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Rotationally induced dissipation in superfluid helium
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In an attempt to make a superfluid He analog of the radio-frequency superconducting quantum
interference device (SQUID) that could be used as a gyroscope, we measured the critical velocity of
the ac superflow through an orifice 5 pm in radius. The orifice was supported by a septum placed
inside a hollow torus filled with liquid helium. The superflow through the orifice was induced by ro-
tating the whole torus. The torus was the inertial member of a high-quality-factor torsion pendu-
lum forced to oscillate at its resonance frequency. The occurrence of dissipation was detected by
analyzing the oscillator motion. The principle on which this device works is analyzed, and results
are reported of experiments in which quite reproducible critical oscillation amplitudes —well ac-
counted for by intrinsic vortex formation —were obtained. Depending on the value of the forcing
torque, the critical behavior manifested itself either as the occurrence of sudden collapses of the os-
cillation amplitude or as a steady excess dissipation. The energy involved in the process was es-
timated. Temperature dependencies of the critical amplitude up to 2.115+0.003 K were measured.
The results were found to be in agreement both with the ac data obtained with the Helmholtz-
resonator technique and with the data obtained with dc flow measurements.

I. INTRODUCTION

The superfluid component of liquid He behaves as an
irrotational ideal fluid flowing without friction up to a
critical velocity v„atwhich dissipation sets in.

The onset of this dissipation in the flow of superfluid
helium through a small orifice has been investigated by
many authors. Most of them studied the effects produced
by temperature and by remnant vorticity in the helium
bath, thus demonstrating the existence of two kinds of
critical velocity. The first one, known as extrinsic veloci-
ty, typically almost independent of temperature, is typi-
cally a few 10 m/sec and cannot be made reproduci-
ble. The other one, known as intrinsic velocity, is typi-
cally dependent on temperature, is reproducible within
1% and seems not to be correlated with the hole size,
its typical value is about -3 m/sec at 1 K.

The dissipation related to the intrinsic critical velocity
was first observed as it led to the saturation of the gravi-
tationally induced dc flow between two vessels connected
by a micrometric orifice. ' More recently it has also
been observed to lead to the saturation of the oscillation
amplitude of a Helmholtz resonator, where the flow
through a hole is induced by an externally driven moving
diaphragm.

Both dc (Refs. 3 and 4) and ac (Refs. 8 and 9) flow mea-
surernents contribute to building up the following empiri-
cal pattern of behavior for the intrinsic critical velocity:
U, is well fitted by a linearly decreasing function of tem-
perature from 5 mK up to —1.9 K, where its value is of
the order of 1 m/sec. Above —1.9 K, where, however,

only dc data are available, U, is a steep decreasing func-
tion of temperature and it vanishes at T&.

In the commonly accepted interpretation, the dissipa-
tion in the superfluid flow is due to the creation and
motion of superfluid quantized vortices in the liquid. '

Consequently, the two kinds of critical velocity should
reflect the existence of two different mechanisms of vor-
tex formation.

The extrinsic critical velocities are presumably due to
the growth of preexisting vorticity as suggested by vari-
ous vortex mill models. " Their values cannot be made
reproducible, as they depend on the configuration of the
vortices pinned nearby the hole. In fact, the position of
the pinned vortices may be changed either by thermally
cycling the experimental apparatus or simply by revers-
ing the flow direction.

The intrinsic dissipation was first detected by avoiding
the motion of the preexisting superfluid vorticity by
means of some porous medium placed in front of the
hole. ' ' The temperature dependence of the intrinsic
critical velocity suggests that thermal vortex fluctuations
play an important role in the vortex production. In fact,
a model based on the thermally activated production of
quantized vortex rings (the ILF model)' accounts for the
qualitative temperature behavior of the critical velocity
above 1 K.

In an attempt to obtain a superfluid He analog of the
radio-frequency (rfl SQUID which could be used as a
gyroscope, ' ' we have had the opportunity to make ac
measurements of critical velocities in superfluid He in
the 1.2 —2.11-K range. In our experiment we forced a
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flow through a little orifice with an unusual method that,
in the past, had given unclear results. ' We used a hollow
torus filled with HeII. The torus was interrupted by a
septum with an orifice 5 pm in radius, and a hydro-
dynamic superflow was induced through the hole by tor-
sionally oscillating the whole torus. The results of the
measurements made are reported hereafter.

