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Analog simulation of melting in two dimensions
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We have studied a system of macroscopic steel spheres confined to a hexagonal area on the
lower surface of a horizontal parallel-plate capacitor. The spheres interact via repulsive electro-
static forces with each other and with the boundary and are in contact with an artificial thermal
bath produced by mechanically agitating the entire apparatus. Translational and bond-
orientational order evolve from the boundary inward as the temperature is lowered and appear
abruptly and simultaneously in the cell center. This result implies a first-order transition between
liquid and solid phases.

Theoretical suggestions that melting in two dimensions
(2D) might diff'er substantially from conventional three-
dimensional (3D) melting have motivated a large amount
of experimental work on 2D melting during the past ten
years. Kosterlitz and Thouless first promoted the idea
that melting is the consequence of the proliferation of free
dislocations in a harmonic crystal. This idea was subse-
quently generalized by Halperin, Nelson, and Young
(HNY) with a model in which dislocation pairs first un-
bind into free dislocations, which then unbind into free
disclinations. 2 An interesting consequence of such a
scenario is that melting could occur via two second-order
transitions, separated by an intervening hexatic phase
characterized by liquidlike short-range positional order
but long-range orientational order. The search for the
hexatic phase has been conducted in a variety of numeri-
cal simulations as well as "real" systems; as a recent re-
view indicates, these experiments have yielded conflicting
results and the 2D melting problem remains a challenging
one.

An important aspect of both models and experiments is
the nature of the local structure and fluctuations in the
crystal, hexatic, and liquid phases. So far only computer
simulations and colloidal systems enable direct study of
individual particle motions. In this paper we report an
analog simulation which we believe is a useful addition to
the arsenal of experimental tools available to study statist-
ical physics in two dimensions, and in particular to study
individual particle positions and motions in 2D crystals
and liquids. Our system consists of macroscopic steel
spheres confined to move in two dimensions and in contact
with an artificial thermal bath. These spheres interact
only through electrostatic forces and are observed to un-

dergo a distinct transition between ordered and disordered
phases as a synthetic temperature is varied. This method
builds on previous work on model systems with only hard-
disk interactions, systems with attractive potentials,
and work by Blonder, ' who developed the electrostatic
technique to model the equilibrium arrangement of vortex
lines in Anite He samples. A diagram of the experiment
is shown in Fig. 1. The particles are, & -inch-diam
stainless-steel spheres rolling on the bottom surface of a
parallel-plate capacitor. The upper plate is transparent
glass coated with indium tin oxide (ITO) and is held at an
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FIG. 1. Diagram of the experimental apparatus.

adjustable positive voltage relative to the lower plate,
which is made of glass coated with chromium. The plates
are separated by an f -inch-thick spacer, having a hole in

the form of a hexagon which defines the boundary of the
space available to the spheres. A —,', -inch-diam brass rod
is glued to the inner edge of the spacer and is also in con-
tact with the lower conducting surface. The positions of
the particles are recorded by a video camera attached to
an image-processing computer, which extracts the center-
of-mass coordinates of the particles.

When a voltage of several hundred to a few thousand
volts is applied across the capacitor, the spheres repel each
other and the brass rods at the boundary. For spheres
which are small relative to the plate separation and which
are not too close together the interaction is primarily dipo-
lar; this can be seen by considering the electrostatic im-
ages of the spheres and the upper plate in the lower plate.

An artificial temperature T is provided by causing the
cell to translate, its center-of-mass moving in a roughly
circular horizontal motion of submillimeter dimension.
The cell is mounted on rubber supports and is subjected to
a periodic time-dependent horizontal force produced by a
magnet which rotates inside a steel can attached to the
bottom of the cell (see Fig. I). The amount of tempera-
ture so induced is varied by changing the height of the
motor, thus changing the strength of the magnetic cou-
pling between the cell and the rotor. The frequency of the
driving motor is stabilized at -30 Hz with a feedback cir-
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cuit. Even though the driving force is certainly periodic,
the particles respond in a very aperiodic fashion, even
when not interacting with other particles. This may be ex-
plained by fluctuating forces due to microscopic irregular-
ities of the sphere and lower plate surfaces, including pos-
sible particulate contamination.

We have ascertained the nature of the temperature T in
our system in two ways. First, we verified that the radial
distribution of a single particle in a parabolic potential is
Gaussian, using a sphere rolling in a concave lens placed
on the cell. The position distribution of the sphere was
determined for several different temperatures with the
same image analysis procedures used for the actual exper-
iment. The experimental distribution is found to be
Gaussian over three decades, as shown in Fig. 2(a).
Second, we measured the velocity distribution of individu-
al particles in a 919-particle system by tracking images of
the particles from one video frame to the next. The mono-
chrome video frames (512&&480 pixel resolution) are digi-
tized by image processing hardware attached to a Sun
workstation, recorded at 30 frames/sec on an optical disk,
enhanced to remove noise and improve contrast, thresh-
olded to binary (black-white) images, and finally convert-
ed to particle coordinates by finding the centroids of the
resulting sphere images. The tracking algorithm simply
finds the closest sphere in frame n + 1 to a sphere in frame
n; this method relies on the fact that the spheres move
only a fraction of a lattice constant; during one video
frame time (-33 ms). Figure 2(b) shows the resulting
velocity distributions for several different values of the
motor height. The straight-line fit (on these log-linear
plots) is the function
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from which we can extract the temperature T; m is the
mass of one sphere, k is Boltzmann's constant, and A is a
fitting constant. From these distributions we also obtain a
calibration curve of temperature vs motor height [Fig.
2(c)].

