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We investigate the noise-affected I-V curves of small-area Josephson junctions through experi-
ment, simulation, and theory. In particular, we consider I-V curves in which two different states of
finite voltage coexist at the same dc bias: a high-voltage state that corresponds to the usual quasi-
particle branch and a low-voltage state that is characterized by thermally activated phase diffusion.
The observed hysteresis between the phase-diffusion and quasiparticle branches cannot be explained
within the context of the simple resistively and capacitively shunted junction (RCSJ) model but is
explained by extended models in which the damping increases with frequency. Frequency-
dependent damping is shown to produce a qualitative change in the attractors of the noise-free sys-
tem which allows the two voltage states to be simultaneously stable. This picture is confirmed by
Monte Carlo simulations which accurately reproduce the experimental I-V curves of two different
samples over a wide range of temperatures. In addition we develop analytic expressions for three
key parameters of the I-V curve of junctions displaying hysteresis between the phase-diffusion and
quasiparticle branches: the initial slope of the phase-diffusion branch, the bias level at which the
junction switches from the phase-difFusion branch to the quasiparticle branch, and the bias level at
which it returns to the phase-diffusion branch.

I. INTRODUCTION

In the exploration of effects associated with single-
electron tunneling in Josephson junctions, many investi-
gators have recently fabricated junctions of small area for
which the Josephson coupling energy EJ=AIo!2e is on
the order of the charging energy Ec=e /2C (where I&& is
the ideal critical current and C is the capacitance of the
junction). For such junctions the critical current is often
in the nanoampere range, the capacitance is measured in
femtofarads, and the subgap resistance can be many
megohms. Several experimental studies of this type of
junction have revealed a new kind of current-voltage
(I-V) characteristic that exhibits both hysteresis and a
small voltage associated with the nominal zero-voltage
branch. '

An example of an I-V curve with these properties is
shown at three different scales in Fig. 1 for a small-area
Nb/Nb0„/Pb-In-Au tunnel junction. Frame (a) of Fig. 1

is an overview showing the expected current rise at the
energy-gap voltage near 2.8 mV. In this case the current
rise is about 70 nA, implying an ideal critical current of
roughly 50 nA. While a critical current of this magni-
tude is not observed, at dc-bias levels below 1.2 nA there
is a low-voltage branch that overlaps the usual quasipar-
ticle branch at higher voltages. This region of hysteresis
is shown in Fig. 1(b) at an expanded current scale but the
same voltage scale as Fig. 1(a). If the low-voltage branch
were actually at zero voltage as Fig. 1(b) suggests, then
the I-V curve could be explained as one in which the crit-
ical current is suppressed below its ideal value by thermal
noise, a common situation in hysteretic junctions. How-
ever, when the voltage scale is expanded as in Fig. 1(c),
the low-voltage branch is found to be at finite voltage and
have a finite slope even at zero dc bias. Although a finite
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slope at zero bias is often observed in nonhysteretic I-V
curves in the presence of noise, it is unusual in an I-V
curve displaying hysteresis.

Because the type of I-V curve shown in Fig. 1 is ob-
served in junctions for which EJ is on the order of Ec,
processes involving single-electron tunneling (SET) or
macroscopic quantum tunneling (MQT) can be important
determining factors. Indeed, valuable information about
such processes has been obtained by studying I-V curves
of this type. However, the characteristics of hys-
teresis and a finite slope at the origin have also been ob-
served, as in Fig. 1, in junctions for which EJ is much
larger than Ec and processes beyond the classical dynam-
ics of Josephson junctions can be excluded. In this paper,
we restrict our attention to this classical regime
(EJ))Ec ) and seek to understand I-V curves of the type
shown in Fig. 1 in terms of the Josephson equations and
thermal noise.

Although a hysteretic I-V curve with a finite slope at
the origin does not necessarily imply the presence of SET
or MQT processes, an explanation within the simplest
classical model of junction dynamics, the resistivity and
capacitively shunted junction (RCSJ) model of Stewart
and McCumber, is not believed to be possible. As was
first noted by Ono et al., the characteristic shown in Fig.
1 combines features expected of the noise-affected I-V
curves of hysteretic (underdamped) and nonhysteretic
(overdamped) junctions within the RCSJ model. In the
overdarnped case, the junction voltage is necessarily zero
at dc bias levels I less than the critical current Io in the
absence of noise. In the presence of noise, the junction
phase is subject to a diffusion process that gives rise to
finite voltages for ~I~ (Io and, at sufficiently high noise
levels, to a finite slope at the origin of the I-V curve.
Phase-difFusion in overdamped junctions has been ana-
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FIG. 1. The current-voltage characteristic of a
Nb/NbO„/Pb-In-Au tunnel junction measuring 0.1 by 1 pm
(sample B) at a temperature of 2.9 K.

lyzed within the RCSJ model and the predictions are in

good agreement with experiment. ' Such phase diffusion

would explain the finite slope at the origin of the I-V
curve shown in Fig. 1. In the underdamped case, there is
a range of dc bias, I„o&~II &Io, for which two different

states of the junction, one at zero voltage and one at a
finite voltage, are stable in the absence of noise. %hen
the effect of noise on this hysteretic situation was first

considered within the RCSJ model, " it was assumed that
noise would cause the junction to switch from the zero-
voltage state to the voltage state without producing the
phase difFusion that would give a small voltage to the
nominal zero-voltage state. Subsequent experiments have
confirmed this assumption, ' and Ono et al. have argued
that it is impossible to obtain phase diffusion in a hys-
teretic I-V curve within the RCSJ model. Phase diffusion
is possible in the underdamped RCSJ model but it occurs
only at low bias levels (roughly ~I ~

& I„o)and at tempera-
tures high enough that the I-V curve does not display
hysteresis. Thus, the RCSJ model is believed to explain
both hysteresis and phase diffusion but not their simul-
taneous presence in a single I-V curve. In this paper, we
present further arguments in support of this conclusion.

A model that satisfactorily explains the type of I-V
curve shown in Fig. l in terms of classical junction dy-
namics was first proposed by Ono et al. Taking note of
the fact that phase diffusion near zero voltage is stabi-
lized by high damping and that an overlapping high-
voltage state is stabilized by low damping, these authors
suggested than an I-V characteristic displaying both
phase diffusion and hysteresis might result if the damping
were frequency dependent. Because phase difFusion in-
volves motion at or near the junction's plasma frequency
co =+2eIO /AC and the voltage state involves primarily
steady motion, the required frequency dependence is one
that gives high damping near co& and low damping at zero
frequency. Moreover, as Ono et al. point out, just this
kind of damping profile can be expected in experiments
with junctions having high subgap resistances. The re-
quired frequency dependence is not intrinsic to the junc-
tion but results because the leads attached to record the
I-V curve shunt the junction with what can be character-
ized as a transmission line having a characteristic im-

pedance on the order of or less than the impedance of
free space, 377 Q. At low frequencies, this transmission
line merely connects the junction to a high-impedance
current source and/or amplifier and the effective shunt
resistance can be as high as the intrinsic resistance of the
junction. At microwave frequencies, however, the
effective shunt will be limited to a resistance no larger
than the characteristic impedance of the transmission
line. If the junction's intrinsic resistance is much higher
than this characteristic impedance, we obtain a situation
in which the damping is low at zero frequency and high
at microwave frequencies. According to this picture, the
type of I-V curve shown in Fig. 1 is likely to be obtained
in the presence of noise whenever the subgap resistance is
much greater than the impedance of free space.

Simulations reported by Ono et al. confirm that
frequency-dependent damping allows the coexistence of
phase diffusion and hysteresis in a single I-V curve.
However, because the external impedance shunting the
junction was not well known at microwave frequencies in
this and other early experiments, ' the analysis was
necessarily incomplete and largely qualitative. More re-
cently, we measured I-V curves such as that shown in
Fig. 1 using an experimental arrangement which allows
an accurate characterization of the damping at mi-
crowave frequencies and obtained, for the first time, de-
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tailed quantitative agreement between simulation and ex-
periment. This work established that phase diffusion in
hysteretic junctions can be adequately described by an ex-
tended RCSJ model that includes frequency-dependent
damping.

In the present paper, we expand on our earlier work,
describing the experiments and simulations at greater
length and presenting in addition analytic results that
provide insight into the nature of the phase-diffusion
state. We focus on predicting the three parameters of the
I-V curve identified in Fig. 1(c): the bias current I, at
which the junction switches from the phase-difFusion
state to the voltage state, the bias current I„atwhich the
junction returns to the phase-diffusion state, and the
resistance Ro that characterizes the initial slope of the
I-V curve. We consider the behavior of these parameters
for three circuits that range in complexity from the basic
RCSJ model, Fig. 2(a), to an extended RCSJ model with a
simple frequency-dependent shunt, Fig. 2(b), to an ex-
tended RCSJ model that corresponds to our experiment,
Fig. 2(c). We show that there is a qualitative difference
between the circuits of Figs. 2(a) and 2(b) that allows the
coexistence of phase diffusion and hysteresis in the latter
case. We also show that the three parameters, I„I„,and

Ro all depend, to varying degrees, on damping near the
plasma frequency.

As the above discussion indicates, it is important to
control the external shunting impedance at microwave
frequencies in experiments with junctions having a high
internal resistance. In our experiment this was achieved
by including two isolation resistors on the microcircuit
with the junction, as shown in Fig. 3. In the two samples
studied, the junctions were virtually identical but the iso-
lation resistors were purposely different. In sample A
these resistors were 1.5 mm long with a resistance of 300
kQ and in sample B they were 0.5 mm long with a resis-
tance of 100 kQ. Because the isolation resistors were
made to be small compared with the wavelength of radia-
tion at the plasma frequency, it was originally assumed
that the shunting impedance at this frequency could not
be less than the parallel combination of the two resistors,
150 kQ for sample A and 50 kQ for sample B. However,
while trying to understand our experimental results, we
learned that it is necessary to include the effect of a small
distributed capacitance between the isolation resistors
and the ground connection of the microcircuit. At high
frequencies, this parasitic capacitance effectively grounds
the isolation resistors at some point along their length,
making their high-frequency resistance much less than
the dc value. Only when this parasitic capacitance was
accounted for did we obtain satisfactory agreement be-
tween simulation and experiment.

The phase-difFusion branch of the I-V curve is plotted
in Fig. 4 for samples A and B at each of three tempera-
tures. In this figure, solid lines show the experimental re-
sults and circles, squares, and rectangles show the results
of Monte Carlo simulations based on the circuit model of
Fig. 2(c). The agreement between simulation and experi-
ment displayed here is remarkable given that all parame-
ters entering the simulation were either experimentally
measured or estimated from the sample geometry. Only
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FIG. 3. Physical layout of the sample-A microcircuit consist-

ing of a Nb/NbO„/Pb-In-Au edge junction measuring 0.1 by 1

pm and two NiCr resistors that are 4.5 nm thick, 1.5 JMm wide,

and 1.5 mm long fabricated on a silicon substrate. Sample B is

similar but has resistors 0.5 mm long.

one circuit parameter, the ideal critical current Io, was

adjusted to At the experimental phase-diffusion curves
and the resulting value of 50 nA is consistent with the ob-
served 70-nA step at the energy gap. The final quantita-
tive agreement between simulation and experiment shown
in Fig. 4 leaves little doubt that our circuit model cap-
tures the essential physics of phase diffusion in hysteretic
I-V curves. We are thus confident that the complex dy-
namics of the phase-diffusion process recorded in our
Monte Carlo simulations represents the real dynamics of
noise-affected junctions.

By way of further introduction, we now briefly exam-
ine the dynamics of phase diffusion as revealed in our
Monte Carlo simulations. The basic nature of phase
diffusion is most easily understood in terms of the RCSJ
model. Within this model, phase diffusion is equivalent
to the Brownian motion of a particle in a potential of the
form,

U(P) = Ez[cosg+(I /—Io)(t)j,
where P is the difference in the superconducting phase
across the junction. This potential has the shape of a
washboard with a tilt determined by I and, for ~I ~ &Io,
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FIG. 4. Phase-diffusion branch of the I-V curve for (a) sam-
ple A and (b) sample B. Circles, squares, and triangles show
simulated results at three temperatures based on average volt-
ages computed over a time of 10 ps. Solid lines show corre-
sponding experimental results. The upper limit of each curve
defines the switching current I, .

has local minima evenly spaced at 2nintervals . in (t).

Phase diffusion proceeds as a random walk among these
equilibrium positions driven by the Johnson noise of the
junction resistance. For nonzero I, phase diffusion leads
to an average voltage,

( &) = (dgldt ),
2e

because the tilt of the potential makes thermally induced
escape from a minimum more probable in one direction
than the other.

Extending the RCSJ model to include frequency-
dependent damping does not significantly change this pic-
ture of phase diffusion: it simply allows the coexistence
of phase diffusion and hysteresis in the same I-V curve.
Consider, for example, phase diffusion at I=0.5 nA for
the experimental I Vcurve shown in Fig. -1(c). A Monte
Carlo simulation for this case reveals the noise-affected
dynamics of the junction phase and voltage shown in Fig.
5. Here, the phase is plotted over a range that includes
three oscillations of the potential, with potential minima
occurring near P= 2', 0, and—27r and maxima near

~ and m.. Whenever the phase drifts outside of this
range it is renormalized by adding or subtracting 6m to
restore numerical values to the plotting area. If there
were no noise in the circuit, the phase would remain for-
ever at a given minimum of the potential. In the presence
of noise, the phase is continually buffeted and executes a
random walk that is strongly affected by the potential.
For significant periods of time, the phase remains trapped

in one of the potential wells and oscillates about the po-
tential minimum at roughly the plasma frequency. Oc-
casionally, these oscillations build to the point where es-
cape occurs and the phase begins to traverse the wash-
board, often moving across several minima before retrap-
ping. Because I/I0=0. 01 in the present case, the tilt of
the washboard is slight and these escape events produce
motion in the —P direction almost as often as in the +P
direction. Thus, although the phase moves in fits and
starts, the general character of its motion is that of a ran-
dom walk.

As Fig. 1 shows, there is, at I=0.5 nA, an ordinary
voltage state near 1.1 mV on the quasiparticle branch of
the characteristic in addition to the phase-diffusion state
near 6.5 pV. The Monte Carlo simulations reproduce
both of these states and show that they are distinct. That
is, although the junction might be said to enter a voltage
state when the phase escapes from a potential well in the
phase-diffusion process, Fig. 5(b) shows that the voltages
attained in these escape events are typically no more than
one tenth of the voltage associated with the quasiparticle
branch. Thus, the behavior shown in Fig. 5 cannot be in-
terpreted as one in which the junction switches rapidly
back and forth between the zero-voltage state and the
quasiparticle branch. Instead, the low-voltage state of
the phase-difFusion branch and the high-voltage state of
the quasiparticle branch are independent and simultane-
ously stable, although they are both states in which the
phase moves down the slope of the washboard potential.
The simultaneous stability of these two states depends on
the fact that the damping is frequency dependent.

Another significant feature of the phase-diffusion pro-
cess shown in Fig. 5 is the prevalence of escape events in
which the phase traverses many potential minima before
retrapping. In the traditional analysis of phase diffusion
in underdamped junctions, ' '" which is valid in the limit
of low temperature, it is assumed that escape always leads
to a single 2~ phase slip. This assumption is not valid in
the present experiment because of the relatively high tem-
peratures involved. To account for the multiple-well
phase-slip events observed in Fig. 5, we have extended
the traditional analysis to include a probability distribu-
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tion for the number of wells traversed. This analysis
yields a formula for the initial slope of the phase-diffusion
branch of the I-V curve is in good agreement with Monte
Carlo simulations for all three of the circuit models con-
sidered. Thus, we report new results not only for the case
of frequency-dependent damping but also for the high-
temperature limit of the much-studied RCSJ model.

The remainder of this paper is outlined as follows. In
Sec. II we review the effect of noise within the RCSJ
model and report the first accurate computation of the dc
bias at which the stability of the zero-voltage and voltage
states are equal. In Sec. III we introduce a simple exten-
sion of the RCSJ model that includes frequency-
dependent damping and show that the basins of attrac-
tion for this system are topologically different from those
of the RCSJ model. In Sec. IV we discuss our experiment
and develop a circuit model to describe it. In Secs. V, VI,
and VII, we discuss the three parameters Ro, I„andI„,
respectively, and develop a number of analytic results
that help to provide an intuitive understanding of noise-
affected I-V curves in small junctions.

II. RCSJ MODEL

As shown in Fig. 2(a), the RCSJ model consists of an
ideal Josephson element of critical current Io shunted by
a capacitance C and a resistance RJ and driven by a
current source I. The ideal junction element is described
by the Josephson equations,

different situation. In the absence of noise, I =0, the
zero-voltage state or 0 state is stable at all bias levels less
than the ideal critical current (~i~ &1) and the voltage
state or 1 state is stable at all bias levels greater than a
minimum value designated i,o. For I =0.01, the bias i,
at which the junction switches from the 0 state to the 1

state is suppressed below the ideal critical current and the
bias i„atwhich the junction returns to the 0 state is
raised above i„o.At a higher temperature, I =0.1, the
hysteresis apparent in Figs. 6(a) and 6(b) is eliminated and
the I-V curve simply shows a plateau near a bias level
designated i, In. this case, the curve follows the zero-
voltage axis at low bias levels but bends away from this
axis as the bias approaches i, . Finally, for I =1, the I-V
curve shows a finite slope at the origin indicative of phase
diffusion.

