied transport current ( fr =0) the
linearized hydrodynamic equations (2.3)—(2.9) can be

wh««n, (r) =n„(r) n~ an—d c&(r) and c~(r) are the lo-
cal compressional and tilt moduli of the flux-line liquid
(the in-plane shear modulus vanishes in the liquid' ).
Nonlocality afFects the elastic properties of the flux-line
lattice on scales less than the penetration length A, . The
seventh term in (2.7) is the force arising from inhomo-
geneities in the bond-angle field and it is present only in
the hexatic. The Frank elastic constants Kj and E, were
calculated in Ref. 16. Finally, in the presence of an exter-
nally imposed uniform transport current density jz-, there
will be a constant Lorentz force per unit volume on the
flux liquid,

1 0fr= — n„gozXj —r .
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used to obtain the hydrodynamic modes of the flux liquid.
For the isotropic liquid we find two diffusive modes of
frequency co„and m„governing the decay of fluctuations
in the flux-line density and the tangent field, respectively.
In the flux-line hexatic there is an additional diffusive
mode of frequency cue associated with fluctuations in the
bond angle. The dispersion relations of the modes are

l 2
o leici(tie e.)+tl. c44(tie a))

n„'y

2y/N

0.50

0.00 - 2b

-0.50

0.50 „i„ I.O

i(—I'rei+a'c~(qi e, )/(n.'y )I

Cop= l(K jgg+K q~ )

(2.10)

In the limit of wavelengths much larger than the super-
conductor penetration length A, , the nonlocality of the
elastic moduli can be neglected and one obtains conven-
tional hydrodynamic diffusive modes. In the limit
A, ~~, the density mode relaxes at a finite rate when
q=O, as in helium films. ' If the Hall angle is finite, den-
sity and tangent field fiuctuations are coupled and one
finds' damped helicon modes analogous to those predict-
ed for flux crystals. '

III. HYDRODYNAMIC TREATMENT
OF THE RESISTIVITY

—yv+gV~v+ fT=0 . (3.1)

If drag is absent (y =0), this is the equation for Poiseuille
fluid flow with a pressure gradient Vj p = fT. The com-
bination of the drag and the viscous term introduces an
important new length scale into the problem, 5=&g/y.
Upon assuming for simplicity that v=O at the walls due
to strong pinning by the twin boundaries, we find that the
solution of (3.1) is

cosh(y /5)
cosh( W/25)

(3.2)

Here v„=frly is the usual Bardeen-Stephen limiting
flux-line velocity' and the constant force fT includes, in

When a uniform current jT is applied to the crystal,
the flux liquid will flow according to the equations just
discussed through the macroscopic obstacles represented
by the few strong defects distributed throughout the
fluid. Such defects anchor a portion of the flux liquid by
forcing the flux-line flow velocity v to vanish at their vi-

cinity. As an example, we consider an oversimplified, but
illuminating model relevant for the understanding of re-
cent transport measurements by Worthington, Holtzberg,
and Feild. Consider the flow of an isotropic flux liquid
in a channel contained between two fiat twin boundaries
in the xz plane at y = —W/2 and y = W/2. The trans-
port current is applied in the y direction, jT=jTy, and
yields a constant driving force

fr =xn, P(jr/c =xfr
in the x direction. We search for a stationary flow profile
with v.=O and v =0 everywhere in the channel. In this
limit Eq. (2.7) (with y'=1) reduces to

FIG. 1. Velocity profile for channel flow as given in Eq. (3.2)
(left). Also shown on the right is a snapshot of the flux-line hex-
atic for 8'/25=5. Each arrow indicates one of six equivalent
bond directions.

addition to the driving force fT from the transport
current, any constant pressure gradient in the y direction.
The flow velocity drops to zero in a boundary layer of
width 5=&ri/y. It is clear from Fig. 1 that as 5 in-
creases the influence of the boundaries propagates into
the interior of the channel and eventually chokes off the
flow.

To obtain an estimate of the screening length 5 we
need to estimate the viscosity g of the flux liquid. If the
vortices in adjacent Cu02 planes were decoupled, we
could obtain the viscosity go of a flux liquid from simple
dimensional analysis,

rto=ktt Tao/d =ks T/Dad,

where v.o is a microscopic relaxation time and Bo is the
diffusion constant of an isolated point vortex in the xy
plane. We take

Do =pks T= 1 cm /sec .