II. EQUILIBRIUM STATES
OF THE SUPERFLUID IN A ROTATING TORUS

In this section we will calculate the velocity of the
superflow in our torus and the equilibrium states of the
superfluid as a function of the angular velocity 0, of the
torus itself. We will follow the outline given in Ref. 14,
adapting it to the "weak-link" case. The calculation is
based on the fact that the superfluid velocity field v, is re-
lated to the y phase of the complex order parameter by
the equation

v =n (2a}

or the equivalent

gVp dl=2mn, (2b)

where n is an integer.
The following calculation is not influenced by the ex-

istence of some preexisting vorticity in the superfluid,
provided that these vortex lines are not allowed to move
around in the liquid. In fact, any such preexisting vorti-
city creates a persistent current in the vessel, thus pro-
ducing the same effect as a steady rotation of the ap-
paratus. ' In practice, the preexisting vorticity may be
prevented from moving by filling the helium vessel with
powder or foam.

Consider now a torus of radius R and cross-sectional
area a, with a « m R, filled with a mass M, -2m R op, of
superfluid helium. The torus is interrupted by a septum
with an orifice of radius r, with mr «o. According to
the classical solution for the potential flow through an
orifice in an unlimited plane, ' the phase difference
through the hole

by = (2m/k }j„v,.dl,

v, =(k/2m )Vp,

as in the classical flow of a perfect fluid with potential
(k/2m)qr; here k=hlrn4 is the quantum of circulation.
We will also use the existence of a critical velocity for the
flow through the orifice and the quantization of the circu-
lation in the inertial frame in its usual form:

away from the orifice. Moreover, J, =I /o. , due to the
continuity of the mass flow, and using Eq. (3) we may re-
late J, to the phase difference through the orifice:

J =Jo

where we define

(4)

J, =Joky .

This relation holds only if J, and hq are measured in the
reference frame at rest with the hole. If the torus is rotat-
ing about its axis with angular velocity Q, and tangential
velocity v, =Q,R, we must subtract the tangential veloci-
ty and find a Galilei invariant relation between the same
quantities measured in the inertial frame:

J, —p, v, =Joke

where

(7)

b,y'=b, p —(2m/k) f v, dl (8)

represents the phase shift through the orifice measured by
an observer at rest.

If we now eliminate J, using Eq. (1), we obtain the
value of Vqr in the torus, as measured in the inertial
frame, as a function of hq*:

p, Vp(k /2m) =p, v, +Jo by* .

The superfluid must satisfy the quantization of circula-
tion:

bq&+ f Vy dl=2 nm, (10)
r

where the line integral is computed along a suitable path
I in the torus, so that y+I is a closed circle. Substitut-
ing from Eqs. (8) and (9}for by and Vy as a function of
hy* and then solving for kg*, we get

bq =2m(n 2mR 0, /—k)/a,
a= 1+(2mR 5)2r/a . —

As in our experimental apparatus (see below) rR /a «1;
then a=1.

Substituting by' in Eq. (7}, it is now possible to calcu-
late the current density in the torus J, and the mean ve-
locity ui, =I /(m. r p, ) of the flow through the hole with
respect to the rotating torus:

Jo=p, rkl(ma) .

If we define a vector Jo with modulus Jo and directed as
the unit tangent vector, we may generalize Eq. (4) in a
vectorial form:

where y is a path passing through the hole, is

b.qr=(mI )l(kp, r),
J, =p, [RQ, +2r(nk 2mR 0, )/a], —

u& =(u, —
u, )a/(mr )=2(nk 2m.R 0, )/mr . —

(12a)

(12b)
where p, is the density of the superfluid and I is the
mass current through the hole. The difference is evalu-
ated between two surfaces at distances 5 from the hole
with 5 &&r. At this distance we assume the current densi-
ty J, =p, v, to be uniform over the torus's section, so that
v, is, from now on, the average value of v, in the torus

For each value of n, the states described by these equa-
tions are metastable provided that

—v, (v& &v, ,

where v, is a critical velocity characterizing the orifice.
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sipated in an elemental transition n ~n+ 1~n:When uz =U„the state becomes unstable, and vortices
appear in the hole. During their evolution, the highly in-
homogeneous zone of the vortex core interacts with the
normal fiuid at rest with the boundary, thus making pos-
sible the exchange of energy and of angular momentum
with the torus. If the time variation of Q, is much longer
than the evolution time of the vortex and if the vortices
generated at U, cannot be pinned to the boundary, then
the vortex core crosses all the irreducible paths in the
torus during its evolution and finally annihilates at the
boundary. ' As a consequence, the superfluid is left in a
different circulation state.

Working out Eq. (13) with the calculated value for vz,
we see that the n'" circulation state is a metastable state
of the system only for angular velocities Q, satisfying the
relation

WO-M, r kv, l(oR )=2I,k,

n2 n—
&
-v, rn l(2k),

the dissipated energy W, reaches its maximum value

W —Wov, rm/(4k ).
that may be calculated tobe about 10 ' J.