The four I-V curves presented in Fig. 6 are sufficiently
different that the analytic results for each case depend on
a different set of assumptions. We begin by considering
how the dynamics of the noise-free system determines
Fig. 6(a}. As noted in the Introduction, the equation of
motion for the phase in the RCSJ model, Eq. (6), is
equivalent to that of a damped particle in a washboard
potential. Normalized to the Josephson coupling energy
EJ, this potential is

u(P) = (cos—P+iP),
which is plotted for i =0. 1 in Fig. 7. For ~i

~

& 1, the po-
tential includes local minima and maxima at the points,

IJ =Iosinp,

d((} 2e

dt

(3)
P;„=sin 'i (mod 2n.),
P,„=m—sin 'i (mod2n) . (10)

Q +,+sin((}=i+i„(t'),2d d
dt' (6)

where Q=(2eIORJC/fi)'~ is the quality factor of the
linearized equation of motion, i =I lIO is the normalized
dc bias, i„=I„/Iois the normalized noise current, and
t'= (2eIOR J /R)t is the normalized time. In this notation,
dg/dt'=U is the junction voltage V normalized to IORJ
and the autocorrelation ofi„is

(i„(t;)i„(t;) & =2rfi(t,' —t', ),
where I =kT/Ez is the normalized temperature. The
usual McCumber parameter P, is Q in our notation.

Noise-affected I-V curves computed at four normalized
temperatures are shown in Fig. 6 for a RCSJ model with
Q=5. Each of these curves illustrates a qualitatively

where IJ is the current through the element. To describe
the Johnson noise of the resistance A J, we also include a
current source I„which represents white Gaussian noise
with zero mean and autocorrelation,

(I„(t,)I„(t,) ) = 5(t, —t, ),2kT
J

where T is the temperature. In terms of dirnensionless
parameters, the equation of motion for the junction phase
1S

The 0 state corresponds to the particle resting at a poten-
tial minimum and is stable at bias levels (~i

~
&1) for

which such minima exist. The 1 state corresponds to the
particle running down the washboard potential and is
stable at bias levels ( ~i ~

& i„o)for which the tilt of the
washboard is sumjcient to offset damping losses.

The return current i„oat zero temperature is a parame-
ter central to understanding the coexistence of hysteresis
and phase diffusion. In the RCSJ model, i„~is determined
entirely by the quality factor Q and decreases with in-
creasing Q because a smaller tilt is sufficient to support
the running state when the damping is less. An accurate
numerical evaluation of i„oas a function of Q is shown in
Fig. 8. For Q &0.8382, the damping is sufficient that a
running state is not possible unless the potential de-
creases monotonically and in this case i„ois identically 1.
For Q )0.8382, a running state is possible even when the
potential has local minima. In this case i„0&1and the
I-V curve is hysteretic. In the limit of large Q, Stewart
has shown that

i„o= (Q»1),4
mQ

and this approximate form for i„ois plotted as a dashed
line in Fig. 8. As this figure shows, Eq. (11}gives an ex-
cellent estimate of i„ofor Q greater than about 3 and it
will be used frequently in later discussions.
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A second critical bias parameter i is defined as the
minimum tilt at which a particle initiated at a given po-
tential maximum with infinitesimal velocity [P(0)=P,

„

and v(0) =e] will reach the next potential maximum, at
P,„+2m.. This bias level is significant because the initial
state it considers occurs in the process of noise-induced
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escape from a potential minimum in the limit of low tem-
perature. That is, if the thermal energy available for pro-
ducing escape is small, then the particle is unlikely to
reach the point of escape with significant extra energy.
In this case, the final result of escape will depend on
whether the bias is greater or less than i . If ~i~ &i
then the particle will fail to reach the next maximum (un-
less it happens to get a boost from the noise source} and
will be retrapped. On the other hand, if ~i ~

& i~, then the
particle will clear the next potential maximum (unless it
happens to be retarded by the noise source) and begin to
accelerate toward the 1 state. Because a stable phase-
diffusion state requires repeated escape and retrapping
without switching to the 1 state, phase diffusion is possi-
ble in the low-temperature limit only at bias levels less
than i . (We assume that noise-induced retrapping is un-

likely for ~i ~
&i in the low-temperature limit. }

Although the parameters i„pand i are independently
defined, they are identically equal within the RCSJ mod-
el. This equality is related to the fact, noted by Belykh,
Pedersen, and Soerensen, ' that the quasiparticle branch
of the I-V curve extends to zero voltage as shown in Fig.
6(a). The limiting motion associated with this branch at
i =i„pcorresponds to a particle beginning with zero ve-
locity at a potential maximum and ending with zero ve-
1ocity at the next maximum, a motion that requires
infinite time and thus represents zero voltage. Because
this is the same as motion that defines i, we conclude
that i =i,p. As a consequence of this equality, there is
no possibility of an I-V curve with a phase-diffusion
branch overlapping the quasiparticle branch in the low-
temperature limit of the RCSJ model. That is, because
the quasiparticle branch is stable only for

~
i

~
)i„oand

phase diffusion in the limit of low temperature is possible
only for ~i~ &i, there can be no hysteresis of i =i„o In.
Sec. III we will show that if the damping is frequency
dependent then i can be greater than i,p, allowing the
phase-diffusion and quasiparticle branches to overlap.

The finite-temperature I-V curves shown in frames (b},
(c), and (d) of Fig. 6 can be understood largely in terms of
noise-induced transitions between the 0 and 1 states of
the noise-free system. A useful perspective on such tran-
sitions is gained by examining the 0-state and 1-state at-
tractors and their basins of attraction in state space. The
typical situation for ~i

~ &i„o,where there is no 1-state at-
tractor, is illustrated in Fig. 9(a) for the case Q =5 and
i =0.1. Here, the phase is plotted over three oscillations
of the washboard potential and the figure includes three
0-state attractors at successive potential minima. By
definition, the basin of attraction of a given attractor is
the region of state space that includes all sets of initial
conditions leading to motion on the attractor. In the
present instance, the basin boundaries coincide with the
inset trajectories of the saddle points at (((},v }=($,„,0)
and are easily calculated. The basin of the 0-state attrac-
tor near the center of Fig. 9(a} is indicated by cross
hatching. If the system is initially within this central
basin, a thermally induced escape can take the system to
an adjacent minimum either in the +p or —p direction.
The mean times ~+ and v.' required for such escape
events, calculated within the theory of Kramers' and

normalized to 4/2eIORJ, are "' '"
4mQ

exp(b u+ /I'), I & 2rrb u+ / p4p+ 1 —1

(12a}
2p

exp(hu /I ), I & 2mbu„/v'p, (12b)

where p=Q (1 i —)' and b, u+ and hu are the poten-
tial barriers for escape in the +P and —

((} directions nor-
malized to the Josephson coupling energy (cf. Fig. 7),

hu+ =2(1—i )'~ +2i(sin 'i+a/2) . (13)

~', =Q v'mI /b, w exp(b, w/I ), (14)

where the activation energy normalized to the Josephson
coupling energy is given approximately by

bw= ,'Q (i i„o—)— (15)

Equations (14) and (15) are valid in the limit of low tem-
perature (I «b, w) and low damping Q))1. Because
the process of escape from the 1 state is one in which the
noise source acts as a brake to stop the motion of the par-
ticle down the washboard, it is not surprising that the ac-
tivation energy Aw is approximately equal to
—,'Q (dgldt'), the average kinetic energy of the particle
in the 1 state.

Equations (12) and (14) for 7+ and r', provide all of the
information necessary for understanding noise-affected
I-V curves in the low-temperature limit. In this limit, the

Although Eq. (12) is strictly valid only in the limit of low
temperature (I «b, u+ ), it also provides a useful refer-
ence point at the higher temperatures of interest here.

For i,o ( ~i ~
( 1, the 0-state and 1-state attractors coex-

ist, and the topology of state space takes the form illus-
trated in Fig. 9(b} for Q =5 and i =0.5. The attractor of
the 1 state is the oscillatory trajectory near U =0.5, and
its basin of attraction is the region indicated by stippling.
Because this stippled region separates the basins of adja-
cent 0-state attractors, it is not possible for an escape
event to take the system directly from the basin of one
potential minimum to that of a neighboring minimum.
Instead, escape from the 0 state necessarily takes the sys-
tem into the basin of the 1 state. For i„o&i & 1 (positive
bias), ~'+ is the mean time required for thermal noise to
cause a transition from the basin of the 0 state to that of
the 1 state. The mean time for the inverse process (tran-
sitions from the 1 state to the 0 state), although equally
important to understanding noise-affected I-V curves,
cannot be treated within the theory of Kramers.
Thermally induced escape from the 1 state is a diScult
theoretical problem because the 1 state is a dynamic
nonequilibrium state. Recently, however, a number of
authors have developed expressions for the mean time for
escape from the 1 state using techniques suitable for
nonequilibrium systems. ' In particular, Ben-Jacob et
al. ' have obtained an analytic form for the escape time
(normalized to fi/2eIOR& ),
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mean escape times are dominated by the exponential fac-
tors exp(hu+/I ) and exp(b, w/I') which can change by
many orders of magnitude with small changes in the ac-
tivation energies hu+ and hw. These activation energies
are plotted in Fig. 10 as a function of dc bias for Q=5.
While the expression for du+ given by Eq. (13) is exact,
that for b, w given by Eq. (15) is only approximate. Re-
cently, a number of authors ' have developed tech-
niques for the accurate numerical evaluation of hw, and
Fig. 10 compares the accurate hw (solid line) with the an-
alytic approximation (dashed line). Over bias regions for
which the activation energies are much greater than I,
the exponential factors of Eqs. (12) and (14) can be large
enough that the mean time for escape greatly exceeds the
duration of a typical experiment even though the prefac-
tors of the exponentials represent relatively short times,

on the order of either RJC or 1/co&. In these bias regions
the 0 and 1 states are stable despite the presence of noise.
On the other hand, hu+ goes to 0 as i approaches 1 from
below and hw goes to 0 as i approaches i„ofrom above.
In these bias regions, the exponential factors approach 1

and the escape times are on the order of RJC or 1/w,
which are typically much shorter than measurement
times. Thus, noise can dramatically reduce the stability
of the 0 state just below the critical current and the sta-
bility of the 1 state just above the zero-temperature re-
turn current.

Consider now the I-V curve for I =0.01 shown in Fig.
6(b). To be quantitative about escape times, we will as-
sume that IoRJ=2 mV, so fi/2eIoRJ=O. 165 ps. At
i =0, the exponential factor determining
r+=(~/2eIoRJ)r'+ is exp(200) and the prefactor is 5.7
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FJG. 9. State-space diagrams of the RCSJ model showing the attractors and their basins of attraction for Q =5 with(a) &'=O & and

i =p. 5. The basin of attraction of the 1 state is stippled and those of the 0 states are either clear or crosshatched.



42 NOISE-AFFECTED I-V CURVES IN SMALL HYSTERETIC. . . 9911

10

~ 8

~ 6

0
~40

0
0.0 0.2 0.4 0.6

dc BIAS i
0.8 1.0

FIG. 10. Activation energies for escape from the 0-state and
1-state attractors as a function of dc bias for Q =5. Accurate
numerical results for hw are shown as a solid line (Ref. 23) and

the approximate expression given by Eq. (15) is plotted as a
dashed line. Energies are normalized to the Josephson coupling

energy EJ.

Po(i)=exp —I di' 1

ar'+(i')
(16)

In the I Vcurve of Fig. 6-(b), we assume that a=10
such that the bias is swept from 0 to the critical current
in 1.65 ms. For this sweep rate, the probability of
remaining in the 0 state is 0.99 at i =0.785 and 0.01 at
i =0.834, so that 98% of all switching events occur be-
tween these two bias levels [shown as dashed lines in Fig.
6(b)]. Thus, although the switching current varies with
each sweep of the dc bias, the range of switch points is
suSciently narrow that it is useful to define the switching
current i, as the bias at which Pa=0. 5. In Fig. 6(b),
i, =0.817.

Because the lifetime of the 1 state at i =i, in Fig. 6(b),
is, according to Eq. (14), 6.3X10' s, there is no chance

ps, so the mean time for escape from a potential
minimum is 4. 1X10 s. Because this time exceeds the
age of the universe, the 0 state at i=0 is completely
stable for practical purposes. However, as the dc bias is
increased to trace the I-V curve, v+ decreases rapidly due
to the decrease in hu+ and drops below 1 s as the bias
reaches i =0.74. Thus, at bias levels approaching the
critical current, thermal noise makes the 0 state highly
unstable and the junction is likely to switch to the 1 state.
The statistics of this switching process have been exam-
ined in detail both theoretically" and experimental-
ly. ' ' Assuming that the dc bias increases from i =0
at a rate a= ~di Idt'I, the probability Po(i ) that the junc-
tion remains in the 0 state when the bias level reaches i
s26

that the junction will switch back to the 0 state after an
escape event. However, when the bias is decreased, the
stability time of the 1 state falls rapidly and a return to
the 0 state becomes probable as i approaches i„0=0.252.
Given that the junction begins in the 1 state at i = 1 and
the bias is decreased at a rate a, the probability P, (i )

that the junction remains in the 1 state when the bias
reaches i is

P, (i)=e xp —I di' 1

ar', (i') (17)

7

7+ +7]
(18)

where v, is the voltage of the 1 state in the absence of

In the case of return from the 1 state, Eq. (17) shows that
98% of the switching events occur between i =0.377 and
i =0.356, a range of bias indicated by dashed lines in Fig.
6(b). If we define the return current to be the bias at
which P, =0.5, then i„=0.363 in the present case. We
conclude that at I =0.01, the I-V curve is similar to the
hysteretic characteristic of the noise-free junction but
there is a reduction in overlap between the two stable
branches due to premature switching events induced by
thermal noise.

A question of particular importance in the present pa-
per concerns the voltage of the 0 state at bias points near
i, in Fig. 6(b). Does the junction always switch to the 1

state after escaping from a potential minimum or is there
a significant probability of retrapping in a nearby well be-
fore the transition to the 1 state is complete~ This ques-
tion was recently answered by Silvestrini and Cristiano
who show that in the limit of low damping (Q »1) and
low temperature (I « 1), the probability of retrapping at
bias levels well above i„ois much less than 1. That is, al-
most all escape events at bias levels near i, lead directly
to the 1 state, and phase dift'usion, which requires repeat-
ed escape and retrapping events, is not possible. Thus, no
significant voltage is associated with the 0-state branch in
Fig. 6(b).

At temperatures above I =0.01, the overlap between
the 0-state and 1-state branches is reduced from that
shown in Fig. 6(b) and, at sufficiently high temperatures,
the I-V curve is nonhysteretic. This situation is shown in
Fig. 6(c) for I =0.1. When the parameters i, and i„rae
calculated at I =0. 1 based on the conditions Pc(i, ) =0.5

and P~(i„)=0.5, we find i, =0.301 and i„=0.61 .5Thus,
both the 0 state and the 1 state are unstable in the bias
range 0.301 &i (0.615, resulting in a situation where the
junction switches rapidly back and forth between these
two states. I-V curves for this situation have been calcu-
lated both analytically' and through Monte Carlo simu-
lations, ' and both approaches are illustrated in Fig.
6(c). The analytic result for the voltage, shown by a solid
line, is calculated as the average of the voltages of the
noise-free 0 and 1 states weighted by the time the junc-
tion spends in each state. That is,
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2(1 —i2)'~1+2i, (sin 'i, —7r/2) =
—,'Q (i, i„o)— (19)

noise. The Monte Carlo results, shown by solid circles,
were obtained by integrating the equation of motion, Eq.
(6},and computing the average voltage over a normalized
time of 10 units (1.65 IMs). In this calculation, the noise
current i„wasrepresented by a Gaussian random number
generator with a mean of 0 and a variance of
(i„)=21 /bt', where br' is the time step used in the in-

tegration. Because the integration routine passed exten-
sive tests in earlier work, the small discrepancy between
the two curves plotted in Fig. 6(c) can probably be attri-
buted to the approximations involved in the analytic re-
sult [Eqs. (12), (14), and (18)].

The I-V curve of Fig. 6(c) shows a rapid transition near
i =0.5 from voltages near 0 to voltages near that of the
noise-free 1 state. According to Eq. (18), the midpoint of
this transition occurs at the bias level where ~+ =~& and
the junction spends equal time in the 0 and 1 states. Al-
though this bias level is in principle temperature depen-
dent, the dependence is sufficiently weak that its low-
temperature limit i, provides a good approximation to
the transition level at all temperatures. Because the ex-
ponential factors in Eqs. (12) and (14) dominate the ex-
pressions for ~'+ and ~', in the limit of low temperature, i,
is simply the bias at which b, u+ =bw (cf. Fig. 10).
Defined in this way, as the bias at which the stability en-
ergies of the 0 and 1 states are equal, i, is a function only
of the quality factor Q. This parameter is plotted as a
function of Q in Fig. 8, where a solid line shows an accu-
rate result for i, based on the numerical evaluation of
Au and a dashed line shows an approximate result,

1.0

0.6 --
LLI

o.4 "
0.2 ).