For 0=7 T, we estimate the intervortex spacing
d = 100 A and at T=80 K, we obtain rio= 10
erg sec/cm . Using g, =20 A for Y-Ba-Cu-0 in the
Bardeen-Stephen estimate of y, we find 50=5 A. Thus if
entanglement is neglected, the macroscopic obstacles of
typical spacing W'&)5 will have a negligible effect on the
jhow.

Flux-line entanglement, however, can greatly increase
the viscosity and therefore the screening length 5. An es-
timate of the viscosity adapted from the theory of repta-
tion dynamics in polymer melts leads to ri=por(L),
where po is a short-time transient shear modulus, and

r(L ) = ro(L /g,
'

)

is a characteristic relaxation time. Here L is the length of
the crystal in the z direction and g is the spacing be-
tween entanglements along z. We expect that
g =4—5 g„where g, is the entanglement correlation
length defined in Ref. 2. The microscopic relaxation time
~0 should be of order

ro (g /co )Don
0

where co=10 A is the spacing between Cu02 planes.
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r„„(L) = roexp[c(L /g, )'], (3.3)

where c is a dimensionless constant. The reptation
theory underestimates this time because it allows disen-
tanglements to proceed via the motion of flux ends in
three dimensions. Much larger relaxation times result
when the flux tips are constrained to move in two parallel
planes at the top and the bottom of a superconducting
sample. The true state of affairs is probably complicated
by flux cutting. The possibility of flux cutting suggests
that we replace L by a temperature-dependent length
L,tr(T) which is the spacing between fiux cutting events.

U„ /k~ T
We expect that L,tr( T)=f,e ",where U„ is a typical
flux cutting energy. If L,tr (L, reptation theory with

r(L ) =ro(L, tr( T ) /g'z )'

may be a more appropriate description of the dynamics.
To find the voltage across the width 8' of the crystal

associated with vortex motion, we use the Josephson rela-
tion for the voltage drop hV in terms of the phase
difference 68 between the two ends of the sample,

db8
2e dt

The parameter JM,O is the transient shear modulus of a po-
lymer gel of entanglement points separated by a distance

g,
'

along the flux lines. Upon adapting the method of de
Gennes, we find

po=kaTno/f, .

For Y-Ba-Cu-0 we estimate g,'=4500 A and go=240
erg/cm . It is then apparent that in bulk crystals entan-
glement will greatly increase the viscosity. Using, for in-
stance, the value L =0.025 mm of the sample used by
Worthington, Holtzberg& and Feild, we find g=10
erg sec/cm and 5=10 A, a value comparable to the es-
timated mean separation of twin boundaries in the sam-
ple used in Ref. 7.

Recently, Obukhov and Rubinstein have pointed out
that relaxation times far longer than those predicted by
reptation theory may be expected if the flux lines were
truly impenetrable. These authors find a relaxation time
requiring the collective motion of many flux lines which
behaves like

Vi8= — z (VXv) .1

2x
(3.6)

Imposing 8=0 at the walls, the solution of (3.6) is

U 5gff sinh(y /5, ir)
—2y /w sinh( w /25, s')

8(y) =
2K' cos( w /25cs )

(3.7)

with 5,s=rl, ir/y. On the right-hand side of Fig. 1 we
show the distortion induced in the flux-line hexatic in the
channel flow problem for W/25=5 with 8=0 at the
walls. The viscosity is enhanced because the hexatic
stiffness prevents the flux lines from rotating freely to ac-
commodate spatial inhornogeneities in the vorticity.

We have attempted to extract the crucial hydrodynarn-
ic parameter r)( T) directly from the data of Worthington,
Holtzberg, and Feild. Following Bardeen-Stephen' we
estimate the flux-flow resistivity pf as pf /p„
=B/H, z(T), where B=n„go We take. B=H and use
the value

over a distribution of channel spacings and orientations.
When considering the flow of an entangled flux-line

hexatic in a channel, we have to solve the additional hy-
drodynamic equation for the bond-angle field. If we as-
sume that the bond-angle field is pinned at the boun-
daries, we can then use (2.6) to eliminate the bond-angle
field in Eq. (2.7). The resulting equation for the flow ve-
locity v is formally identical to that obtained for the iso-
tropic fluid with g replaced by the effective viscosity

r),s=rl+Ki/4iri .