(14)(n ,'v, r—nl—k)(Q,(2mR Ik)((n+ ,'v, rn—lk) .

where the approximation works for U, r ))k; the critical
average mass current is defined as I, =m.p, r v, . Given
the actual dimensions of our torus, as described in the
following section, the expected value of 8'o, at a typical
critical velocity of 1 m/sec, is about 10 ' J.

When

L, (n2) L, (n
&

) =—(n2 n& )2—M, Rrk/cr . (16)

If 0, sweeps between different values, hysteresis may
occur with a related energy dissipation. For instance,
suppose that n=n, and that 0, is increased starting
from say Q, =n

&
k /(2n. R ). At Q, =Q, &

with

Q„=(n&k+—,'v, r~)l(2nR )

a transition may occur to a state with different n, say
n =n2. The superfiuid angular momentum takes a jump

bL, =L,(n2} L, (n, )—
and an energy AL, Q„is transferred from the torus to the
superfluid. If 0, is now decreased, the inverse transition
may occur at Q, =0,2 with

Q,~=(n2k ,'v, rn )/(2~R—)—

and the energy EL,Q,2 will be transferred back to the
torus. If Q, is brought back to Q, =n, kl(2nR ), the to-
tal energy dissipation in such an arbitrary cyclic transi-
tion will be

W, =bL, (Q„—Q,2) .

Different states are allowed for a given value of Q„states
that differ in the value of n. The number of allowed
states N depends on v, as N= v, rrrlk. At the two limit-
ing values in Eq. (14), the system undergoes a transition
to another circulation state with a value of n for which
Eq. (14}still holds.

The angular momentum of the superfluid of total mass
M, is approximately L, =M, U, R:

L, =M, R[RQ, +2r(nk 2nR Q, )—/o],
so that the angular-momentum difference between two
arbitrary circulation states depends at constant 0, only
on the difference n2 —n &.

III. APPARATUS

In our apparatus the torus is the inertial member of a
torsional pendulum. This way we can easily modulate 0,
by driving the pendulum at its resonance angular fre-
quency coo. In this configuration, depending on experi-
mental conditions, the occurrence of dissipation can be
seen either as a reduction of the effective quality factor of
the oscillator, or as a sudden collapse in the oscillator
amplitude.

The torus used in the experiment was made of three
aluminum pieces glued together with epoxy resin (Fig. 1):
a hollow cylinder closed at the bottom, a fiat top Aange,
and a central bulk cylinder connecting the other two
pieces. In the central cylinder, two 0.5-mm holes were
drilled: the first one along the cylinder axis, from one
end to the center, the second one along its diameter, from
the center to the surface. The resulting right-angle-
shaped channel formed the final part of the helium filling
line. At the upper end of this channel, a phosphor
bronze tube 0.4-mm outer diameter (o.d.) and O. l-mm in-
side diameter (i.d.) and 20-mm long was glued. This tube
served both as a continuation of the filling line and as the
torsion member of the oscillator. The mean radius R of
the resulting inner cavity of the torus was 7 mm, and the
cross section cr measured 60 mm . The torus was filled
with helium by condensing the gas through a capillary
tube from a high-pressure cylinder placed outside the
cryostat. To keep the liquid at its vapor pressure, one
end of the filling line was led into a cold pot half-filled

FILLING LINE

PIP:::::::::::::::::::—::::,—SEPTUM

ORIFICE

By using Eq. (16), we may write

W, =(n2 n& )M, rk[v, rn —(n2 n& )k]/(o m——R ) . (17)

From this equation we may calculate the energy 8'0 dis-
FIG. 1. Schematic drawing of the torus assembly with the

filling line and the septum; the orifice is not to scale.
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FIG. 2. Schematic drawing of the experimental apparatus.

with liquid (Fig. 2). A second piece of capillary tube con-
nected the pot with the torsion member and, through
this, with the torus. This second piece of filling line was
therefore always full of liquid during the measurements.

To stop the superfluid vorticity, ' the filling line outlet
into the torus was guarded by a porous filter (UM2 Diaflo
microfiltration membrane with a 1000 molecular weight
cutoS glued with precured epoxy. On the opposite side
of the torus from the filling line outlet, a copper septum
was glued, which supported a free-standing 5-pm nickel
foil with an orifice 5 IMm in radius (Fig. 1). In order to
stop the motion of the preexisting vortex lines, an open-
cell foam filled the torus except for a 5-mm zone on both
sides of the septum. This zone was left empty in order to
allow a free evolution of the vorticity generated in the
orifice.

In order to stabilize the direction of the oscillator axis
and to shift the frequency of transverse motion away
from the torsional resonance, a nylon filament 0.2 mm in
diameter was glued to the bottom of the torus and ten-
sioned by means of a BeCu spring. The moment of iner-
tia of the empty torus was I, —1.5 X 10 kg m, the mass
and moment of inertia of the helium inside the torus were
about 0.23 g and 9X 10 kg m, respectively.