9 „J.

(a) r =0.1, i =0.47

I

~ I J P

random telegraph signal with switching at irregular inter-
vals between two distinct levels near v=0 and 0=v, .
Thus, in contrast with the phase-diffusion process shown
in Fig. 5 where the voltage of the running state remains
well below the voltage of the quasiparticle branch, we
find in Fig. 11(a) a process in which escape from the 0
state almost invariably leads to occupation of the 1 state
for an extended period. However, the stability times of
the 0 and 1 state observed here, on the order of 2X10
time units or 0.033 ps, are short enough that only the
average voltage would be observed in a typical experi-
mental I-V curve. The telegraphic waveform shown in

Fig. 11(a) is exactly that required for the validity of Eq.
(18}and explains the accuracy of this equation.

For the I Vcurv-e shown in Fig. 6(c), the probability of
an escape from the 0 state occurring as the bias is swept
from 0 to i„ois less than 0.001 according to Eq. (16).
Thus, no significant voltage is associated with this part of
the I-V curve. At higher temperatures, however, escape
from the 0 state becomes probable even near i =0, and
gives rise to an I-V curve with a finite slope at the origin,
as shown in Fig. 6(d} for I = l. Equation (18), which pre-
dicts zero voltage at bias levels below i,o where there is no
1 state, is not valid in this higher-temperature regime be-

based on Eq. (15). As Fig. 8 shows, the agreement be-
tween Eq. (19) and the accurate result is excellent for
values of Q above about 3. Although Eq. (19) cannot be
solved explicitly for i„it has the approximate solution,
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i, =(2+4/tr)Q '+(2+tr)Q (20)

in the limit of large Q. This form for i, allows a cotnpar-
ison with the work of Vollmer and Risken' who numeri-
cally evaluated the coefficient of Q

' to be 3.3576, in
good agreement with our result of 2+4/tr =3.2732. The
bias level i, is significant because it defines the point at
which the switching currents i, and i„coalescewhen the
temperature is increased to the point where hysteresis is
eliminated from the I-V curve.

With the introduction of I„wehave defined all but
one of the seven bias-current parameters that will be used
in discussing noise-a8'ected I-V characteristics. For fu-
ture reference, the definitions of all seven parameters are
listed in Table I.

In formulating Eq. (18) for the average voltage, we
have postulated that the junction switches rapidly be-
tween the 0 and 1 states at bias levels near i, ~ This be-
havior is verified by our Monte Carlo simulations. In
Fig. 11(a) we plot the junction voltage as a function of
time for a bias point, i =0.47, near the center of the tran-
sition region. The waveform of Fig. 11(a) approximates a
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FIQ. 11. Voltage as a function of time f'or the Q =& RCSJ
model with (a) F=0. 1 and i =0.47, (b) I = 1 and i =0.47, and

(c) I =1 and i =O. l. High-frequency noise has been removed

from these curves by plotting voltage averaged over 100 time
units.
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TABLE I. De6nitions of bias-current parameters.

Ideal critical current: the current at which the junction switches from the zero-
voltage branch of the I-V curve to the quasiparticle branch in the absence of noise.

Switching current: the current at which the junction switches from the zero-voltage
or phase-diffusion branch of the I-V curve to the quasiparticle branch in the presence
of noise.

Return current: the current at which the junction switches from the quasiparticle
branch to the zero-voltage or'phase-diffusion branch in the presence of noise.

Noise free -return current: the current at which the junction switches from the
quasiparticle branch to the zero-voltage branch in the absence of noise.

Minimum escape current: the minimum current for which the noise-free system
switches to the 1 state when initialized at a maximum of the washboard potential
with no voltage on the junction or external capacitances.

Threshold current: the minimum current for which the noise-free system switches
to the 1 state when initialized at a maximum of the washboard potential with specified
voltages on the junction and external capacitances.

Equal-stability current: the current at which the activation energies for escape
from the 0 state and 1 state are equal.

cause it does not account for events in which the 1 state
is not attained after escape from the 0 state. In Fig. 6(d)
we show for I = 1 the results of two other types of calcu-
lation: Monte Carlo simulations, indicated by solid cir-
cles, and a solution of the Fokker-Planck equation due to
Vollmer and Risken, ' indicated by a solid line. The
Monte Carlo results shown here are presumed to be accu-
rate, whereas the Fokker-Planck curve represents an
asymptotic form that is strictly valid only in the limit of
large Q. The discrepancy between the two calculations
probably results because Q =5 is not large enough to ap-
ply the asymptotic form. However, both curves show the
same qualitative features, including a finite slope at the
origin.

The dynamical behavior of the junction at I =1 is il-
lustrated in Figs. 11(b) and ll(c) for the bias levels
i =0.47 and i =0. 1 respectively. Comparing the voltage
waveform of Fig. 11(b) for I =1 with that of Fig. 11(a)
for I =0.1, we find that the random telegraph signal of
low temperatures is replaced by a much less regular sto-
chastic process at higher temperatures. This dynamical
difference gives a second reason why Eq. (18) is not valid
at I =1. At i =0.47 and I =1, the noise is simply too
great to yield a well-defined telegraph signal. At i =0.1,
on the other hand, a telegraph signal cannot be expected
because a 1 state does not exist in the noise-free system
for i (i„o=0.252. Instead, we find in Fig. 11(c)a random

process in which the junction spends significant time
trapped in a potential well with a voltage near 0 and oc-
casional escape events producing voltage spikes as the
junction moves between wells in either the +p or —p
direction. This phase-diffusion process, described previ-
ously in the Introduction, will be considered in detail in
Sec. V.

To conclude our discussion of the RCSJ model, we re-
turn to the question of whether this model allows the
coexistence of phase diffusion and hysteresis in a single

I-V curve. That is, does there exist a set of parameters Q,
I, and a for which repeated escape and retrapping events
would give a small voltage to the nominal zero-voltage
state at a bias level for which the quasiparticle branch is
also stable? %e argued above that this situation is not
possible in the limit of zero temperature because retrap-
ping is not possible for bias levels above i„oand the quasi-

particle branch does not exist for bias levels below i„o.
We also noted that this conclusion is extended to finite

temperatures by the work of Silvestrini and Cristiano,
who have shown that retrapping is unlikely at bias levels
well above i„oin the limit of large Q. The possibility
remains that retrapping is highly probable at bias levels

just above i,o at finite temperatures. This scenario is

given plausibility by the fact that the fingers of the 1-state
attractor that separate neighboring 0-state attractors [cf.
Fig. 9(b)] are very narrow at bias levels near i,o. At low

temperatures, escape from the 0 state usually occurs near
the saddle point and, in the limit of large Q, the trajecto-
ry hugs the boundary of the 0-state attractor for many os-
cillations of the washboard potential after escape occurs.
During this initial portion of the switching process, there
is a chance that thermal noise will knock the system back
into one of the 0-state attractors and cause retrapping.
As i approaches i,o and the trajectory hugs the 0-state at-
tractors ever more tightly, the situation becomes akin to
walking along the edge of a cliff in a windstorm and the
probability of reaching the 1 state approaches 0. Thus,
we might argue that repeated escape and retrapping
events can occur at bias levels just above i,o, allowing

phase diffusion at a point where the quasiparticle branch
is also stable.

Although we will find the cliff-edge scenario useful in
another context, it leads to an incorrect conclusion for
the RCSJ model. The problem is that temperatures high
enough to produce significant numbers of 0-state escape
events at bias levels near i,o are also high enough to de-
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stabilize the 1 state in this bias range. Indeed, we have

already shown that hysteresis can occur in the RCSJ
model only when the temperature is sufficiently low that
the 0 state is stable at all bias points below i, . Thus, if
phase diffusion and hysteresis are to coexist in the same
I-V curve, the phase diffusion must take place at bias lev-

els above i, . Because i, is always substantially greater
than i„o[cf. Fig. 8 and Eqs. (11) and (20)], the relevant

state-space diagram is one in which the 0-state attractors
are well separated and retrapping events are expected'to
be unlikely. This argument suggests that there is no com-
bination of Q, I, and a for which phase diffusion and

hysteresis coexist. Detailed Monte Carlo simulations car-
ried out at both Q =5 and Q =100 also support this con-
clusion. We are thus led to the belief that the experimen-
tal I-V curve shown in Fig. 1 cannot be explained even
qualitatively by the simple RCSJ model.

III. FREQUENCY-DEPENDENT DAMPING

t ' = t (2eIoR J /fi),

U = V/IORJ,

Ub
= Vb /IoR J,

i =I/Io,
i„=I„/Io,

i„)=I„]/Io
Qo =RJ")/2eIoC/fi,

Q, =(1/RJ+1/R, ) '3/2eIoC/fi,

p =RJC/R, Cb,

(21)

(22)

(23)

(24)

(25)

(27}

(28)

(29)

Noise-affected I-V curves in which the phase-diffusion
and quasiparticle branches overlap can be obtained by ex-
tending the RCSJ model to include frequency-dependent
damping. Perhaps the simplest such extension consists of
the RCSJ model plus a shunt composed of a resistor R„
its associated Johnson noise source I„„anda capacitor
C&, as shown in Fig. 2(b). The additional circuit elements
of this model can be used to represent an external circuit
that loads the junction. For example, if the leads at-
tached to measure the I-V curve behave as a lossy
transmission line at microwave frequencies, then R,
might be chosen as the characteristic impedance of the
line and Cb might be chosen to control the disappearance
of this loading at lower frequencies. On the other hand,
our experiment, shown in Fig. 3, is approximately
modeled by choosing R, as the parallel combination of
the two isolation resistors and Cb as the capacitance of
the leads. However, because this approximate model is
not adequate to describe our experiment quantitatively,
our primary interest in the circuit of Fig. 2(b) derives
from the fact that it provides a simple system for under-
standing the qualitative changes introduced by
frequency-dependent damping.

As in the case of the RCSJ model, it is convenient to
describe the circuit of Fig. 2(b) in terms of dimensionless
variables. If we define the dimensionless quantities,

I =2ekT/fiIo,

then the equations of motion take the form,

(30)

dt
(31)

, =Qo [i +i„+i„,—sing+ Udt'

+(Ub —
U )(Qo/Q, —1)],

dvb
, =PQo [U —

vi, i„i—/(Qo/Qi 1)] .

(32)

(33)

Assuming both resistors are at the same temperature, the
autocorrelation functions of the noise sources are

(i„(&2'}i„(&',) ) =21 5(r2' —r', ),
(i„,(&,')i„,(r', ) ) =21'(Q, /Q, —1)5(t', —r', ) .

(34)

(35)

1+(R /R, )R, C
G(~)=

RJ(1+R, Ci, co }
(37)

is the real part of the admittance shunting the ideal
Josephson element. Here R

~~

= (RJ '+R, ') ' is the
parallel combination of RJ and R, . In terms of dimen-
sionless parameters, the quality factor can be written as

1+Qo'). -'(~/~, )'
(oi) =

1+Q3Q —1 —
2( / )2

(38)

where co~=+2eIo/AC is again the plasma frequency
(For the cases of interest here, the plasma resonance is
shifted only slightly from co~ by the capacitance Cb. )

The quality factor is plotted as a function of frequency in
Fig. 12 for our example. At low frequencies, the quality
factor is approximately Qo =5 because Cb is an effective
open circuit and the damping is determined by RJ alone.
At high frequencies, C~ is an efFective short, the damping

The dimensionless parameters introduced here are similar
to those used for the RCSJ model but include in addition
the voltage vb across the external capacitance, the
Johnson noise current i„&of the external resistance, a
second quality factor Q„and the ratio p of the R-Ctime
of the junction to that of the external shunt. The equa-
tions of motion for the extended system are equivalent to
a third-order differential equation, and three state vari-
ables, P, u, and Ub, are required to describe the dynam-
ics. The normalized I-V characteristic is determined by
the three parameters Qo, Q„and p in the absence of
noise and, at finite temperatures, the two additional pa-
rameters 1 and a = ~di /dt'~ are required.

As our primary example, we consider the case
Qo =5, Q, =2, and p =0. 1, which corresponds to the
RCSJ example considered in the Sec. III modified by the
addition of a shunt that increases the damping at high
frequencies. In order to quantify the damping introduced
by this modification, we define a frequency-dependent
quality factor,

Q(co) = [2eIoC/fiG (co)]'~

where
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is determined by the parallel combination of RJ and R„
and Q is approximately Q, =2. The transition between

these low- and high-damping regimes occurs near
co=1/R, C&. By choosing p=0. 1, we have placed this

FIG. 12. Quality factor as a function of frequency for the cir-
cuit model of Fig. 2(b) as given by Eq. (38) with Qo =5, Q~ =2,
and p=0. 1.

transition frequency a factor of 10 below the junction's
1/RJC frequency which is itself a factor of Qo below the
plasma frequency. Thus, in our example, the damping at
the plasma frequency is much greater than at low fre-
quencies, creating the type of situation in which we ex-
pect to find phase diffusion in a hysteretic I-V curve.

Noise-affected I-V curves calculated through Monte
Carlo simulations for the case Qo =5, Q, =2, and p =0. 1

are shown in Fig. 13 for four temperatures. In this figure,
the time over which a solution must persist to be con-
sidered stable is defined by the time (10 units) that the
bias is required to dwell at a given level rather than by
the slew rate a. The I-V curve for I =0 shown in Fig.
13(a) is qualitatively similar to that for the noise-free
RCSJ model [Fig. 6(a}]except in one respect: in the case
of frequency-dependent damping, the 1 state does not ex-
tend to zero voltage as it does in the RCSJ model. As we
discuss below, this difference is crucial to the existence of
phase diffusion in hysteretic I-V curves. Just such hys-
teretic I-V curves are illustrated in Figs. 13(b) and 13(c)
for I =0.08 and I =0.1. These figures show I-V curves
that are, at first glance, similar to the RCSJ characteristic
of Fig. 6(b) but with smaller regions of hysteresis. How-
ever, when the nominal zero-voltage branches of Figs.
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F1G. 13. Noise-alfected I Vcurves for the circui-t model of Fig. 2(b} with Q0=5, Q, =2, and p=0. 1 at temperatures of (a) 1 =0,
(b) I =0.08, (c) I-=0.1, and (d) 1"=1. In frames (b), (c), and {d), voltages were calculated through Monte Carlo simulations using an

averaging time of 10 units. The open circles in frames (b) and {c)show the voltage of the phase-diffusion state multiplied by a factor
of 1000.
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4 4
mQ mQi

(39)

In contrast, the dynamics of a junction biased at finite
voltages on the quasiparticle branch corresponds to a
roughly steady motion down the washboard potential,
suggesting that Q(0) =Qo is the quality factor relevant to
the return process and that

(40)

Although these expressions for i and i„pare not espe-
cially accurate in the present instance (they yield
i =0.637 and i„o=0.255), the expression for i is accu-
rate in the limit of large Q„aswe verify later in this sec-
tion, and the expression for i„proughly approximates a
form derived in Sec. VII, where we show that i,p is only
weakly dependent on the damping at high frequencies.
Given the basic validity of Eqs. (39) and (40), we conclude

13(b) and 13(c) are examined closely, the voltage is found
to be nonzero at bias levels near the switching current i, .
Open circles show this voltage magnified by a factor of
1000. Thus, as anticipated, Figs. 13(b) and 13(c) show a
phase-diffusion branch that overlaps the quasiparticle
branch. They do not, however, evidence a finite slope at
the origin, one of the characteristics of the experimental
I-V curves that we hope to explain. For the chosen pa-
rameter set, such a slope develops only at higher temper-
atures where the I-V curve is not hysteretic, as illustrated
in Fig. 13(d) for I =1. At the end of this section we con-
sider a parameter set with reduced damping for which
the phase-diffusion branch has a finite slope at the origin
and also overlaps the quasiparticle branch. First, howev-
er, we focus on understanding the I-V curves shown in
Fig. 13, beginning with the noise-free system.

For the system of Fig. 2(b), we define the parameter i
to be the minimum bias for which the noise-free system
will reach P=P,„+2m., if it is initiated at $=((i,„with
an infinitesimal junction voltage (U =e) and no voltage on
the external capacitor (v& =0). As with the RCSJ model,
i defines the bias below which phase diffusion can occur
in the limit of low temperatures. That is, if escape from
the 0 state occurs with no extra energy, then the system
will switch to the 1 state if ~i~ &i but return to the 0
state if ~i ~

&i . Because the quasiparticle branch does
not extend to zero voltage in Fig. 13(a) we cannot argue
that i is equal to the zero-temperature return current i„p
as in the RCSJ model. Numerical evaluation of these two
parameters yields i =0.572 and i„p=0.343 for the case
considered in Fig. 13. The fact that i exceeds i„pis im-
portant because it implies a bias range i„o&~i ~

&i where
a phase-diffusion branch can overlap the quasiparticle
branch, at least in the limit of low temperature.