The torsional rigidity of the hexatic increases the fluid
viscosity' and therefore also increases the screening
length 5. We expect that this viscosity enhancement
starts at a second-order isotropic-to-hexatic phase transi-
tion in the universality class of the three-dimensional XY
model. The viscosity should increase further as one ap-
proaches the (probably first-order) transition to an Abri-
kosov flux lattice.

The bond-angle field 8 is determined by the vorticity
of the flow, via Eq. (2.6) specialized to a steady-state situ-
ation,

dhO o=2rrn„ f dy U„(y) .
dt —8'/2

(3.4)

Defining the flux-flow contribution to the resistivity pf by
~hV~/W= jrlpf and using Eq. (3.2) in (3.4), we find

pf =pf 1 — tanh( W/25)o 25
W'

(3.5)

Since a phase slip of 2m occurs when a vortex crosses the
length of the sample, we have ]0 2

- )0 'I-

I
10 4

10

I I i I

78.0 82.0 86.0 90.0 94.0

-O.OI4

.0 008 0

- 0.004

.OOOO

where

p&=m fi n„p/e

is the Bardeen-Stephen flux-flow resistivity. ' The same
formula applies to a periodic array of twin boundaries
with spacing W. Alternatively, one could average (3.4)

TEMPERATURE (K)

FIG. 2. Resistance data of Ref. 7 for H =9 T and the corre-
sponding viscosity g(T) extracted from fits to Eq. (3.5). The
vertical arrow indicates the shoulder in the resistivity, proposed
by Worthington, Holtzberg, and Feild (Ref. 7) as the location of
the isotropic-to-hexatic transition.
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dH, z(T) = —2.4 T/K
dT

to estimate the mean-field H,2(T) curve. For each value
of the field we use this procedure to obtain a viscosity
from Eq. (3.5) with W=4000 A using the resistance data
only up to temperatures somewhat above the location of
the experimentally observed shoulder in the resistivity.
At higher temperatures amplitude fluctuations become
important and our theory based on a London picture of
well-separated flux lines is less reliable. As shown in Fig.
2, the viscosity of the fiux liquid increases as the tempera-
ture decreases until it is many orders of magnitude larger
than what one ~ould estimate assuming independent
point vortices in the Cu02 planes. Most of this increase
takes place in the region below the shoulder at 83 K
identified by %orthington, Holtzberg, and Feild as the
hexatic phase where q begins to approach the estimate
10 erg sec/cm discussed above.

sociated with continuous melting appears in the theory of
melting dynamics of classical particles in two dimen-
sions. '

An apparent divergence of the viscosity would also re-
sult from the very long entanglement relaxation times es-
timated in Ref. 23. In this scenario, barriers to flux cut-
ting would increase L,s(T) with decreasing temperature
until L,fr( T ) L, at which point the viscosity g(L )

pp'r o~](L ) is effectively infinite. An explanation of this
type for the "irreversibility line" was proposed in Ref.
2.

Our analysis strongly suggests that entanglement plays
an important role in determining the transport properties
of the flux-line liquid. More work is needed to determine
how flux-line cutting reduces the various estimates of the
viscosity ri(T), and to calculate more carefully the tem-
perature dependence of the Bardeen-Stephen parameter
y(T), which depends on the as yet poorly understood
normal-state resistivity.

IV. CONCLUSIONS

The hydrodynamic approach presented here makes no
claim about the nature of the transition at which the
linear resistivity vanishes. As Fig. 2 makes clear, the
viscosity appears to diverge at this temperature. Such a
divergence could result from the melting from a Abriko-
sov flux lattice. ' Although an underlying first-order
transition is expected in d =6—e dimensions and also in
d =3, this transition could be nearly continuous and
characterized by a large viscosity for the experimentally
relevant case of d =3. An actual viscosity divergence as-
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