A forcing torque was applied by means of an electro-
static transducer made of two opposite pairs of fixed elec-
trodes acting on two grounded plates. The plates had
areas A =6X8 mm and were glued to the torus, again
on opposite sides (Fig. 3}. The same constant high-
voltage bias VH relative to the ground was applied to all
four fixed electrodes. An alternating potential difference
was also applied to the electrode system by means of a
transformer. This was done in such a way that a poten-
tial VH+PVdsin(coot } relative to the ground was applied
to one set of diagonally opposite fixed plates while the po-
tential VH

—PVd sin(coot ) was applied to the other set. To
first order, only torsional modes were excited by this bias
scheme. Here P=0.41 is the transformer ratio of the

Xt X2
FIXED
ELECTRODES

SINUSOIDAL
NAVEFORM
GENERATOR

OSCILLATION
AXlS

osoooo.
METAL TRANSFORMER
PLATES

v, v,
HV

H GENERATOR

FIG. 3. Schematic drawing of the driver with the control
electronics.

decoupling transformer at the excitation frequency and
Vd is the peak amplitude at the generator output. The
force acting on each plate depends on the two distances
x, , x2 between the plate itself and the fixed electrodes
facing it. In the simplest case, x, =x2=xo, the peak
torque acting on the torus was

T„-2bVd13VHsoA /xo, (20)

where b —14 mm is the average distance of a plate from
the axis. At a dc bias voltage of 119 V and with x0=1 ~ 5

mm, we estimated this torque to be

T„/Vd=(1.6+0.8) X 10 N m/V . (21)
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FIG. 4. Schematic drawing of the torsional position sensitive
detector.

The large uncertainty in this estimate is due to the
difficulty both in evaluating the equilibrium values of x

&

and xz and in controlling the planarity of the whole sys-
tem.

The angular displacement of the torus was measured
by means of a detector made of two superconducting
disks of radius ad =1.2 mm. The disks were attached to
the torus at R =10 mm from the axis (Fig. 4) and moved
in a uniform magnetic field So generated by two systems
of 64-turn superconductive Helmholtz coils, 9 mm in ra-
dius. Due to the Meissner effect, each superconducting
disk changes both the distribution of the magnetic field
and (consequently) the flux 4, through a pair of super-
conducting coils located in front of it. Each sensing coil,
of radius a, =2.5 mm, was made of 10 turns of 0.075-mm
Nb wire. The effective area of each coil A(z) =4, /80 is
a function of the distance z between the disk and the coil
itself. For small displacements around the equilibrium
position, z =a„and with ad =

—,'a„as in our
configuration, one can estimate 8 A (z)/Bz -2.8 mm.

To reject stray fields, the two coils facing each disk
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were connected in a series in a gradiometer configuration.
The two gradiometers were then connected in a series so
that the resulting transducer should be sensitive to tor-
sional oscillations and should reject the signals coming
from pendulum oscillations. The calculated total induc-
tance of the four coils was about 4.5 pH. The four sens-
ing coils were part of a flux transformer, coupled by
means of a Nb coil to a homemade two-hole SQUID,
read with commercial 19-MHz electronics. ' The 1.4-
mm-diam coupling coil was made of 100 turns of 0.075
mm Nb wire. The inductance of this coil was found to be
3.5 pH, and the mutual inductance with the SQUID was
estimated to be —10 nH. From the resulting transformer
ratio value t&

= 1.3%%uo, we calculated the angular sensitivi-

ty of the transducer:

8@,/M-4B Rt&BA(z)/Bz, (22)

where 4, is the fiux signal at the SQUID.
Because of a loose contact in the closed superconduct-

ing circuit made of the four Helmholtz coils, we could
only use a current of 3.3 mA, which produced a field in-
tensity 80=1.5X10 T. Given this field figure and the
above reported value for BA /Bz, we estimated the angu-
lar sensitivity as

84, /M- (1.0+0.3)X 10 40/rad, (23)

where CI0=2.07X10 ' Wb is the magnetic Qux quan-
tum. The large uncertainty in this estimate is mainly due
to the uncertainty of the estimated equilibrium position
of the superconducting disks. With a typical flux noise of
5 X 10 40/&Hz, we get an angular resolution of
5 X 10 rad/&Hz.

The whole system of the torsional oscillator, the forc-
ing plates, and the position detector was enclosed in an
evacuated oxygen-free high-conductivity copper can.
The can was, in turn, enclosed in a superconducting lead
shield.

In order to reduce the mechanical noise, the cryostat
was put on a 120-kg foundation resting on four inflated
motorcycle tubes. All vacuum lines were made with
rubber tubing. Each line was anchored to a 50-kg
suspended mass placed at a distance of at least 2 m from
the connection to the cryostat. Temperatures were mea-
sured by means of a calibrated Ge resistor. The estimat-
ed measurement error was about +2 mK; the tempera-
ture stability over the measurement time was about +3
mK. The base temperature of the system was —1.2 K.