The relative values of i and i„p in the case of
frequency-dependent damping can be understood qualita-
tively by extending the formula i =i„o=4lrrQ for the
RCSJ model. Because the motion that defines i is essen-
tially a half cycle of the plasma oscillation, the relevant
quality factor is Q(co )—:Q =Q, and we might suppose
that

that i is greater than i„ofor the model of Fig. 2(b) be-
cause the damping is greater at the plasma frequency
than at low frequencies.

The consequences of the relation i & i„pare illustrated
most clearly by the topology of the basins of attraction in
state space. Although the state space is three dimension-
al in the case of frequency-dependent damping, the basins
of attraction are similar to those of the RCSJ model for
both ~i ~

& i„oand ~i
~
)i . That is, for ~i ~

& i„o,the only
attractors are the fixed points at potential minima, and
the basins of attraction of adjacent minima are contigu-
ous as in Fig. 9(a). Similarly, for ~i ~

)i, the basins of at-
traction are like those of Fig. 9(b), with fingers of the 1-
state basin separating the 0-state basins. However, for
i„o& ~i

~
&i, the basins of attraction are topologically

different from those of the RCSJ model. The basins for a
bias point, i =0.5, in this range are illustrated in Fig. 14
where we show a cross section of state space defined by
the vb =0 plane. This cross section includes both the 0-
state attraetors and the saddle points but does not inter-
sect the 1-state attractor, for which vb is everywhere
nonzero. Figure 14 does, however, include part of the 1-
state basin, indicated by stippling. The important topo-
logical feature of Fig. 14 is the fact that the basins of ad-
jacent 0-state attractors are contiguous even though there
is a coexisting 1-state attractor. Thus, for bias levels in
the range i„o& ~i ~

&i, thermal noise can produce transi-
tions between potential minima in which the state-space
trajectory does not enter the basin of the 1 state. This to-
pology opens the possibility of repeated noise-induced
events in which the system escapes from a potential
minimum and retraps in a nearby minimum without a
significant probability of switching to the 1 state.

For the situation shown in Fig. 14, a given 0-state at-
tractor is contiguous to its two neighboring 0-state at-
tractors and to the 1-state attractor. In this case, we can
define four different lifetimes: the mean times ~+ for es-

cape from the basin of a given potential minimum in the
+P and —

P directions, the mean time ro for escape from
the collective basin of the 0-state attractors to the basin
of the 1 state, and the mean time ij for escape from the
1-state basin to the collective 0-state basin. To obtain
phase diffusion in a hysteretic I-V curve we must have
7+ (cT'p and ~+ &&~,, such that transitions between po-
tential minima are much more probable than transitions
in either direction between the 1 state and the 0 state.
This condition allows overlap between a phase-diffusion
branch and the quasiparticle branch of the I-V curve.

The dynamics of noise-induced transitions between
basins of attraction having the topology of Fig. 14 are il-
lustrated in Fig. 15. This figure shows typical transitions
for selected points on the I Vcurve of Fig. 13-(c) where
there is a small overlap between the phase-dift'usion and
quasiparticle branches. At i =0.47, both branches are
stable on a time scale of 10 units, the time the bias is as-
sumed to dwell at a given value, and transitions between
branches were not observed. However, when biased on
the phase-difFusion branch, noise-induced transitions be-
tween potential minima occur roughly once in 10 time
units. An event of this type is shown in Fig. 15(a) where
we plot both the junction voltage v and the voltage across
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FIG. 14. State-space diagram for the model of Fig. 2(b} with Qo =5, Q, =2, p=0. 1, and i =0.5. A cross section is shown through
the plane Ub =0. The basin of the central 0-state attractor is crosshatched and that of the 1-state attractor is stippled.

the external capacitance vb. During most of the time in-
terval shown, the junction executes noise-induced plasma
oscillations about a potential minimum but, near
t'=1000, noise causes escape from the minimum initially
occupied, followed by retrapping in a minimum displaced
down the washboard by b,/=4'. During this phase-slip
event, the junction voltage approaches v&, the average
voltage of the quasiparticle branch, but the voltage on the
external capacitance is not significantly affected due to
the long time constant for charging Cb. Even though v

approaches v„the system remains within the collective
basin of the 0-state attractors during the phase-slip pro-
cess. This can be seen from Fig. 14, which shows that the
collective 0-state basin extends almost to v =1 when vb is
near 0. Thus, at i =0.47, phase slips can occur without
crossing the 1-state basin, and the probability of switch-
ing to the quasiparticle branch is small even though the
frequency of phase slips is high (r+ « rc).

At i =0.48 in Fig. 13(c), ro is approximately 10 time
units, and switching from the phase-diffusion branch to
the quasiparticle branch is probable during the assumed
dwell time. A switching event of this type is shown in
Fig. 15(b). The switching process begins with noise-
induced escape from a potential minimum, but additional
noise prevents the junction from retrapping in a nearby
minimum, and the process continues as the external ca-
pacitance is slowly charged to the average voltage of the
quasiparticle branch. When the switch is complete, the
voltage oscillation s are at the Joseph son frequency
coJ=2eV, /fi For p«1, t.he time constant for charging
C~ is approximately (Rz+R, )C„orQo/pQ, =625 in
normalized time, assuming the junction is an open cir-
cuit. Because the charging time is relatively long, the

junction has many opportunities to retrap in a potential
minimum before the switch to the voltage state is com-
plete, and, indeed, retrapping occurs much more fre-
quently than the switching event shown in Fig. 15(b).
Thus, the fact that ~+ &&~p, as required to observe phase
diffusion in a hysteretic junction, results in part from the
long time required to charge the external capacitor. At
i =0.48, however, ~p is itself as short as the dwell time,
and switching to the quasiparticle branch is probable.

The reverse switching process is illustrated at the bias
point i =0.46 in Fig. 13(c), where r, is approximately 10
tirn. e units and switching from the 1 state to the 0 state is
probable during the dwell time. A switching event of this
type is shown in Fig. 15(c). Here the junction voltage
switches rapidly from v& to 0 in a time on the order of
RJC or Qc =25 in our dimensionless system. With the
junction trapped in a potential minimum, the voltage on
the external capacitor then decays to 0 with a time con-
stant of R, Cb or Qo/p=250 time units. Thus, in con-
trast ta switching from the 0 to the 1 state, the reverse
process shows two distinct time constants: a short one
for the junction voltage and a long one far the voltage on
the external capacitor.

The dynamics of the switching processes shown in Fig.
15 give important clues to the lifetimes T+ ip and ~&.

General arguments show that escape from a basin of at-
traction induced by white Gaussian noise is thermally ac-
tivated in the limit of low temperatures. Thus, for low
temperatures, there exist activation energies E'+ E'p and
e, such that r =a exp(e+/I ), ~o=acexp(eo/1 ), and
~, =a, exp(e, /I ), where the prefactors a+, ao, and a,
are at most weakly dependent on temperature compared
to the exponential factors. From the dynamics of the
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phase-slip process shown in Fig. 1S(a) that determines r+,
we conclude that the external shunt plays only a minor
role. Because the time constant for charging Cb is much
longer than the duration of the phase-slip event, vb does
not change significantly during the event, and the energy
required to escape from a potential minimum is not
affected by the external shunt. Thus, the phase-slip prob-
lem reduces approximately to that of escape from a wash-
board potential of the form given by Eq. (8), and we anti-
cipate that

@~=Au+, (41)

as in the RCSJ model. The dynamics of the plasma oscil-
lations that build to create an escape event are, however,
affected by the external shunt, since Q(oh~ ) is determined
by the parallel combination of RJ and R, . This effect
modifies the prefactor a+ from that given by Eq. (12) for
the RCSJ model, as will be discussed in Sec. V.

(a) h=o.47
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FIG. 15. Voltages on the junction and external capacitance, U

and ub, as a function of time for noise-induced transitions in the
system of Fig. 2{b) with Qo=5, Q, =2, p=0. 1, and I =0.1.
Frame (a) shows a phase-slip event in which the junction phase
increases by 4m at i =0.47, frame (b) shows a transition from
the 0 state to the 1 state at i =0.48, and frame (c) shows a tran-
sition from the 1 state to the 0 state at i =0.46.

&h =
p Qo( ro} (42)

as for the RCSJ model. The prefactor a, , on the other
hand, probably differs from the RCSJ result of Eq. (14),
because, as will be discussed in Sec. VII, the damping at
the Josephson frequency is relevant to the trapping pro-
cess.

Although Eqs. (41} and (42) for e+ and eh have not
been fully verified, they correctly suggest how the model
parameters can be modified to produce I-V curves that
qualitatively match our experimental results. For the
case shown in Fig. 13, overlap between the phase-
diffusion and quasiparticle branches occurs only within
narrow ranges of both dc bias and temperature. The I-V
curves shown in Figs. 13(b) and 13(c) for I =0.08 and
I =0.1, are, in fact, near the ends of the temperature
range in which phase diffusion overlaps the quasiparticle
branch for a dwell time of 10 units. At I =0.05, only a
few phase-slip events are observed during the dwell time
at the switching bias i, and a phase-diffusion voltage is
essentially absent from the I-V curve. On the other
hand, at I =0.14, there is no bias point at which the life-
times ~0 and ~, are both greater than 10 units and the
I-V curve is nonhysteretic. Thus, for the parameter set
used in Fig. 13, phase diffusion overlaps the quasiparticle
branch for a temperature range that spans less than a fac-
tor of 3 and the overlap, i, —i„,is always smaller than i„
for I-V curves showing a significant phase-diffusion volt-
age. This situation contrasts with the experimental I-V
curves of Figs. 1 and 4 where the coexistence of phase
diffusion and hysteresis is robust, with i, &)i„overmore
than a factor of 3 in temperature. Moreover, the experi-
mental I-V curves display a finite slope at the origin, a
feature that is entirely absent from Fig. 13 in the temper-
ature range where the curves are hysteretic.

To obtain theoretical I-V curves with a finite slope at
the origin, the lifetime v+ at i =0 must be short enough
that many phase-slip events occur during the dwell time.
Given that r+ =a+exp(e+/1 ) and a+ is on the order of

In contrast to phase-slip events, the dynamics of
switching from the 0 state to the 1 state that determine 70
involve the external shunt in an essential way. Because
escape to the 1 state requires noise energy in addition to
that needed for escape from a potential minimum, we
must have E'o&E+ ~ However, the complexity of the es-
cape process, involving the possibility of retrapping over
the long time required to charge Cb, has prevented the
development of simple approximations for ao and E'o.

A much simpler situation results for switching from
the 1 state to the 0 state. As with phase-slip events, the
external shunt plays only a minor role in the process of
escape from the 1 state. In this process, the junction
phase is trapped at a potential minimum in a time much
shorter than that required to discharge the external ca-
pacitance, as shown in Fig. 15(c}. Thus, the energy that
must be absorbed by the noise source to stop motion
down the washboard includes only that stored in the
junction capacitance. On this basis, the activation energy
for the trapping process is expected to be on the order of
—,
' CV& or, in dimensionless notation,
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S Qo
et(i )=

z
—1

Qi

'2

(43)

from which it follows that Qo should be chosen much
greater than Q, to ensure hysteresis. This result confirms
the idea that overlap between the phase-difFusion and
quasiparticle branches results when the damping is much
greater at the plasma frequency than at low frequencies.

In selecting a parameter set that meets the condition

1/ro, r+ will be short provided that I is on the order of
or greater than e+. Since e+ =2 at i =0 according to Eqs.
(13) and (41), we require relatively high temperatures,
values of I on the order of 2, to obtain a finite slope at
the origin. As argued above, the resulting phase-diffusion
branch is expected to extend to bias levels no higher than
i . To obtain an overlapping quasiparticle branch, ~,
must be long compared to the dwell time at bias levels
below i . This condition translates into the minimum re-
quirement that the activation energy et be much larger
than I' at i =i C.ombining Eqs. (39), (40), and (42), we
obtain

et(i ) » I for I =2, we have chosen the case Qo =100,
Q, =10, and p=0. 1, for which e, (i ) is 65.6, as opposed
to 1.8 for the parameters of Fig. 13. Accurate numerical
evaluation of i and i„ofor this case yields 0.1267 and
0.0260, as compared with the values 0.1273 and 0.0127
obtained from Eqs. (39) and (40). These results confirm
the accuracy of Eq. (39) for i in the limit of large Q,
and show that Eq. (40} for i,o is no more than a rough ap-
proximation. I-V curves for this higher-Q case, shown in
Fig. 16, are much as anticipated. They show a large re-
gion of hysteresis between the phase-difFusion and quasi-
particle branches that persists over more than a factor of
4 variation in temperature. Most significantly, these
curves show a finite slope at the origin. Indeed, the
curves shown in Fig. 16 are qualitatively similar to the
experimental I-V characteristics of Figs. 1 and 4 in al-
most all respects, including the fact that the switching
current is much less than the ideal critical current. This
qualitative agreement suggests that the simple model of
Fig. 2(b} includes all of the basic elements necessary to
understand our experimental results. However, attempts
to obtain quantitative agreement between our experiment
and models of this type proved unsuccessful. In the next
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section we describe a more accurate model that provides
such quantitative agreement.

1.5

IV. EXPERIMENTAL MODEL

Our experiments used two microcircuit samples of the
type sketched in Fig. 3. Each microcircuit, fabricated on
a silicon substrate, included a small-area
Nb/NbO /Pb-In-Au edge junction and two Ni-Cr isola-
tion resistors. Experiments were performed in pumped
liquid helium over the temperature range from 1.27 to 4
K. A shielded cryoprobe and cold low-pass filters in the
dc leads were used to eliminate noise from the room-
temperature environment. In discussing the circuit
model for this experiment, we consider first the junction
and then the external loading.

The edge junctions of both samples measured approxi-
mately 0.1 by 1 pm and had nearly identical quasiparti-
cle tunneling characteristics. In particular, the current
rise at the gap voltage was approximately 70 nA for both
junctions (cf. Fig. 1). For this reason, the parameter
values of the junction model were assumed to be the same
for both samples. The chosen model consists of the four
circuit elements at the right side of Fig. 2(c): an ideal
Josephson element of critical current I0, a shunt capaci-
tance C, a voltage- and temperature-dependent resistive
shunt RJ, and a current source I„representing the
Johnson noise of RJ. Due to strong-coupling effects in
niobium and lead, Io is expected to be about 0.7 times
the current rise at the energy gap or about 50 nA. From
this nominal value for the critical current and the junc-
tion dimensions, its capacitance C is estimated to be
roughly 20 fF based on measurements of the specific ca-
pacitance of similar junctions. ' The junction's plasma
frequency is thus about 14 GHz.

Because the effects of interest here are sensitive to
damping, special attention was given to modeling the
temperature and voltage dependence of the quasiparticle
conductance represented by RJ. This conductance was
measured experimentally near zero voltage by suppress-
ing the Josephson current with a magnetic field. Typical
experimental results are shown by the solid lines in Fig.
17 for 2.9, 3.4, and 4 K, temperatures in the range for
which the damping due to quasiparticle conduction is
most important. As Fig. 17 shows, the quasiparticle
current decreases rapidly with temperature: the resis-
tance at the origin of the I-V curve increases from 170 to
580 kQ as the temperature decreases from 4 to 2.9 K.
This resistance is about 4 MQ at 2 K and rapidly ap-
proaches the 20 MQ dc resistance of the external load at
lower temperatures. Thus, the quasiparticle current is
most significant at temperatures above 2 K and need be
accurately modeled only at these higher temperatures.
Moreover, because the phase-diffusion branch is limited
to voltages below about 0.05 mV, where the quasiparticle
current is proportional to voltage, a simple resistor is an
adequate model far calculating phase-diffusion effects. In
this low-voltage region, we can fit the measured quasipar-
ticle current within a few percent for temperatures be-
tween 3 and 4 K using the expression,

Iq&
=G

&
V exp( E /kT ), —

C 1.0

"0.0 0.2 0.4 0.6 0.8

VOLTAGE V (mV)

1.0

FIG. 17. Quasiparticle current as a function of voltage at 2.9,
3.4, and 4 K. Solid lines plot the experimental result for sample

B obtained by suppressing the Josephson current with a magnet-

ic field. Dashed lines show the fit obtained with Eq. (45).

dI /1 V=(G, —Gz)sech ( V/Vo)+Gz, (46)

is the differential conductance of the quasiparticle curve,
which depends on the instantaneous voltage.

In modeling the external cricuit, we must account for
loading due both to the circuit that supplies the dc bias
and to the circuit that monitors the voltage. As Fig. 3
suggests, these two circuits are similar: each includes an
isolation resistor, a capacitance associated with the leads
to the room-temperature environment, and a terminating
resistor (either the internal impedance of the current
source or the input impedance of the voltage amplifier).
To simplify the model, we combine these two circuits into
a single circuit in which the isolation resistors, lead ca-
pacitances, and terminating resistors are replaced by

with 6, ' =6.76 kQ and E=1.1 meV. However, to ob-
tain accurate results for the return current, which in-
volves switching from the quasiparticle branch at volt-
ages up to 0.3 mV, we must account for the nonlinear re-
lation between I and V at higher voltages. For this
reason, we adopt the extended parametrization,

Iqz
= [(G

&

—G2 ) Votanh( V/Vo)+ Gz V)exp( E /kT ), —

(45)

with G2 '=61 kQ and V&=0. 15 mV. Equation (45)
reduces to Eq. (44) at low voltages and fits the experimen-
tal data within a few percent in this region. The fit at
higher voltages is less exact but captures the gross behav-
ior very well, as indicated in Fig. 17. In our Monte Carlo
simulations we used Eq. (45) to evaluate the quasiparticle
current based on the instantaneous junction voltage V.