In the work reported here the system contained 919
spheres, and we easily obtained perfect crystals with a lat-
tice spacing of roughly 8 mm at low T and a capacitor
voltage of 2500 V. By slowly lowering the height of the
driving motor, we observe the system evolving from a
liquid to a solid which is defect-free if the cooling rate is
sufficiently low. The presence of the wall potential causes
the growth of order to proceed from the surface inward
during freezing, as found in computer simulations of sys-
tems with solid surfaces. Figure 3 shows time averaged
density profiles of the system at various temperatures,
clearly showing the persistent ordering at the surface.
The temperature at which the central region becomes
disordered is distinct, and is taken as defining the bound-
ary between solid and liquid phases, even though the
liquid phase retains order very near the walls. The time
spent at one temperature is typically twelve hours, the
time required to acquire one thousand video frames and
reduce them to particle coordinates.

Our study of the two-dimensional melting process has
focused on the determination of two order parameters —a
translational order parameter g defined as the local
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FIG. 2. Temperature calibration: (a) Variation of the radial
probability distribution of a single sphere in a parabolic poten-
tial produced by a convex lens. The solid line represents the ex-
pected Gibbs distribution. (b) Distribution of the square of in-
dividual particle velocities in the 919 particle system for three
different values of the motor height H. The lines are weighted
least-squares fits. (c) Temperature calibration as determined
from the velocity distributions of (b).
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FIG. 3. Density distributions obtained over several hours for
(a) the solid phase, (b) at a temperature just below the transi-
tion, (c) just after the transition, and (d) in the liquid phase.
The strong inAuence of wall fields forces ordering near the edges
of the sample.

Fourier component of the density at a reciprocal lattice
vector, and an orientational order parameter q6 deter-
mined by the local sphere-sphere bond angle.

Practically ri is defined by

Ng nj

g e'"'"
Nf j-] n) k

The sums are over the number of video frames Nf at a
given temperature and the number of particles n~ (typical-
ly -300) found in the field of view of frame j. Go is one
of the two basis vectors of the reciprocal lattice (calculat-
ed from the most ordered phase), and rq is the position
vector of the kth sphere. The orientational order is
characterized by
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Here the sums are over the number of frames Nf, the
number of particles n~ in the jth frame, and m~, the num-
ber of nearest neighbors of the pth particle. Hap is the an-
gle made by the bond between particles k and p. The
nearest neighbors were determined by a Voronoi construc-
tion.

Figure 4 shows the variation of our order parameters as
a function of temperature as well as the height of the driv-
ing motor below the sample. It is difficult to discern any
two-step mechanism here as the two order parameters ap-
pear to increase at the same temperature. According to
these observations it is likely that in our system the transi-
tion is first order and that the hexatic phase does not exist,
in agreement with computer simulations of dipole poten-
tials.
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FIG. 4. Variation of translational (boxes) and orientational
(crosses) order parameters with temperature; inset shows varia-
tion with motor height.

These order parameters differ slightly from the usual
indicators of an hexatic phase, namely the long-range be-
havior of translational and orientational correlation func-
tions. ' We have chosen to determine instead these local
measures of translational and orientational order at the
cell center partly because our system, like many other ex-
periments and computer simulations, is not large enough
to reveal the true long-range behavior of the correlation
functions. More importantly, the results of the HNY
theory cannot be applied directly to. our system due to the
presence of an external in-plane field (which is qualita-
tively different from the kinds of substrate potentials con-
sidered by HNY). Modifying the HNY theory by intro-
ducing the wall potential V(r) into the Hamiltonian is a
formidable task that we have chosen to avoid for the
present by contenting ourselves with a qualitative descrip-
tion. If we consider the linear response of an ideal infinite
system to our potential V(r), and further make the as-
sumption that this potential does not couple to topological
defects, then we can describe the behavior of order param-
eters in our system in terms of corresponding correlation
functions in the V 0 system through

&ri(r)),.- &ri(r) g(0))oe V(r)
l

and similarly for ri6. The subscripts V and 0 refer to the
constrained and unconstrained systems, respectively, and

is a convolution product. The HNY theory predicts
that the translational and orientational correlation lengths
diverge at different temperatures, resulting, via Eq. (1), in
order parameters which go to zero at different tempera-
tures. Such a two-step mechanism should thus be ap-
parent in our measured order parameters, but was not
found. Since in known hexatics' '5 the system size is
comparable to the translational correlation lengths (dis-
tances between dislocations), it may be that in our system
the large wall forces and relatively small system size com-
bine to suppress the hexatic phase and elevate the solid-
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hexatic transition to join the hexatic-liquid transition.
%e hope we have conveyed some taste of the possibili-

ties inherent in our model system; it seems ideally suited
to studying a variety of topics in statistical mechanics in
addition to melting. It is closely related to molecular-
dynamics (MD) simulations of classical systems, but with
the important advantages of fast (and free) computation
time and, at least theoretically, no restrictions on run
times or particle number; unlike MD, run times also do
not increase with system size. This may be important
since some evidence' seems to indicate that current MD

run times are insufficiently long to anneal out long-lived
topological defects. %e also share with MD and colloidal
systems the ability to observe the detailed microscopic ar-
rangements and motions of particles, with the added
benefit over colloids of having a well-understood interpar-
ticle interaction. Our system undergoes a constant
volume transition, whereas temperature driven transitions
in 2D colloids are difficult.
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