The resonant frequency of the empty torus was
31.403+0.002 Hz; the error figure also takes into account
the variations from run to run. The Q factor, measured
from the free-oscillation decay time ~ according to the
formula Q =rcoo/2, was about 5 X 10 at 4.2 K. The reso-
nance was excited with a high-stability synthesized oscil-
lator HP33258, also used as the reference input for a
lock-in amplifier that read the angular position signal at
the SQUID output (Fig. 5). The amplitude and phase of
this signal with respect to the forcing torque were A /D
converted; they were then acquired by a desktop cornput-
er. The frequency of the synthesized oscillator was con-
trolled by the computer and automatically adjusted in or-
der to keep the value of the phase at 90. This digital
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REFERENCE
SIGNAL SINUSOIDAL DIGITAL
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GENERATOR CONTROL

TRANSFORMER
+

HV GENERATOR

FIG. 5. Schematic drawing of the resonance stabilization
electronics.

IV. EXPERIMENTAL RESULTS

Typical experimental results regarding the oscillation
peak amplitude 8„asa function of the excitation peak
torque T~ at different temperatures are reported in Fig.
6. At every given temperature, a set of values of 8„were
automatically recorded as the excitation voltage Vd was
increased in steps b Vd. A time of -5~ was allowed to
elapse after each drive voltage step increase EVd before
the relative amplitude measurement was made. The

200
~~
C

150-
cj

o 't00-
0

~~
CL 50-

1.513 K

1.768 K

1.870 K
2.015 K
2.085 K

I

0.01
Peak Torque TA

I I

0.02 0.03
( arb. units )

FIG. 6. Torus oscillation peak amplitude 8& vs driving
torque peak amplitude T„atdifferent temperatures. From the
estimated calibration of the position detector and the torque
transducer, the amplitude unit corresponds to 1 prad with a
30%%uo accuracy and the torque unit corresponds to 10 ' Xm
with a 50% accuracy.

feedback control arrangement was used to track the
long-term drifts of the torus resonance frequency.

Once the torus was completely filled with liquid heli-
um, its resonance frequency was 30.35+0.05 Hz; as be-
fore, this error includes the variations from run to run.
The reduction from the value found when the torus was
empty was consistent with our estimate of the moment of
inertia of the liquid. The quality factor with the torus
full of helium was found to depend on the temperature;
the lowest value Q =300 was observed at 4.2 K with the
torus filled with normal fluid, the maximum value, about
Q =1200, was found at 1.2 K.
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free-oscillation decay time ~ was measured before each
set of measurements was taken. Each measurement of
8„wasa 5-min average of the lock-in output; the lock-in
time constant was 1 sec in all of the measurements re-
ported in this section. The curves drawn in Fig. 6 were
all obtained by increasing T~; however, we never ob-
served any difference in the measurements obtained by
decreasing T„.

In these plots we distinguish three separate regions:
first, when the torus oscillates at low amplitude, in the re-
gion from now on called subcritical, 8„is a linear func-
tion of the torque T„,in agreement with the standard
theory of the forced resonator: B„=T„QI(I,coo) In.
this subcritical region the inverse of the quality factor is
roughly proportional to the normal fluid fraction plus a
constant (Fig. 7). Second, at each temperature a plateau
is clearly recognizable in the data. In this plateau region
the torus no longer acts as a linear passive device, and the
peak oscillation amplitude on the plateau is almost in-

dependent of the drive torque. The starting point of the
plateau, from now on called the critical point, was ob-
served to be reproducible, within the experimental errors,
both in the torque and in the oscillation amplitude, and
both within the same run and after cycling the system to
4.2 K. Third comes a supracritical region, where the os-
cillation amplitude again increases monotonically as a
function of the drive.

With the chosen 5-min integration time, the reading er-
ror in the amplitude measurement is about 0.1% in the
subcritical and supracritical regions. In the plateau re-
gion, the spreading of the experimental points is much
larger, due to the occurrence of distinct events of the sud-
den reduction of the oscillation amplitude, of total dura-
tion -30 sec, followed by a slower recovery process (Fig.
8). These events are hardly distinguishable at tempera-
tures close to T&, but they become very evident at lower
temperatures. Below 1.6 K, the averaging procedure
within the plateau region is much more difficult because
of the above-mentioned processes. From the signal oscil-
lation amplitude reduction, it is possible to estimate the
corresponding reduction of the torsional oscillation am-

plitude (t)z —8, ) and the typical energy lost by the oscil-
lator

b,rk = ,'I—,a)o(t)2 —t'), ) .