In modeling the intrinsic noise of the junction, we in-
clude only the Johnson noise of the quasiparticle conduc-
tance. This noise is represented by the current source I„
in Fig. 2(c) which is taken to be a Gaussian random num-
ber generator with 0 mean and variance
(,I„)=2kTdI„/dV/bt in our simulations. Here b, t is
the time step used in integration and
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Q(co) = [2eIOC/AG (co)]' (47)

where 6 is the real part of the admittance shunting the
ideal Josephson element. This quality factor is plotted in
Fig. 18 as a function of frequency for the circuit models
representing samples A and B at a temperature of 2 K.
We consider first the case of sample A, for which various
critical frequencies are indicated at the top of the figure.
At frequencies below about 30 MHz, the parasitic capaci-
tance C, is an effective open and the circuit model
reduces essentially to that considered in Sec. III. In fact,
to the extent that Rb is much greater than RJ (in the
present case Rb =20 MQ and RJ =4 MQ), the shunt con-

their parallel combinations. In Fig. 2(c), these parallel
combinations are represented by R„Cb,and R&, respec-
tively. As we discuss presently, there is a distributed
parasitic capacitance associated with each isolation resis-
tor and for this reason R, is broken into M segments R„.
to allow the addition of M —1 intervening capacitors C„.
to ground. A separate current source I„,- is included to
account for the Johnson noise of each segment of the iso-
lation resistor. In our simulations these noise sources are
taken to be Gaussian random number generators with
zero mean and variance (I„;) =2kT/R„ht F.inally, the
model includes a voltage source V, which together with

Rb defines the bias current I.
Nominal values for R„Cb,and Rb were assigned on

the basis of direct measurements. For our apparatus the
lead capacitance Cb was approximately 10 pF and the
internal resistance of the current source Rb was 20 MQ
in all experiments. On the other hand, the isolation resis-
tance R„determined by the parallel combination of the
Ni-Cr resistors on the microcircuit, was different for the
two samples studied. For sample A, each resistor mea-
sured 4.5 nm thick by 1.5 pm wide by 1.5 mm long and
had a resistance of 300 kQ. The resistors of sample B
were similar to those of sample A but were one-third as
long and had one-third the resistance. Taken in parallel,
these Ni-Cr resistors yield isolation resistances of
R, =150 kQ for sample A and R, =50 kQ for sample B.

The distributed parasitic capacitance C, associated
with the isolation resistors was evaluated by calculating
the microwave impedance at the junction terminals due
to the antenna structure formed by one isolation resistor
and the ground wire. Computer simulations based on
Hallen's method, including all electromagnetic and re-
tardation effects, showed that the radiation resistance and
inductance of the isolation resistor are negligible in com-
parison to its resistance but that the distributed capaci-
tance between the isolation resistor and the ground wire
is significant at microwave frequencies. This capacitance
is uniformly distributed along the resistor and has a value
per unit length of approximately —,'(1+e)eo, where
a=11.8 is the dielectric constant of the silicon substrate.
When the capacitances of the two isolation resistors are
combined in parallel, the total parasitic capacitance C, of
sample A is 80 fF and that of sample 8 is 26.7 fF.

To understand the effect of the external loading in the
experimental circuit model, we again consider a
frequency-dependent quality factor defined by
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FIG. 18. Quality factor as a function of frequency for the
models representing sample A (solid line) and sample B (dashed
line) at a temperature of 2 K. The quasiparticle current is taken
in the limit of low voltage, and RJ, as defined by Eq. (44), is 4
MQ. Critical frequencies indicated at the top of the figure ap-

ply to sample A.

G(a) ) =QcoC, /2R, , (48)

which accurately predicts the quality factor plotted in
Fig. 18 at frequencies above 100 MHz. The transition be-
tween Eqs. (37) and (48) for the conductance occurs
roughly at the frequency co=2R, /R llC„where these two
expressions are equal, or 20 MHz in the present case.

The admittance of the ladder representing R, and C,

ductance in this low-frequency region is precisely that
given by Eq. (37). Thus, at frequencies below about 10
kHz, the quality factor is roughly determined by Rz
alone and, at frequencies between 100 kHz and 30 MHz,
it is determined by R~~=(Rz '+R, ') ', the parallel
combination of Rz and R, . According to Eq. (37), the
transition between these regions of constant Q begins at
co=+Rf/Rz/R, C» (20 kHz) and is basically complete
at co= 1/R, Cb (106 kHz}.

At frequencies above 30 MHz, the effect of the distri-
buted capacitance C, cannot be ignored and Eq. (37} is
not valid. In this regime, the shunt admittance is dom-
inated by conduction through some fraction of R, that is
shorted to ground through C, . Considered from the
junction's point of view, high-frequency currents propa-
gate down the resistance and capacitance ladder that
represents the isolation resistor only to the point where
the accumulated capacitance is sufficient to provide a re-
turn path. At higher frequencies, this distance is smaller
and hence the effective shunt resistance is smaller. This
effect explains why Q decreases monotonically with in-
creasing frequency above 30 MHz. Because only the por-
tion of the ladder closest to the junction is active at high
frequencies, we can compute its conductance by assuming
that the ladder is infinite in length. This strategy yields
the simple formula,
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also includes an imaginary part, equal to the real part
given by Eq. (48), that adds to the imaginary admittance
of the junction capacitance C. However„ in the limit of
high frequencies the contribution of the ladder to the
imaginary part of the admittance is small compared to
AC and, in the present case, the plasma frequency of the
junction is j.iven to a good approximation by
co =+2eIO/RC

The quality factor for sample B differs somewhat from
that of sample A because R, and C, are smaller by a fac-
tor of —,'. However, for frequencies below 10 kHz, where
the damping is determined by RJ, and for frequencies
above 300 MHz, where the damping is determined by a
fraction of R, close to the junction, the quality factor is
the same for both samples. As a consequence, features of
the I-V curve that depend only on the damping at zero
frequency or at the plasma frequency are the same in
both samples, as is discussed further in Secs. V and VII.

In calculating the quality factor plotted in Fig. 18, the
isolation resistance R, and its distributed capacitance C,
were broken into M = 1000 equal parts to ensure an accu-
rate representation of the external load at high frequen-
cies. However, a much more efficient representation of
this load is required to enable the extensive Monte Carlo
computations presented here. If R, and C, are divided
uniformly such that R„.=R, /M and C„=C,/M, as in
the computation of Q, then the discrete-coinponent
ladder is an accurate model for frequencies up to
1/R„C„=M/R, C, . By choosing M =1000, we ensure
that the ladder is accurate for frequencies up to 10 THz.
In our Monte Carlo simulations, on the other hand, it is
sufficient that the damping be accurately represented only
for frequencies below about 5 times the plasma frequen-
cy, or 70 GHz. This relaxed requirement reduces the
ladder to about 70 sections.

The ladder can be further simplified by noting that the
high-frequency oscillations of significance are generated
by the Josephson element and do not propagate very far
along the isolation resistor. Thus, portions of the ladder
far from the junction need not be modeled as accurately
as those near the junction. On this basis, the ladder was
reduced to five resistors and four capacitors with the
component values listed in Table II. The chosen resis-
tance values increase geometrically section by section as
one moves away from the junction and the total resis-
tance is equal to the measured 8, . The capacitor values
are taken as the geometric mean of the capacitances asso-
ciated with the neighboring resistor sections. %'ith the
time constant R,&C„ofthe first section selected to give a
cutoff frequency of about 70 GHz, the resulting ladder of
five resistors and four capacitors provides an adequate
representation of the isolation resistor and its distributed

capacitance, as determined by comparing the junction
dynamics with a fully accurate model. In this way, we
arrive at a model of the experiment that requires only
four additional state variables (the voltages on the capaci-
tors C„through C,4) beyond the three required for the
simple frequency-dependent model of Fig. 2(b). The rela-
tive simplicity of this circuit makes feasible the extensive
Monte Carlo simulations presented in the following sec-
tions.

Table II summarizes all parameter values used in our
simulation of the experiment. As this table reiterates, the
parameters used to describe samples A and B are identi-
cal, with the exception of those related to the isolation
resistors. Thus, the fact that agreement between simula-
tion and experiment spans both samples, as shown in Fig.
4, confirms the importance of accurately modeling the
external loading. Even more noteworthy, however, is the
fact that this agreement was obtained using the nominal
parameter values derived in this section without reference
to the phase-diffusion branch of the experimental I-V
characteristic.

V. PHASE-DIFFUSION RESISTANCE

The process of phase diffusion, which is modeled by the
Brownian motion of a particle in a tilted washboard po-
tential, gives rise to a finite voltage as the particle moves
down the washboard in fits and starts. For thermal ener-
gies kT comparable to the Josephson coupling energy EJ,
phase diffusion yields an I-V curve with a finite slope at
the origin in place of the usual zero-resistance branch.
The resistance Ro at the origin is an easily measured ex-
perimental parameter that can be used to quantify phase
diffusion in this temperature regime. Using Monte Carlo
simulations as a guide, we examine in this section the
physical processes that determine Ro and develop a sim-
ple formula for its evaluation.

The temperature dependence of Ro is shown in Fig. 19
for samples A and B. In this figure we plot ROT versus
1/T to facilitate comparison with theory. Experimental
results for Ro are plotted as circles and Monte Carlo re-
sults, obtained from average voltage values computed at
low dc bias, are plotted as squares connected by a solid
line to guide the eye. The agreement between experiment
and simulation evident in Fig. 19 is excellent in view of
the fact that only one circuit parameter, the critical
current Io, was adjusted to fit the experimental data and
the adjusted value is fully consistent with the current step
at the energy gap. Based on this agreement, we assume
in the following discussion that the detailed dynamics of
the phase-diffusion process are well represented by the
Monte Carlo simulations.

TABLE II. Nominal parameters used to model samples A and B in Monte Carlo simulations.

Samples
A and B

Io (nA)
50

C (fF)
20

Gl ' (kQ)
6.76

G~
' (kQ)

61.0
E (meV)

1.1
V (mV)

0.15
Rb (MQ)

20
Cb (pF)

10

R„(kO)
1.637
1.636

R,2 (kO)
4.535
3.257

R,3 (kQ)
12.56
6.485

R,4 (kQ)
34.81
12.91

R„(kO)
96.45
25.71

1.453
1.232

C,2 (fF)
4.026
2.454

C,3 (fF)
11.15
4.886

C,4 (fF)
30.90
9.730
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Two approximate analytic results for Ro are plotted by
dashed lines in Fig. 19. Both of these approximations are
based on a scenario suggested by Fig. 5 in which the sys-
tem spends significant periods of time trapped in a poten-
tial minimum but occasionally escapes and traverses one
or more wells before being retrapped. Applying the
Josephson relation V=(A/2e)dg/dt to this situation, we
obtain for the average voltage,

&N )&N, )(v)=, (49)

where w+ and ~ are the mean times for escape from a
potential minimum in the +P and —P directions and
( N+ ) and ( N ) are the mean numbers of wells
traversed after such escape events. In Fig. 19, the theory
corresponding to the line with the longer dashes makes
the conventional assumption, ' ' valid in the limit of
low temperature, that N+ =N = l. However, in the ex-
periment considered here, the temperature is high enough
that escape events frequently lead to a phase slip of
several revolutions. When such multiple-well phase-slip
events are accounted for, we obtain the curve plotted
with the shorter dashes in Fig. 19, which agrees well with
both the experiment and the Monte Carlo simulations.

The theoretical curves of Fig. 19 are derived by reduc-
ing the circuit of Fig. 2(c) to an approximate RCSJ mod-
el. This reduction is based on the observation that phase
diffusion involves motion almost exclusively at frequen-
cies near the plasma frequency. The dynamical processes

important to phase diffusion are the noise-induced plas-
ma oscillations that build to produce an escape event and
the Josephson oscillations that occur as the system
traverses the washboard potential before retrapping. Be-
cause the junction voltage remains small during the
period of phase slippage, these Josephson oscillations are
at a frequency close to co~ [cf. Figs. S and 15(a)]. Thus,
all of the dynamical effects relevant to phase diffusion
occur at frequencies near the plasma frequency. Because
the reactance at ~z contributed by the external capaci-
tors Cb and C, is, as noted in Sec. IV, small compared to
the junction capacitance, the only energy-storage ele-
ments important to the dynamics of phase diffusion are
the ideal Josephson element and the junction capacitance.
The external circuit does, however, determine the damp-
ing at the plasma frequency and to account for this we
take the resistance shunting the junction to be
R~—:1/G(co~ ). Since damping at other frequencies is not
important to phase diffusion, use of this frequency-
independent resistance is a good approximation. Thus,
we expect the dynamics of phase diffusion to be well
represented by a RCSJ model in which the critical
current and junction capacitance are chosen to be the
nominal values listed in Table II and the shunt resistance
1s Rp.

To evaluate E. for samples A and B, we note that the
plasma frequency is in a range for which Eq. (48) is valid.
Thus, R =+2R, /co C, and, because the resistance and

capacitance per unit length are the same for the isolation
resistors of both samples, R is 16.4 kA in both cases.
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FIG. 19. Product of resistance at the origin and temperature as a function of inverse temperature for (a) sample A and (b) sample

B. Experimental points are shown by circles and points obtained through Monte Carlo simulations are plotted as squares. The
Monte Carlo points are connected by a solid line as a guide to the eye. Two analytic approximations, Eqs. (51) and (65), are plotted as
dashed lines with long and short dashes, respectively.
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The corresponding quality factor is Q~=Q(to~)=28. 7.
Because all of the parameters entering our reduced model
are identical for samples A and 8, the model predicts that
the phase-difFusion resistance Ro will be the same for
both samples. This prediction is confirmed by Fig. 19,
which shows virtually identical results for the two sam-

ples in both the experiments and the simulations.
In developing the theoretical expressions for Ro plot-

ted in Fig. 19, we make extensive use of Monte Carlo
simulations to check intermediate results. The use of
simulations to determine quantities such as r+ and (N~ )
requires that we distinguish the time intervals during
which the system is trapped in a potential well from those
in which it is moving from well to well in the +P or —P
direction. That is, we need to assign all portions of a
Monte Carlo time record, such as that shown in Fig. 5, to
one of three system states: the 0 state (trapped in a well),
the + state (motion in the +P direction), or the —state
(motion in the —P direction). The way in which these as-
signinents are made defines the quantities rz and (N+ ).
Although inspection of Fig. 5 suggests that the 0, +, and
—states are distinct and well defined, they cannot be dis-
tinguished on the basis of the system's location in state
space. The relevant state-space diagram is one with a to-
pology like that of either Fig. 9(a) or Fig. 14 and,
throughout the process of phase diffusion, the system is
always found within the basin of one potential minimum
or another. However, reasonable state assignments can
be made if the history of the system is taken into account.
In particular, the following rules, defining transitions be-
tween the states, allow an unambiguous determination of
the system's state at all times.

(1) The system enters the + state from the 0 state when

P crosses the potential maximum located in the +P direc-
tion from the currently occupied minimum.

(2) The system enters the 0 state from the + state when
dgldt reverses sign.

An example in which these rules are applied to determine
the state of the system is shown in Fig. 20. In this figure,
unshaded regions correspond to time intervals in which
the junction is in the 0 state, with the phase oscillating
about a potential minimum, and shaded regions corre-
spond to intervals in which the junction is in the + state
or —state, with the phase slipping between minima. Al-
though our rules are to some extent arbitrary, they define
intervals in which the phase is trapped or slipping in a
useful fashion, consistent with intuition.