This amounts, for instance, to about 5 X 10 ' J in each
of the events shown in Fig. 8(a). The oscillation ampli-
tude just before each event and the amount of the subse-
quent amplitude reduction are not reproducible; on the
contrary, they vary, at constant drive level, by as much as
1 order of magnitude.

The dissipation process involved in each of the events
shown has surely come to an end before the next one
occurs, as indicated in Fig. 8(a). In fact, the characteris-
tic recovery time constant just before an event is the same
as the free-oscillation decay-time constant in the subcriti-
cal region, which indicates the absence of any excess dis-
sipation in the superfluid during the recovery process. As
shown in Fig. 8(b), which refers to data still in the plateau
region but at a higher value of Vd, the total recovery time
decreases as the drive voltage increases. As a conse-
quence, the dissipative events in the plateau region tend
to become less distinguishable. In fact, a constant excess
dissipation takes the place of the distinct dissipative
events, and there is a smooth transition into the supra-
critical region, where the error in the amplitude measure-
ments is again 0.1%. Now the oscillation amplitude in-
creases again, which indicates that, in each oscillation cy-
cle, the driving torque feeds back the energy lost by the
oscillator. The slope in the supracritical region is
significantly smaller than the slope below the critical
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FIG. 8. Temporal dependence of the oscillation amplitude in
the plateau region at 1.5 K with two different peak drive voltage
values: {a) V&=0.65 V and (b) V&=0.9 V.
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point, which confirms that the superAuid dissipates a cer-
tain amount of energy during each oscillation cycle.

In separate experiments we looked at the decay of free
oscillations starting from a given oscillation amplitude.
In close agreement with these results, the decay of free
oscillations starting from a supracritical value showed a
sudden increase in the decay time (proportional to the
quality factor) when the amplitude crossed the level cor-
responding to the plateau (Fig. 9). We observed that, at
each temperature, these free decay times ~& and v &, mea-
sured in the supracritical and subcritical region, respec-
tively, are about the same as the typical decay time and
recovery time in the dissipative events on Fig. 8.

In Fig. 10 we show the critical amplitude values 8, as a
function of temperature. The units reported on the verti-
cal scale can be read as grad within a 30% accuracy.
Corresponding values of the flow velocity in the orifice
can be calculated from Eq. (12b) using 0, =eood„suppos-
ing n=0:

U, /&, =4rooR /&=(7+3)X10 m/(secrad) . (24)

drive torque
off

Absolute calibration is now within 40% because of the
uncertainty in the calibration of the values of 8, and in
the effective geometrical dimensions of the torus.

For a better understanding of the dissipation mecha-
nism, we calculated the excess dissipation 5W per cycle
in the supracritical region. We used the obvious con-
sideration that, to maintain a steady sinusoidal oscilla-
tion, the forcing system must compensate the energy dis-
sipated by the friction in the oscillator. Just below the
critical point, the driving torque supplies the work
8'& =~T,8, per cycle; at the end of the plateau it sup-
plies the work W2=n(T, +AT)t)„where T, is the
torque at the critical point and hT is the width of the pla-
teau along the torque axis. Then,

b W= W2 —W, =nATO, .

We found the end point of the plateau by extrapolating to
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FIG. 10. Critical peak amplitude 0, vs temperature. The
vertical segment crossing the temperature axis identifies Tq.
The amplitude unit corresponds to 1 grad with a 30% accuracy.
Each experiment point represents a value of the critical velocity
of the superfluid How through the orifice; the conversion factor
is (7+3)X 10 ' m/(sec rad). Correspondingly, at full scale the

velocity reading would be 1.0+0.4 m/sec. The dashed line is

the function p, ( T)Tz/(pT) with arbitrary normalization.

8, a linear fit of the supracritical experimental points, as
shown, for example, in the 1.870-K curve of Fig. 6. This
way we did not take into account the details of the transi-
tion from the subcritical to the supracritical region. We
think the related systematic error to be smaller than our
calibration error in the torque and amplitude measure-
ments. We cross checked these data by an independent
method based on the quality factor reduction in the
supracritical region. In fact, by using the definition

Q =2n W/w', where W= ,'I,B„c00is —theenergy stored in

the resonant oscillation and m' is the energy dissipated in
one oscillation cycle, we could calculate the excess dissi-
pation 6 W at 8, from the difference of the free-
oscillation decay times in the subcritical and supracritical
regions, ~& and ~& respectively,

0=
b W=2nI, B,roc(1/v( —1/r) ) (25)

I -1-
o

O

0 60
Time (sec }

120

FIG. 9. Temporal dependence of the logarithm of the oscilla-
tion amplitude 8& in the free decay from a supracritical point.
The first arrow indicates the time at which the driving torque
was stopped, the second arrow indicates the abrupt increase in
the decay time. From these decay times we calculate the supra-
critical and subcritical Q values.

Values of the dissipated energy per cycle calculated by
both methods are shown in Fig. 11 as a function of the
temperature. The agreement between the results ob-
tained by the two methods is surprisingly good, despite
the calibration error. This is due to the fact that the ratio
of the results obtained by the two methods under the
same conditions depends only on the ratio 8, /hT. Abso-
lute calibration of the ratio 8„/T„hasbeen indepen-
dently checked by considering that, in the linear regime,
sI„/T„=Q/(I,coo). Using nominal calibrations for t)„
and T„,we invariably found that this equation holds
within the 10% accuracy within which I, can be estimat-
ed. Although the nominal calibrations of angle and
torque are uncertain by a larger amount than this, their
uncertainties involve a common multiplicative factor.
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FIG. 11. Dissipated energy 6$' per cycle vs temperature.
Triangles are calculated from the quality factor variation; cir-
cles are calculated from the plateau amplitude. The vertical
segment crossing the temperature axis identifies T&. The energy
unit corresponds to 10 "J with an estimated calibration error
of 50%.

V. DISCUSSION

The critical velocities [see Eq. (24)] corresponding to
the data reported in Fig. 10 have the typical values and
temperature behavior of the intrinsic critical velocities
with a micrometric orifice. The data obtained for T & 1.9
K show a linear dependence on the temperature and ex-
trapolate to zero at 2.65+0.05 K, in reasonable agree-
ment with the results obtained with the Helmholtz reso-
nator technique, that extrapolate to zero between 2.41
and 2.55 K. ' Data in this region also agree with those
obtained by Hess in dc flow experiments, which are quite
linear between 1.3 and 1.8 K and extrapolate to zero at
T-2.56 K.

The high-temperature data, 1.9 & T &2. 115 K, tend to
zero at Tz. As shown in Fig. 10, the data in this temper-
ature range are well fitted by the function
Ap, (T)T~I(pT), where A is a fitting factor. This is in
agreement both with what is found in gravitationally in-
duced dc flows and with what is estimated by the ILF
theory. ' It must be noticed, however, that our data are
not fitted by this theory if the whole temperature range is
considered.

The existence of a critical velocity for the flow through
the orifice accounts for the time behavior of the oscilla-
tion amplitude in the plateau region (Fig. 8). At the criti-
cal point, the rotationally induced superflow in the orifice
reaches the critical velocity for vortex generation. The
vortices give rise to an energy dissipation in the liquid
and change the angular momentum of the superfluid,
with a consequent reduction in the oscillation amplitude.
The dissipation ends when the flow through the orifice
has become subcritical during the whole oscillation
period and all of the vortices involved have completed
their evolution. Possibly related phenomena are reported
in Refs. 6 and 7, where amplitude collapses in the oscilla-
tion amplitude of a Helmholtz resonator were observed.
These collapse events occurred in less than one oscillation

cycle, while, on the contrary, our reduction of the oscilla-
tion amplitude takes about 1000 oscillation cycles. We
have no definite explanation for this large difterence.

If all the vortices produced in the orifice were annihi-
lated and the preexisting vortex line configuration
remained unchanged, the calculations for the energy dis-
sipated reported in Sec. II, should apply. In the absence
of these conditions, however, we cannot quantitatively
compare our data regarding the dissipated energy (Fig.
11) with any of the equations derived from Eq. (17). In
fact, as stated before, our dissipative events involve many
oscillation cycles, while Eq. (17) was obtained by suppos-
ing 0, to be almost constant during each circulation
transition. We may only observe that the data for the ex-
cess energy loss per cycle b, W are to the same order of
magnitude as the maximum energy that can be dissipated
in multiple transition events calculated by substituting
the measured values of u, in Eq. (19). The corresponding
values of n

& n~
——u, re /(2k) range from 10 to 70.

Notice that, though 8„which we remind the reader is
a 5-min average of the oscillation amplitude, is fairly
reproducible, the value of the oscillation amplitude at
which each dissipative event occurs is randomly distri-
buted. This can be easily understood, as, at the end of
each dissipative event, the oscillation amplitude is so
much reduced that a number of "stable" circulation
states are available. Thus, it is likely that the final circu-
lation state is randomly chosen among these. As a conse-
quence, the value of the oscillation amplitude just before
the next dissipative event, that depends on the value of
the circulation quantum [see Eq. (14)], is also a random
variable.

The good reproducibility of the data recorded in the
subcritical region is a consequence of the existence of at
least one value of the circulation quantum n for which
the stability condition in Eq. (14) holds for all the values
taken by 0, during one oscillation period. In fact, the
number of the states that satisfy this condition that we
call, in short, stable states, is

Nz =2m( ,'ru, 2R 0„)Ik—, —

where Q~ =coo8„is the amplitude of the angular veloci-

ty oscillation. N„vanishes only for

Q„~coo@,=ru, l(4R ) .