Our simplest analytic approximation for Ro assumes
that N+ =1 and requires only an estimate for the life-
times ~+ and ~ . Because the RCSJ model is being ap-
plied, we expect these lifetiines to be given by Eq. (12).
However, this equation was derived for a situation in
which the system is initialized with the phase near a po-
tential minimum, as in the switching experiments of Ful-
ton and Dunkleberger' where the dc bias is ramped from
0. As a result, the second form given by Eq. (12), valid at
higher temperatures, was developed to account for the
fact that states near the escape energy are initially unoc-
cupied. ' Because phase diffusion is a steady-state pro-

~ sx —(a)

r A~"~V
X~ -2X

+ 0 + 0 —0 + 0—

0.2

0 -0.2

TIME t (ns)

FIG. 20. Calculated time dependence of (a) the phase and (b)
the voltage of a junction in the phase-difFusion state correspond-
ing to the experimental situation shown in Fig. 1 for a dc bias of
I=0.5 nA. Shaded regions indicate time intervals during
which the junction is in the + state and unshaded regions corre-
spond to the 0 state.

cess, this form is not appropriate to our problem. How-
ever, the first form given by Eq. (12) derives from
transition-state theory which is based on the assumption
of a steady state. Thus, we expect to obtain a good ap-
proximation for the lifetimes relevant to phase diffusion
simply by extending the first form of Eq. (12) to cover the
entire temperature range. Restoring dimensions to this
equation and taking the limits Q )) 1 and i « 1 yields

2~
exp(b, u ~ /I )

co~(1 i )'~—

(50)

This formula is compared with the Monte Carlo results
for ~+ in Fig. 21 for a case corresponding to sample A at
zero dc bias. The Monte Carlo results are based on simu-
lations of the full circuit model shown in Fig. 2(c) over a
period of 20 ps. The lifetimes r+ and ~ are computed
as the total time spent in the 0 state divided by the num-
ber of escape events in the +P and —

tI) directions. The
results for v+ are plotted as circles and those for ~ are
plotted as squares. Since v+ and ~ should be equal to
zero bias, the small differences observed here are indica-
tive of statistical errors resulting from the use of a finite
averaging time. The Monte Carlo results are to be com-
pared with Eqs. (12) and (50) which are plotted in Fig. 21
as the dashed and solid lines, respectively. Although
both of these formulas are strictly valid at zero bias only
for I" &&2, there is good qualitative agreement between
the Monte Carlo simulations and Eq. (50) for tempera-
tures up to I =2. By contrast, Eq. (12) is in poor qualita-
tive agreement with the simulations over the temperature
range 4n/Q & I & 2 wh.ere the formula assumes a special
distribution of junction states rather than the appropriate
steady-state distribution. Figure 21 thus confirms the
legitimacy of using the transition-state theory to describe
phase diffusion over the entire temperature range I «2
and shows that it is accurate within roughly a factor of 2
even for I =2.

Combining Eqs. (49) and (50) with the assumption that
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FIG. 22. Energy vs phase for an idealized escape and retrap-
ping event. Frame (a) shows the complete event and frame (b)
shows the balance of energy for a single Josephson oscillation
during retrapping.

N+ =1, we obtain an explicit expression for the average
voltage as a function of current that is valid in the limit
of low temperature. ' ' Evaluating d( V) IdI at I=0
for this expression yields the approximate phase-diffusion
resistance,

2m.RpRo= exp( —2/I ) (I"«2, Q»1) .
P

(51)

This formula, plotted by long dashes, is compared with
experiment and simulation for samples A and B in Fig.
19. Although the simulated values of Ro tend toward
those given by Eq. (51) at the lowest temperatures plot-
ted, the discrepancy over the experimental temperature
range is typically greater than an order of magnitude.
The diSculty with Eq. (51) is that it does not account of
the prevalence of multiple-well phase-slip events at the
relatively high temperatures of the experiment.

In the remainder of this section, we consider the prob-
lem of estimating the average number of wells traversed
in a phase-slip event using the RCSJ model. Our ap-
proach to this problem is based on an idealized trajecto-
ry, shown in Fig. 22(a), in which a phase-slip event is bro-
ken into separate escape and retrapping segments. The
escape segment ends when the noise-induced plasma os-
cillations within the initial well build to the point that the
system crosses a potential rnaxirnurn. When escape
occurs at P=P,„,the energy of the system will exceed
the minimum required for escape by an amount E, that
varies from event to event depending on the thermal

E„+,=F.„+2miEJ Ed (E„), — (52)

where 2mE is the difference in potential energy between
one maximum and the next [cf. Eq. (8)] and Ed(E„)is
the energy dissipated in traversing the nth well. Equa-
tion (52) is illustrated graphically in Fig. 22(b). In princi-

noise. In contrast, the retrapping segment of our ideal-
ized event is assumed to occur in the absence of noise.
Thus, the number of wells traversed is determined entire-
ly by the escape energy E, and the dynamics of the
noise-free system. Estimates of (N+ ) based on this
idealized trajectory assume that for a given E, the num-

ber of wells traversed during the retrapping process is, on
average, unaffected by thermal noise. To calculate
(N+ ), we must determine both the distribution of escape
energies E, produced during the escape segment and the
number of wells traversed during the retrapping segment
for a given E, . The latter problem is considered first.

Taking the points P, „

to be the boundaries between
wells of different index n, we define N+ to be the
difference in index between the starting well and the well
in which the system retraps. Because the system neces-
sarily reaches a neighboring well after an escape event,
N+ can never be less than 1. The number of additional
wells traversed depends on the initia1 escape energy and
the rate of energy loss in moving from well to well. IfE„
is the extra energy of the system at the point it enters the
n th well and motion is in the +P direction, then conser-
vation of energy requires that
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pie, the total number of wells traversed for a given E, can
be determined by iterative application of Eq. (52) to find
the well in which E„falls below 0 and retrapping occurs.
However, to obtain a simple analytic formula, we convert
this difference equation to a differential equation,

E =2m.iEJ Ed—(E ),
dn

(53}

E
1

N+ =1+ dE
o E~(E)+ 2miEJ

(54)

In this equation, the 1 accounts for the inevitable slip-
page of one well and the integral approximates the addi-
tional wells traversed.

To obtain an explicit formula for N+ from Eq. (54), we
must evaluate Ed(E), the energy dissipated in the shunt
resistance R while traversing a single well, given that the
well is entered with an extra energy E. By definition, Ed
is given by

t

Ed(E) = f V'dr
R o

fg &max+

2eR
(55}

where t is the time required to traverse the well and the
second form is obtained using the Josephson relation, Eq.
(4}. Because we are interested primarily in bias levels
near zero and low levels of dissipation, a useful estimate
of Ed is obtained by approximating the voltage waveform
with that for zero bias and zero dissipation. In this case,
energy conservation implies that

,'CV =E+EJ—(1+cosP),

and the energy dissipated in traversing one well is

Ed(E)= &2/C f QE+E~(1+cosP)dP
2eR 7r

(56)

by assuming that n is a continuous variable. Solving Eq.
(53} and its companion for motion in the —P direction
yields an approximate equation for the total number of
wells traversed while the energy decays from E, to 0,

noise that produces the escape events. To obtain a rough
estimate of this distribution we consider the case of zero
dc bias and restrict our attention to a set of idealized es-
cape trajectories. In particular, we assume that escape
occurs after a half oscillation within the initial well that
begins at g = n.—with V =0 and ends at P =m with
V =+2E, /C. If we further assume that the eff'ect of the
noise current I„(t)can be replaced by its average value I„
over the interval t required to traverse the well, then the
escape energy can be written as

E, =2m.EJI„/Io—Ed(0) (E, &0} . (59)

In this equation the first term accounts for the energy im-

parted to the system by the noise source over the half os-
cillation leading to escape and the second term approxi-
mates the damping losses over this half oscillation. The
condition in parentheses indicates that Eq. (59) is valid
only if it predicts a positive escape energy. Using Eq. (57)
to evaluate E&(0) yields

Ee =2~EJ(In I )/ID (In &Im ) (60}

where I =4Io /re is the minimum average noise
current required for escape. Because I„represents the
Johnson noise of the resistance Rz, the probability of an
average noise current I„overan interval t is

P(I„)= —exp( I„/2o )—,&Ho

where the variance cr is

2kT
R t~

(61)

(62)

kTNp
CT (63)

As a rough estimate for the time t required to complete
a half oscillation, we take t =2m. /co~. This estimate is
reasonable because half of a small-amplitude plasma os-
cillation requires a time of n/co and la. rge-amplitude os-
cillations require longer times. Using t =2m/co, which
is roughly confirmed by Monte Carlo simulations, we ob-
tain

8EJ
[1+(n l8 )E/E ]' (57) Taken together, Eqs. (60), (61), and (63) completely

specify the distribution of escape energies. In principle,
these equations could be combined with Eq. (58) to com-
pute the average of N+ over escape energies. However,
the resulting expression is sufficiently complex that we
consider instead the rough approximation ( N+ (E, ) )
=N+((E, ) ). This approximation is accurate in the lim-

it E, &&E. for which N+ increases linearly with E,.
Evaluation of the average escape energy (E, ) from Eqs.
(60), (61), and (63}is straightforward and yields

Here, in the final step, the integral is approximated by a
closed form that is exact for E =0 and differs from the
accurate value by no more than 3%%uo for E)0. Combin-
ing Eqs. (54) and (57) yields

iQ Ql+(m l8)E, /EJ T(n/4)ig~+ 'ln2' 1+(n/4}i'. f (I„I)exp( I„/2o )dI„——
m

f exp( I
„

/2o ~)dI„—
m

2nEJ
I(58)

2Q~
N+ = 1+ [ [1+(m /8 )E, /EJ ]' ~ 1]—

Thus, we arrive at an approximate formula for the num-
ber of wells slipped for a given escape energy.

The distribution of escape energies is dependent on the

exp( —z )

v'~g z erfc(z)
(64)
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where erfc is the complementary error function and
z =+8/mQ~ I . ~e compare this result with Monte Car-
lo simulations in Fig. 23, which shows the average escape
energy as a function of temperature for parameters corre-
sponding to sample A at zero dc bias. Although Eq. (64},
plotted as a solid hne, falls significantly below the Monte
Carlo results, plotted as circles, the two curves are quah-
tatively sifnilar and appear to approach each other in the
limit of low temperature.

As a check on these results for the average escape ener-

gy, we note that the thermal energy kT, plotted as a
dashed line in Fig. 23, is an upper bound on (E, ). This
bound is established by a detailed calculation, not
presented here, of the average thermal energy of an en-
semble of particles in an untilted washboard potential. If
we measure the particle energies E using the potential
maximum as a zero of energy, then the average thermal
energy (E, ) of those particles with E )0 is always be-
tween —,'kT and kT and approaches kT in the limit of low

temperature. Thus, kT is an upper bound on the average
energy (E, ) of particles above the potential maximum
under the condition of thermal equilibrium. Because par-
ticles just escaping from a well are not fully thermalized,
the average escape energy (E, ) is necessarily less (E, )
and is also bounded by kT The f.act that (E, ) is
significantly less than kT at the higher temperatures in
Fig. 23 is consistent with this picture since complete
thermalization at high temperatures cannot be expected
to occur in the time required to traverse a single well. In
the low-temperature limit, where thermalization should
occur more quickly, both the Monte Carlo and analytic

results for (E, ) appear to approach kr. However, the
low-temperature asymptote of Eq. (64) is actually
(m/2}kT, so this equation marginally violates the kT
bound on (E, ). In spite of this inconsistency, Eq. (64) is
roughly accurate and provides a useful estimate of the
average escape energy over the range of temperatures of
interest here.

The estimate of (N+ ) resulting from the approxima-
tion (N+(E, ))=N+((E, ) } combined with Eqs. (58}and
(64} is compared with Monte Carlo simulations in Figs.
24 and 25. Figure 24 shows (N+ ) as a function of tem-
perature for parameters corresponding to sample A at
zero dc bias. The Monte Carlo results for (N+ ) and
(N ), plotted by circles and squares, respectively,
should be identical at zero bias but differ slightly in Fig.
24 due to the finite averaging time. The temperature
dependence of the analytic result for (N+ ), plotted by a
solid line, is in good agreement with the simulations.
Somewhat less accuracy is apparent in the bias depen-
dence of Eqs. (58}and (64},as illustrated in Fig. 25. This
figure shows (N+ ) and (N ) as a function of dc bias
for a temperature of 2 K. Although the analytic and
Monte Carlo results for (N+ ) agree well in tnagnitude
near I =0, the derivatives d(N+)/dI, on which the
resistance Ro is critically dependent, di8'er by roughly a
factor of 2. Thus, our analytic result, while in good qual-
itative agreement with the simulations, is only roughly
correct in quantitative terms.

Based on our analytic results for (N+ ) and 7.+, Eq.
(49} can be used to estimate the average phase-diffusion
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FIG. 23. Average escape energy as a function of temperature
for parameters corresponding to sample A at zero dc bias. The
results of Monte Carlo calculations based on the full circuit
model are plotted as circles, with each circle representing the
average escape energy for all phase-slip events in a 20-ps period.
Our approximate analytic result for (E, } given by Eq. (64} is
plotted as a solid line and, for reference, kT is plotted as a
dashed line.

FIG. 24. Average number of wells traversed in a phase-slip
event as a function of temperature for parameters correspond-
ing to sample A at zero bias. The results of Monte Carlo simu-
lations based on the full circuit model show the average number
of wells slipped in the +P and —P directions, plotted as circles
and squares, respectively, for all phase-slip events in a 20-ps
period. The solid line shows the approximation
(N+ (E, ) ) =N+ ( (E, }) evaluated using Eqs. (58) and (64).



M MARTINISR I,. KA„ZAND J&HN9928

6

Vl

LU
4

0

z
U

2

I

0.6 0.8
I

0.2 0.4
BIAci I (nA)

o.o

in a phase-slipr of wells traversed in a p~ g
f dc bias for parame eas a function o

nte Carlo simu a i
el show th ve ae s aenume

les and

0
— '

1o«

evaluated using Eqs.
100

o

es and aret »gh temperaturedetermining Ro
(65). Indeed, t

ortant in e
for by Eq

arlo
bl well accounte;th

our Monte C
reasona y

5
'

comparison w
'

tempera-
of Eq (6

er the enttre
accuracy o q

k bly good over
'

h number
ions is remar a

onsidering t e
mulatio . ]9, especially co

derivation-
n e of Fig, e

entered its eri

stimate
r in our

estim —
(65) captures

ell hase-shp e"e '

65), we comparAs further veridic o
RCSJ model. Sine

~ 'th results for the
' of the RCSJ mode u-

dtrectly w' .
d „ the ba»s o

„dso„lyon
an d (65) were derive

se diffusion dePention that phase
e can be applied

der the assump '
a frequency, they "

Q

at the plasma
'

R =RJ d P

the damping
1 by taking ~

26 by the
to this mode

are P otted in Figformulas for Ro
1, for the case Q ==5.

These o
'd lines, respective y

C rlo simula-This ftgur
1 ttedbycircle» a

1 plotted byVollmer an
e be]ieved to e

results o
he Monte ar

nd serve as a
C rlo points are

asis of
squares. T"

f the circles a
1 1-well

the extent 0
lects mu tip c-

rate with» t
(51), which neg

te Carlo
resu ts

th
'

creasing ternthat declines w'

resista

2
p

Rz = exp-( —2ll ) 1+
Q, r

~'(E, )
1+

'I. ~'(E,
+ ln 1+

4m

ect ofbias, including the eFec
0 hase-slip events.ult pie-wd p

f d(V)ldI at = '
the p alation o

nce, g 10

LLI

Lh
Vl

K

(65)

ated using Eq. (64).od to be evalu(E ) is understoo
. (51) in the limit od toE.

multiple w p
h 1

te peratu

hem eratures o our
1 events included in . a

Kth h h tlong dashe .

30 hile Eq. (6
h 16 %e conclude t ator of 1. .

10-3
10 10O

TEMP ERATU RE

10

e as a function of tempera-
ltb d'"Q= .ture for the R

an f. 17) obtained yand Risk (R
e o - e uation in the lim

o oil er an

b dashed andd (65) 1o d bby squares. ua io
solid lines, respectively.



42 NOISE-AFFECTED I-V CURVES IN SMALL HYSTERETIC. . . 9929

Equation (65), which accounts for multiple-well phase
slips, is much more accurate and differs from the Monte
Carlo result by no more than 40/o for temperatures up to
I =10. However, Eq. (65) fails qualitatively for tempera-
tures above I =4.4 in the sense that it predicts values of
Ro that exceed RJ, an upper bound that should be ap-
proached only in the limit of high temperature. In spite
of this discrepancy, Eq. (65) is accurate enough to pro-
vide a useful estimate of the phase-diffusion resistance for
the RCSJ model.

In this section we have shown that multiple-well
phase-slip events are an essential element of phase
diffusion at high temperatures. Taking multiple-well
events into account, we have developed a simple analytic
estimate for the phase-diffusion resistance and shown that
it agrees well with both experimental and Monte Carlo
results. This agreement, obtained for a situation in which
the damping is highly frequency dependent, justifies the
assumption underlying our analysis that phase diffusion
depends only on the damping at frequencies near the
plasma frequency. Considering the converse of this rela-
tionship suggests that measurements of the phase-
diffusion resistance might be used to estimate the effective
shunt resistance at the plasma frequency in cases where

Ip, C, and T are otherwise known. Our analytic result for
Rp could be particularly useful in this regard because al-
ternative methods of estimation, such as those based on
the Fokker-Planck equation or Monte Carlo simulations,
are computationally intensive. Thus, Eq. (65) is a poten-
tially valuable tool in the interpretation of the phase-
diffusion branch in experimentally measured I-V curves.

VI. SWITCHING CURRENT

The switching current I, is the dc bias at which a junc-
tion switches from the zero-voltage branch or the phase-
diffusion branch of a hysteretic I-V curve to the quasipar-
ticle branch. In the absence of noise, the switching
current is equal to the ideal critical current I0. In the
presence of noise, switching generally occurs before the
bias reaches Io at a point that varies from trial to trial.
Thus, a unique value can be assigned to I, only if we
define it as an average of some type. In Sec. II, for exam-
ple, we defined I, to be the bias below which half of all
switching events occur on average when the bias is
ramped from zero at a constant slew rate ~dI/dt~. Al-
though we will generally be less precise in defining I, in
this section, it is important to keep in mind that noise-
induced switching is a statistical event and that the aver-
age switch point I, depends on the slew rate in the case of
experimental measurements and the dwell time in the
case of simulations at fixed bias levels.

Experimental values of I, for samples A and B are
plotted as a function of temperature in Fig. 27. In our
experiments, I-V curves were recorded on an J-F plotter
over a period on the order of 1 min and the measured
switching current was virtually identical from trial to tri-
al. For both samples, the switching current was roughly
2' of the ideal critical current over the temperature
range from 1.27+4.0 K. As discussed by Akoh et al. '

and Iansiti et al. , the observation of a switching current
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FIG. 27. Switching current as a function of temperature for
samples A and B. Circles show experimental results and verti-
cal bars show Monte Carlo results based on the circuit model of
Fig. 2(c). The tops and bottoms of these bars indicate bias
points at which switching did and did not occur, respectively,
for a dwell time of 40 ps. For reference, the bias levels I and

4IO IRAQ~ are shown by solid an. d dashed lines.

with small statistical variation that is also a small frac-
tion of Ip is inconsistent with the predictions of the RCSJ
model. For noise levels high enough to cause switching
near zero bias, the RCSJ model predicts a large statistical
variation in the switch point. Thus, it was known from
the outset that our experimental results could not be ex-
plained by the simple RCSJ model.

The circuit model of Fig. 2(c) does, however, provide a
satisfactory explanation of our experiment. Monte Carlo
estimates of the switching current based on this model
are shown in Fig. 27 by vertical bars. The top of each bar
indicates a bias level at which the junction switched from
the phase-diffusion branch in a time less than 40 ps while
the bottom indicates a bias level at which the junction
remained on this branch for a period greater than 40 ps.
As Fig. 27 shows, the agreement between simulation and
experiment is excellent for both samples over the entire
temperature range. Again, we stress that this agreement
results for an entirely nominal set of circuit parameters.
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Our simulations also agree with experiment in that they
show little variation in the switching current from trial to
trial. Using a 40-ps dwell time, we found no bias points
above the tops of the vertical bars shown in Fig. 27 ~here
switching failed to occur and no bias points below the
bottoms of the vertical bars where switching occurred.
Moreover, the Monte Carlo switching levels do not de-
pend strongly on the dwell time for times greater than
about 10 ps. In extending the dwell time from 10 to 20
p,s, only marginal changes were noted in the switch
points and, in the further extension from 20 to 40 ps,
most switch points did not change within the 0.05-nA
resolution of our calculation. This insensitivity to dwell
time explains why the Monte Carlo results for 40 }Lts are
in good agreement with experiments in which the
effective dwell time is orders of magnitude longer.

The agreement between experiment and simulation evi-
dent in Fig. 27 assures us that the circuit model of Fig.
2(c) includes all the elements necessary to explain the
switching current in junctions that display phase
diffusion. The Monte Carlo results do not, however, tell
us which elements most directly affect I, . In Sec. III, we
argued that phase diffusion is unlikely to be observed in
junctions for which I, exceeds I, and we will show in
this section that I sets the basic current scale for
switching from the phase-diffusion branch. By definition,
I is the minimum bias for which a junction will switch
to the quasiparticle curve in the absence of noise if it is
initialized at a potential maximum with an infinitesimal
junction voltage and no voltage on the external capaci-
tors. This bias level is significant because it defines the
nature of the state-space topology at the saddle point,
where escape from a potential well is most likely to occur
in the limit of low temperature. For I &I the basins of
attraction for neighboring wells are contiguous at the
saddle point, as in Figs. 9(a} and 14, but for I &I the
basin of the 1 state intervenes between the basins of
neighboring wells, as in Fig. 9(b). Thus, at bias points
above I, thermally induced escape from a potential well
is likely to cause a switch to the quasiparticle branch
while, at bias points below I, escape will more probably
be followed by retrapping.

The bias level I, calculated from its definition for the
circuit model of Fig. 2(c), is plotted as a solid line in Fig.
27. Because the results for parameters corresponding to
samples A and B are nearly identical, only a single curve
is drawn for I . Although we have argued that I, should
scale with I, Fig. 27 shows that I is at best a rough ap-
proximation to I, . In the data shown here, I exceeds I,
by as much as a factor of 4 and I is nearly the same for
the two samples, while I, is distinctly sample dependent.
Nonetheless, I does increase with temperature above 2
K in a way that mimics a rise in I, observed for both
samples. The fact that I, increases with temperature is
surprising since the increased noise at higher tempera-
tures usually leads to reduced switching currents, as not-
ed in Sec. II. Although the calculation of I does not in-
volve noise, it does involve the quasiparticle resistance
which decreases with temperature. Thus, assuming that
I, scales with I, the observed rise in I, with increasing

temperature can be attributed to a decrease in the quasi-
particle resistance.

Further insight into this situation is obtained by con-
sidering the estimate I =4Io/m. Q suggested in Sec. III.
In evaluating the quality factor at the plasma frequency,

Qz
——R (2eIOC/A')'~, we take the shunt resistance to be

the parallel combination of the external conductance as-
sociated with the isolation resistor, Eq. (48}, and the
quasiparticle conductance at low voltages, Eq. (44),

R =[(co C, /2R, )'~ +G, exp( E/k—T)] (66)

Although the quasiparticle conductance is much smaller
than that of the isolation resistor and was neglected in
Sec. V, it represents an important correction here because
it accounts entirely for the temperature dependence of
Q . The quantity 4IO/n. Q, evaluated using Eq. (66}, is

plotted as a dashed line in Fig. 27. While 4IO/n. Q ap-
proximates I only roughly in magnitude, its tempera-
ture dependence is nearly identical with that of I . Nu-
merical equivalence aside, the approximation
I =4IO/nQ& is valuable because it connects I, directly
with the quasiparticle resistance. If I, scales as I which
scales as 1/R, then the switching current will be sensi-

tive to the quasiparticle resistance when this resistance is
comparable to or smaller than the external shunting resis-
tance at the plasma frequency. For temperatures below 2
K, the quasiparticle resistance is much higher than the
16.4 kQ resistance presented by the external shunt at the
plasma frequency and I is nearly constant. As the tem-
perature approaches 4 K, however, the quasiparticle
resistance drops to 164 kQ, decreasing the quality factor
and raising I slightly. In physical terms, the increased
damping at higher temperatures stabilizes the phase-
diffusion state and allows it to persist at higher bias levels
in spite of the increased noise. A similar explanation for
an observed increase in switching current with tempera-
ture was previously proposed by Akoh et al. ' and Iansiti
et al. ''

As these arguments show, I can be a useful reference
point for understanding the switching current even
though it does not accurately estimate I, . In general,
however, I tends to overestimate the switching current,
as illustrated in Fig. 27. By definition, I is the
minimum bias at which escape from a potential well

through the saddle point causes switching to the quasi-
particle branch. That is, I applies to a situation in

which the potential maximum is reached with no voltage
on the junction or the external capacitance, as would
occur in the limit of low temperature. However, as dis-
cussed in Sec. V, the junction voltage at the point of es-
cape can be significant at the relatively high temperatures
of interest here. In addition, phase diffusion leads to an
average junction voltage at the switching bias which also
appears on the external capacitors. Because I neglects
the energy stored in the junction and the external capaci-
tors at the point of escape, it usually overestimates the dc
bias required for a switch to the quasiparticle branch.

Unfortunately, the energy-storage effects that reduce
the switching current below I are complicated in the
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FIG. 28. Switching current as a function of temperature for
the circuit of Fig. 2(b) with Q0=100, Q, =10, and p=0. 1.
Vertical bars show the results of Monte Carlo simulations, with
the bottom of the bar indicating the highest bias point at which
switching is not observed during a time of 10 units and the top
of the bar indicating the lowest bias at which switching is ob-
served within this time. Circles show i„the threshold for
switching estimated on the basis of Monte Carlo averages for
junction and external capacitor voltages at the point of escape.
Equation (68) is plotted as a solid line.

case of the circuit model that describes our experiment.
We can, however, gain further insight into these effects
using the simple model with frequency-dependent damp-
ing shown in Fig. 2(b). In particular, we consider the
case Qo=100, Q, =10, and p=0. 1 for which noise-
affected I-V curves are shown in Fig. 16. The normalized
switching current determined for this case by Monte Car-
lo simulations is plotted as a function of temperature in
Fig. 28. The Monte Carlo results are shown by vertical
bars which define the bias range where switching is likely
for a dwell time of 10 units. In this case, the junction
resistance is independent of temperature, so i is a con-
stant and i, decreases monotonically with increasing tem-
perature. We are interested primarily in temperatures be-
tween I =0.5 and 4 where phase-diffusion gives the I-V
curve a finite slope at the origin. In this temperature
range, the Monte Carlo results for i, are generally below
i =0.1267 although the switching current reaches this
level at I =0.5. The switching current continues to in-
crease as the temperature is reduced below I =0.5 but
phase-diffusion effects are much less important at these
low temperatures and at I =0. 1 the occurrence of even a
single phase slip is unlikely within a dwell time of 10
units for all bias points less than i . Thus, at tempera-
tures below I =0.1, phase diffusion is absent from the I-
V curve and we expect to observe switching directly from
the zero-voltage state as in the experiments of Fulton and
Dunkleberger. '

Restricting our attention to temperatures greater than
I =0.5, where phase diffusion is fully developed, we now
consider how the threshold current for switching to the
quasiparticle branch is affected by the initial charge on
the junction capacitance C and the external capacitance
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FIG. 29. Threshold current for the circuit model of Fig. 2(b)
as a function of initial voltage v, on the junction capacitor for
various values of the initial voltage Ub, on the external capaci-
tor. The circuit parameters are Q0=100, Q, =10, and p=0. 1.

Cb. Let us define the threshold current i, (u„vb,) to be
the minimum bias at which switching occurs in the
noise-free system when the junction is initialized at a po-
tential maximum with a voltage v, on C and a voltage Ub,

on Cb. This threshold can be evaluated for a given U, and

Ub, by direct numerical simulation of the circuit dynam-

ics. Numerical results for i, are plotted as a function of
U, for several values of Ub, in Fig. 29. By definition

i, (0 0) is equal to i and this limit is approached by the

Ub, =0 curve of Fig. 29. Positive values of U, and Ub, give
the system an initial boost toward the quasiparticle
branch and thus reduce i, below i . However, because
the quasiparticle branch does not exist for bias levels
below the zero-temperature return current i„p=0.0260, i,
can never be less than this value. Thus, the threshold
current decreases monotonically with both U, and Ub, but
is restricted to the range i„p(i, &i

Given a method for evaluating the voltages U, and Ub,

at the point of escape, the threshold current can be used

to estimate the switching current. For an accurate evalu-
ation of U, and vb„we turn first to our Monte Carlo
simulations. Because a single escape event can cause a
switch to the quasiparticle branch, we should, in applying
i, to estimate i„adopt the maximum values of v, and vb,
that are likely to occur during the dwell time. For sim-
plicity, however, we use instead the average values ( v, )
and ( U„,), with the anticipation that the computed
threshold will overestimate the switching current. Be-
cause ( v, ) and ( vb, ) depend on the dc bias, a self-
consistent value for i, can be determined only by trial and
error. That is, to find the threshold we must search for a
dc bias i such that i, (( )U, (v&, ))=i when (U, ) and

( Ub, ) correspond to the Monte Carlo averages for the
given i. Threshold currents determined in this way are
plotted as circles in Fig. 28. These values for i, are in
rough quantitative agreement with the i, values derived
from the full Monte Carlo simulations. The fact that i,
provides a much better estimate of i, than i provides,
shows that the energy stored in the capacitors C and Cb
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at the point of escape is important in determining the bias
level at which switching to the quasiparticle branch be-
comes likely.

In using i, to estimate i„wehave assumed that the
junction is likely to switch to the quasiparticle branch if
the system enters the basin of the 1-state attractor. If
this assumption were correct, then i, would be an upper
bound on the switching current. However, the approxi-
mate values of i, plotted as circles in Fig. 28 are less than
i, even though these values are overestimates. Thus, our
assumption that entering the basin of the 1-state attractor
makes switching likely is not always correct. In fact, for
the bias point i =0.08 just below i, at I =2, the system
must enter the 1-state basin in over half of the 23000 es-
cape events recorded during the dwell time, since the
averages (U, ) and (v„,) are well above the values of U,

and Ub, required for switching in the noise-free system.
Thus, at bias points slightly above i„niosecan drive the
system into the 1-state basin thousands of times without
causing a switch to the quasiparticle branch.

This behavior can be understood in terms of the cliff-
edge scenario mentioned in $ec. II and the switching dy-
namics illustrated in Figs. 15(b) and 15(c). As we noted
in Sec. II, at bias points just above that for which switch-
ing is possible in the noise-free system, i, in the present
case, the switching trajectory hugs the boundaries of the
0-state attractors during the first oscillations down the
washboard potential. During this initial period, a small
noise pulse can easily cause the system to retrap and
prevent the switch to the quasiparticle branch that would
have occurred in the absence of noise. Although it might
be argued that noise is just as likely to aid the advance to-
ward the 1-state attractor as to cause retrapping, the non-
linearity of the system creates an asymmetry that favors
retrapping. The asymmetry results because a switch to
the 1-state requires charging the large external capaci-
tance Cb while retrapping requires only that the relative-

ly small junction capacitance C be discharged. The effect
of this asymmetry can be seen by comparing Figs. 15(b)
and 15(c). In the switch from the phase-diffusion branch
to the quasiparticle branch, shown in Fig. 15(b), the aver-
age junction voltage rises only very slowly as the external
capacitance is charged. In the return process, shown in

Fig. 15(c), the junction voltage drops suddenly to zero at
the time of retrapping and remains near zero over the
much longer time required to discharge the external ca-
pacitance. Thus, in the period just after escape, a noise
pulse that would have little effect in advancing the system
toward the 1-state attractor can, if it has the opposite
sign, discharge the junction capacitance and produce a
retrapping event that completely stops progress toward
the 1 state. Because the time required to charge Cb is

long, there is ample opportunity for retrapping to occur
and the probability of retrapping can be nearly 1 even for
bias levels somewhat above i, . Indeed, as Fig. 28 shows,
the bias level may need to exceed i, by as much as 50%%uo

for retrapping to fail once in 10 escape events.
In this discussion, we have identified three corrections,

all due to thermal noise, that must be applied to i to
produce an accurate estimate of i, for the phase-diffusion
branch. First, noise typically supplies more energy than

is required for escape and this extra energy reduces the
bias required for switching. Second, noise causes phase
diffusion which charges the external capacitance and fur-
ther reduces the switching bias. Third, noise produces
retrapping after escape has occurred and this effect in-
cresses the switching bias. Of these effects, charging of
the external capacitance is most important for the case
shown in Fig. 28 and a simple approximate formula for i,
can be derived if we consider this effect alone. Because
the time constant for charging and discharging Cb is rela-
tively long, the voltage Vb, on Cb at the point of escape is
always nearly equal to the average phase-diffusion voltage
( V ) . The long time constant further implies that the
effect of Vb, will be to supply an additional bias current
V„,/R, to the junction during the switching process.
Thus, if the bias I is the threshold for switching in the
absence of a charge on Cb, the threshold in the presence
of this charge is approximately

I, =I —
Vq, /R, . (67)

In dimensionless form this equation becomes
i, =i —vt„(QO/Q, —1), which is well verified by the
values of i, shown in Fig. 29 for small u, . Equation (67)
becomes a formula for the switching current when Vb, is
evaluated at the threshold bias. We noted above that
V&, =( V) and, if we approximate the phase-diffusion
part of the I-V curve by ( V) =IRo, we obtain V&, =I,RO
at the threshold bias. Combining this result with Eq. (67)
yields

I
I, =

1+R /R,
(68)

If Eqs. (39) and (65) are used to evaluate I and Ro, Eq.
(68) becomes an approximate formula for the switching
current. Although this formula, plotted as the solid line
in Fig. 28, is in good agreement with the Monte Carlo
values for i„the agreement is partly fortuitous because
the error that results from neglecting the curvature in the
phase-diffusion branch by assuming ( V) =IRO compen-
sates for the omission of retrapping effects. Nonetheless,
Eq. (68) clearly accounts for the principal effects deter-
mining the switching current in the present instance.

Returning to the experimental case shown in Fig. 29,
we briefly reconsider the difference between I and the
Monte Carlo values of I, found there. If we attempt to
explain these differences in terms of a threshold current
I, that accounts for the effect of energy storage at the
point of escape, then I, will depend on the voltages on the
parasitic capacitors C„associated with the series resis-
tance as well as the voltages on C and Cb. Numerical ex-
periments show that the corrections due to these energy
storage effects are suScient to explain the observed
difference between I and I,. Unfortunately, I, is sensi-
tive to all of the several voltages involved and we are un-
able to derive an approximate formula for the switching
current for this case. In particular, there appears to be
no simple explanation for the fact that I, is larger for the
sample having the smaller isolation resistance R, . Be-
cause switching involves the time constant R, Cb, as not-
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ed in connection with Fig. 15(b), it is not surprising that
I, is sensitive to R, . %e might argue that a small R, im-

plies a large switching current because I scales inversely
with the quality factor and Q is smaller for sample B than

sample A over a range of frequencies just above 1/R, C&,
as shown in Fig. 18. However, other significant effects,
such as that described by Eq. (68), give the opposite
dependence on R, . Thus, the relative magnitude of the
switching current for samples A and B appears to be the
product of several competing effects that can only be
resolved through a full Monte Carlo simulation.