If this is not the case, and if the system, at the beginning
of the run, is occasionally not in one of these stable states,
it will soon reach it after a few transitions. In fact, ener-

gy dissipations occurring during these occasional transi-
tions have been sometimes observed in the subcritical re-
gion at the beginning of the 5~ waiting time after each
drive change. On the contrary, at amplitudes above 8„
"stable" states are no longer available and the system is
forced to undergo the transitions with the characteristic
behavior of the critical regime.

It must be noticed that both the fair reproducibility of
the critical amplitude 8, and the unpredictability of the
value of the oscillation amplitude just before a single dis-
sipative event can also be explained if the vortices pro-
duced become steadily pinned somewhere in the torus.
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In fact, any distribution of vortices pinned on surface im-
perfections will induce a steady unknown superflow
through the orifice that adds to the rotationally induced
one. ' This unpredictable superflow would also contrib-
ute to randomize the amplitude at which the dissipative
events take place. Moreover, in accord with the previous
discussion, in the subcritical region, after a few transi-
tions the system would be allowed to reach a "stable'*
configuration of vortices. This would occur when the to-
tal superflow contributed both by the system of pinned
vortices and by the torsional oscillation stays lower than
the critical superflow during the whole oscillation period.

VI. CONCLUDING REMARKS

We observed a rotationally induced dissipation in
superfluid He. Considering the reproducibility of the
critical amplitude and the temperature behavior, we attri-
buted this dissipation to the formation of "intrinsic" vor-
tices in the orifice at the critical flow rate. Our work ex-
tends, up to 2.115 K, the ac flow measurements of critical
velocities performed with Helmholtz resonators.

The reproducibility of the critical velocity data, their
temperature dependence, and the essential agreement be-
tween data obtained in different experiments suggest that
a thermal nucleation mechanism is involved in the intrin-
sic formation of vortices, as the critical processes involv-
ing the depinning of preexisting vorticity can hardly ac-
count for the homogeneity of data obtained with different
orifices. However, the ILF nucleation model cannot ac-
count for the data in the whole 5 mK to 2. 1 K range.

In conclusion, let us make, a few remarks on the impli-
cations of our observations for the realization of the ana-
log of the SQUID mentioned in the Introduction. In or-
der to get proper SQUID behavior, jumps are needed in
the circulation quantum of

~
hn

~

= 1 at the critical veloci-
ty. If this limit were reached, then the perfect analog of
the staircase pattern of the superconducting rf SQUID
should be evidenced in the 8„versus T„plot. Any qua-
sistatic superimposed angular velocity would then period-
ically modulate this pattern, again in analogy with the
SQUID. ' ' Though this second phenomenon has never
been observed, a staircase pattern has been reported in
one of the experiments made with Helmholtz resona-
tors. The energy dissipation measured in our experi-

ment is consistent with jumps of the circulation quantum
n with

~
b, n

~

& 10, and this is probably why it was not pos-
sible for us to observe the expected SQUID behavior with
our experimental apparatus. In our opinion, the number
hn of circulation quanta the system actually jumps in a
single transition depends on various more or less relevant
parameters.

First, the number N=u, re/k, which represents the
number of stable circulation states allowed at any specific
angular velocity, should set an upper limit for ~b,n ~. N is
just twice the so-called critical phase value in units of
2n, 4 bS,*/(2m)=N/2. Having N-1 may not be greatly
important, since Avenel and Varoquaux observed single
quantum transitions with N-26. However, if N proved
to be a relevant parameter, it could be reduced either by
diminishing r to less than 1 IMm, as in Refs. 5 and 7, or by
operating at temperatures close to T&, where U, is small-
er. This last possibility is permitted by the fact that the
quality factor of our oscillator with the 5-LMm radius
orifice appears to severly degrade only for temperatures
above 2.1 K.

Second, to inhibit random multiple transitions, the
evolution time of a single vortex should be shorter at
least than the flow oscillation period. In fact, the stair-
case pattern was obtained with a low-frequency (vo-2
Hz) Helmholtz resonator, while single transitions were
not reported in a similar experiment operating at -1
KHz. These considerations seem to indicate that the
frequency of operation is another relevant parameter that
needs to be changed in order to reach the single-
transition limit. However, in order to make a superfluid
SQUID act as a practical gyroscope, the frequency can-
not be lowered at will. The problem may be solved again
by working at temperatures close to Tz, where a high
fraction of normal fluid is present and the vortex evolu-
tion is faster. It seems that both the conditions discussed
above can be met in the kind of experimental method we
have presented in this paper.
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