Finally, setting aside the complex dynamics that deter-
mines the exact switching current, we note that I pro-
vides an order-of-magnitude estimate for I, that can be
used to set an approximate value for the quality factor at
the plasma frequency. Using the approximation
i =4lrrQ discussed earlier, we estimate that Q =64
for the present case, based on the fact that the switching
current is roughly 2%%uo of the critical current. Although
this estimate exceeds the actual Q by a factor of 2, a
rough estimate such as this could be valuable in many sit-
uations, considering the diSculty of measuring the damp-
ing at high frequencies.

VII. RETURN CURRENT

The return current I„is the dc bias at which a junction
returns from the quasiparticle branch of a hysteretic I-V
curve to the zero-voltage or phase-diffusion branch. Be-
cause the return bias varies from trial to trial in the pres-
ence of noise, a definite value can in principle be assigned
to I„only if it is defined, like I„asan average. However,
in the experiments and simulations presented here, the
random variations in the return bias are small enough
that the statistical nature of I, can be disregarded.

The return current for samples A and B is plotted in
Fig. 30 as a function of temperature. Circles show the ex-
perirnental values and vertical bars show the results of
Monte Carlo simulations based on the circuit model of
Fig. 2(c). The experiment and simulation are in excellent
agreement, differing by no more than 20% over the range
of temperatures studied. Again, we emphasize that this

agreement results for entirely nominal circuit parameters.
In order to gain an understanding of the factors that

determine the return current, we consider I,o, the return
current for the noise-free system. Values for I,o, calculat-
ed using the circuit model of Fig. 2(c) with the noise
sources set to zero, are plotted as squares in Fig. 30.
Comparing I,o with the Monte Carlo results for I„we
find that the quasiparticle branch extends to lower bias
levels in the absence of noise, as expected. Since the noise
increases with temperature, the difference between I„and
I o also increases with temperature and is significant only
above 3 K. However, the largest part of the temperature
dependence of I„is accounted for by I„o,which depends
on temperature only through the quasiparticle resistance
RJ. Thus, Fig. 30 shows that I,o and I, are both highly
dependent on RJ.

A simple formula for I,o appropriate to the case of
frequency-dependent damping can be obtained from an

approximate I-V curve for the quasiparticle branch that
derives from an energy balance relation. For steady-state
motion, the energy gained in moving down the wash-
board potential must equal the energy lost in dissipation.
Considering this energy balance over a single Josephson
oscillation, we obtain

2rr(I /Io )FJ=F.„, (69)

which derives from Eq. (52) in the steady-state limit. In
evaluating Ed, the energy loss per oscillation, we make
use of the fact that the return event occurs from a finite
voltage in the case of frequency-dependent damping. In
the limit of high voltage and low damping, we can as-

1.0

(a) SAMPLE A

0.6—

LU

~ 0.4

0.2

LU

O.o '

1.0

0.8—
(b) SAMPLE B

0.6—

LIJ

~ 0.4—

IX 0.2—
I-
UJ

0.0 ' I

3

TEMPERATURE T (K)

FIG. 30. The return current as a function of temperature for
{a) sample A and {b) sample B. Experimental results are shown

by circles. Vertical bars show the results of Monte Carlo simu-
lations for the full circuit model shown in Fig. 2{c) including
noise. The tops of the bars show the lowest bias point at which
a return event was not observed during a 100-ps dwell time and
the bottoms show the highest bias point for which a return
event was observed within 100 ps. Squares show the noise-free
return current I„ocomputed for the circuit model of Fig. 2{c).
Equation (81}is plotted by a solid line.
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sume that the voltage waveform is nearly sinusoidal and
has the form

V=( V)+ V2sin(cojt),

where co~=2e( V)/h' is the Josephson frequency. The
current through the admittance Y(co) shunting the ideal
Josephson element is

Ir = G (0)( V) +G (co& ) Vzsin(cozt)+8 (coJ ) Vzcos(cozt),

(71)

1.0

0.8—

0.6—

(v) 0
[

l

l

where G (co) and 8 (co) are the real and imaginary parts of
Y(co). The energy loss per cycle is thus

2,7T /CO J
Ed= IyVdt

0

2m.EJ
[G(0)& V)+-,'G(co, ) V', /( V&] . (72)

0

To determine the amplitude V2 of the voltage oscilla-
tions, we note that this voltage results from current oscil-
lations of amplitude Io in the junction which flow
through the admittance Y. In the cases of interest here,
Y(coJ ) is dominated by the admittance of the junction ca-
pacitance so that

V2 =Io /co ICJ

Cotnbining Eqs. (69), (72), and (73), we obtain

(73)

I =G(0)( V)+ —,'G(co~)Vp/( V) (coJ=2e( V)lfi),

(74}

(& V&/V, )+ (& V&/V, ) '.
0 2

In terms of dimensionless parameters, this equation is

i=&v)+ 1

2g,'g, (v )'

(75)

Equation (76) defines an approximate, noise-free quasi-
particle branch which is plotted as a dashed line in Fig.
31 for the case go =5, Q, =2, and p=0. 1. In this figure,
the accurate quasiparticle branch is plotted by a solid line
and the return switch points for both curves are marked

where V =fico /2e is the voltage corresponding to the
plasma frequency. This equation specifies the I- V charac-
teristic on the quasiparticle branch in the limit of high
voltages ( ( V ) )& V~ ) for an underdamped junction

(Q~ &)1) with a linear shunt admittance. If G(co) does
not increase faster than co at high frequencies, the second
term of Eq. (74) diverges in the limit of small ( V). In
this case, there is a voltage ( V)„0below which the I-V
curve has a negative slope and there is no stable operat-
ing point in this region. The current corresponding to
( V) „ois the return current I„oof the noise-free system.

We first apply Eq. (74) to determine I„ofor the circuit
model of Fig. 2(b). Using the fact that
G(co) =Io/V~Q(co), we can express G(0) in terms of Qo
and, assuming that coJ &) I/R, Cb, we can express G(coJ)
in terms of Q, (cf. Fig. 12). In this case, Eq. (74) becomes

&rO

0.2—

0.0
0.0

[ I

0.2 0.4 0.6

AVE RAG E VO LTAG E

)

0.8 1.0

FIG. 31. Quasiparticle branch of the noise-free I Vcurve f-or

the junction model shown in Fig. 2(b) with the parameters
Q0=5, Q~ =2, and p=0. 1. The solid line shows an accurate
numerical result and the dashed line shows the approximation
given by Eq. (76). For each curve, the point at which the return
switch occurs is marked by a circle.

by circles. The return switch point for the approximate
I-V curve is defined by the condition dI!d( V) =0 which
yields

' i/4

i

(27/4/33/4) IO
r0 g3/4g i/4

0 1

(77)

(78)

Because Qo is necessarily greater than or equal to Q, , Eq.
(77) shows that the return voltage is on the order of or
greater than the voltage corresponding to the plasma fre-
quency. From Eq. (78} we learn that the return current
depends primarily on the damping at low frequencies and
only weakly on the damping at high frequencies.

In the limit Qo= Q, =Q the model of Fig. 2(b) reduces
to the RCSJ model, and we might expect Eq. (78) for the
return current to reduce to i„og=4/it=1. 273. Howev-
er, we obtain from Eq. (78) i„og=2 / /3 =1.476. This
discrepancy derives from the fact that we assumed a
sinusoidal voltage in our derivation of Eq. (78) but the
quasiparticle branch extends to zero voltage in the RCSJ
model and the waveform is far from sinusoidal at the re-
turn point. Equation (78) is much more accurate in cases
where ( V)„oexceeds V . For the case shown in Fig. 31,
where ( V)„olV =1.4, Eq. (78}yields i„o=0.371 in com-
parison to the accurate result of 0.343. For the case
Qo = 100, Q, = 10, and p =0. 1 considered previously,
( V) „0/V&=2.0 and the accurate result for i„ois 0.0260
while Eq. (78) yields 0.0262. Thus, Eq. (78) is a good ap-
proximation in the limit Qo ))Q, ))1.

To apply Eq. (74) to the experimental case, we must
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Vp, (80)

I =(7/5 72 )
I0

r0
Q 5/7Q 2/7

0 p

(81)

Thus, we find again that the return voltage is on the or-
der of or greater than the plasma voltage and the return
current depends more strongly on the damping at zero
frequency that at high frequencies.

Equation (81) for the noise-free return current is plot-
ted as a solid line in Fig. 30 where it can be compared
with values of I„0,plotted as squares, computed through
dynamical simulations. Although there is a significant
difference between our analytic result and the simula-
tions, additional calculations show that this difFerence is
largely attributable to the fact that the voltage depen-
dence of RJ was omitted in deriving Eq. (81). The con-
clusion to be drawn from comparing the squares with the
solid line in Fig. 30 is that the curvature in the quasipar-
ticle curve apparent in Fig. 17 produces a modest in-
crease in I„0over what would result if this curve were
straight. Thus, Eq. (81) fails to reproduce the experimen-
tal results because it omits both the voltage dependence
of the quasiparticle resistance and the effects of noise. At
temperatures below 3 K, where both of these effects are
small, Eq. (81) is in good agreement with both the experi-
mental data and the full Monte Carlo simulations.

Comparing the return current of samples A and B,
shown in frames (a) and (b) of Fig. 30, we find no
significant difFerence. Equation (81) suggests an explana-
tion for this coincidence. According to this equation, the
return current depends only on the damping at zero fre-
quency and near the plasma frequency. However, as Fig.
18 shows, the damping is the same for both samples at
these two frequencies even though there are significant
differences at intermediate frequencies. Thus, the coin-
cidence in I, between the two samples is completely con-
sistent with Eq. (81).

Recently, several authors have investigated the re-
turn current within the context of the Werthamer model
of junction dynamics. This detailed microscopic ap-
proach relates the return current to fundamental proper-
ties of the superconducting materials. In agreement with
the present work, these studies show that I, is determined

evaluate the shunt conductance at zero frequency and at
frequencies near the plasma frequency. Given the rela-
tion G (co)=I0/Vp Q (co), this task amounts to reading the
correct asymptotes from Fig. 18. While Q(0)=Q0 is

simply a constant, its definition requires that we use the
asymptotic low-voltage form for the quasiparticle con-
ductance given by Eq. (44). Near the plasma frequency,
the shunt conductance is given by Eq. (48) and Q(07) is

proportional to 1/&co. Thus, we inay write
Q(co/)=Q QVp/( V& and Eq. (74) becomes

I/I, = (( V&/V, )+ («&/V, )-'". (79)
0 2 p

Setting dI/d ( V& =0 to solve for the return switch point
yields

' 2/7

largely by the quasiparticle conductance. While we have
simply measured this conductance by applying a magnet-
ic field to suppress the Josephson current, the microscop-
ic theories calculate this conductance from first princi-
ples. In further contrast to our approach, the microscop-
ic theories treat the junction dynamics using the full Wer-
thamer model rather than the elementary Josephson
equations. However, the success of our simple approach
to the return current shows that, at least in some cases, it
is not necessary to consider the full microscopic dynam-
ics to obtain good agreement with experiment. That is,
by basing our calculations of I„onthe measured quasi-
particle conductance, we seem to have eliminated all need
of the Werthamer model.

Kirtley et a/. have recently suggested that measure-
ments of I, can be used to determine the damping of a
junction at high frequencies. Our study shows that it
would be difficult to obtain an accurate value for Q froin
measurements of I„.Although I„certainly depends on
the damping at frequencies near co, the examples dis-
cussed above show that this dependence is relatively
weak, involving Q' and Q

/ in the two cases con-
sidered. Moreover, it is necessary to know the frequency
dependence of Q in the neighborhood of co in order to
determine the relation between I, and Q . Given this un-

certainty and the fact that I, depends more strongly on

Q0 than Qp, a reliable estimate of Qp necessarily requires
significant information in addition to a knowledge of I,.
A more reliable estimate for Qp might be obtained from
the switching current I, for the phase-diffusion branch, as
suggested in Sec. VI.

VIII. CONCLUSION

We have studied noise-affected I-V curves for small-
area junctions in which the phase-diffusion and quasipar-
ticle branches overlap each other in their range of dc
bias. This overlap implies that two distinct voltage states
coexist at some values of dc bias. The low-voltage,
phase-diffusion state is associated with slow, diffusive
motion in which the system, under the inhuence of
thermal noise, repeatedly escapes from and is retrapped
in the local minima of the washboard potential. In con-
trast, the high-voltage state, corresponding to the quasi-
particle branch, is associated with rapid, nearly uniform
motion down the slope of the washboard.

The fact that the high- and low-voltage states are
stable under the same conditions is surprising because the
escape events necessary for phase diffusion might be ex-
pected to result in continued acceleration that would take
the system to the quasiparticle branch. Indeed, within
the simple RCSJ model, this type of switching event is
likely at all bias levels for which the high-voltage state is
stable, and overlap between the phase-diffusion and
quasiparticle branches is not possible. The absence of
such overlap in the RCSJ model is related to the fact that
the basins of attraction for adjacent potential minima
have no common boundary at bias levels for which the
high-voltage state is stable. That is, a finger of the basin
of the high-voltage state separates the basins of each pair
of adjacent minima, and phase-difFusion cannot occur un-
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less the system enters the basin of the high-voltage state.
Because the probability of switching to the high-voltage
state is significant if the system enters its basin of attrac-
tion, the phase-diffusion state is unstable in the simple
RCSJ model at bias levels where the quasiparticle branch
is stable.

However, overlap between the phase-diffusion and
quasiparticle branches is possible within an extended
RCSJ model in which external loading provides
frequency-dependent damping. In particular, if the
damping is greater near the plasma frequency than at
zero frequency, then there is a range of dc bias
I„o&I &I for which the basin of the high-voltage state
does not intervene between the basins of adjacent poten-
tial wells. In this case, the system can escape from a
given well under the infiuence of thermal noise and retrap
in a neighboring well without entering the basin of the
high-voltage state. Thus, frequency-dependent damping
can create a bias region in which both the phase-diffusion
and quasiparticle branches are stable.

Although the extent of overlap between the phase-
diffusion and quasiparticle branches is dependent on the
level of thermal noise, it is roughly defined by the param-
eters I,o and I of the noise-free system. These parame-
ters, in turn, depend on the quality factor Qo at zero fre-
quency and the quality factor Qz at the plasma frequen-
cy. Assuming that Qo & Q »1,

1.476/Qo Q~, Q (co) ~ co for co &co
ro

492/Qo5/7Q2/7 g (co) ~ co
—i/2

for co & co (82b)

and

I = 1.273/Q
Io

(83)

Thus, I„ois largely determined by Qo and I is largely
determined by Q . A broad range of overlap between the
phase-diffusion and quasiparticle branches (I » I„o)re-
sults if Qo » Q .

The sensitivity of I„oand I to Qo and Q suggests the
importance of understanding loss mechanisms over a
broad frequency range in the interpretation of I-V
characteristics. In the present work, a good fit between
simulation and experiment was obtained only when the
losses were accurately modeled at frequencies well into
the microwave region. In the case of small-area junctions
with a high subgap resistance, an essential element of this

model is usually the load represented by the external
measuring circuit. Although the impedance of the exter-
nal circuit may be high at low frequencies, at microwave
frequencies it is likely to be on the order of the im-
pedance of free space, unless special precautions are tak-
en. Thus, a detailed understanding of I-V curves for
high-resistance junctions is most easily obtained when the
external circuit is designed, as in the present experiments,
to have a well-defined impedance at microwave frequen-
cies.

The Monte Carlo simulations presented here reveal an
aspect of phase diffusion in underdamped junctions not
previously noted. In the underdamped case, escape from
a potential well often causes the system to move through
several potential wells before retrapping occurs. Such
multiple-well phase-slip events can have a significant
effect on the phase-diffusion resistance Ro measured at
the origin, increasing it in some cases by more than an or-
der of magnitude over predictions based on single-well
transitions. A simple model developed here for multiple-
well events yields a formula for Ro applicable to a wide

range of situations that is in good agreement with both
our Monte Carlo simulations and our experiment.

We have considered small-capacitance junctions simi-
lar to those used in the investigation of effects such as
SET and MQT which involve phenomena beyond those
encompassed by the classical Josephson equations. How-
ever, the phenomena discussed here, including hysteresis
between the phase-diffusion and quasiparticle branches of
the I-V curve, are well described by the classical equa-
tions. Although hysteresis of this type is peculiar to
small junctions, it derives simply from the fact that, for
junctions having a high internal resistance, the damping
at microwave frequencies is typically determined by the
external loading. We have shown that the external load-
ing can have significant effects, including qualitative
changes in the I-V curve. Because such effects are likely
to be found in junctions that also exhibit SET and MQT
phenomena, our study may serve as a useful stepping
stone to understanding these more complex situations.
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