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Transport-theory approach to ion-beam mixing and recoil implantation
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Ion bombardment of an amorphous target in slab geometry is considered, and ion-beam mix-

ing and recoil implantation evaluated in the binary-collision approximation. A fundamental
equation for target-atom redistribution during ion bombardment is formulated, which relates
the redistribution flux to the source function for the creation of energetic atomic recoils and
their range distribution; for the analysis, this equation plays the role of the Boltzmann transport
equation. Expanding the target-atom density in a power series and truncating at the second
term yields a flux equation and closed expressions for coefFicients of recoil implantation and of
ion-beam mixing. The flux equation plays a role analogous to that of Fick s law in diffusion.
Lattice relaxations are taken into account by introducing flux transformations between labora-
tory and marker coordinate frames. The closed expressions for the coe%cients are calculated
and compared with experiment. The binary-collision contribution to ion-beam mixing turns
out to be larger than heretofore thought. A new mechanism for ion-beam mixing emerges,
which turns out to make a very significant contribution. There are even cases where the new
mechanism far outweighs the cascade-mixing mechanism, thought to be the major contributor
to binary-collision ion-beam mixing.

When a solid target is bombarded by an ener-
getic ion beam, the target atoms spatially redistribute
themselves. ~ Beam-target collisions cause energetic re-
coils; the recoiling atom (primary knock-on atom or
PKA) is itself an energetic ion traversing the target
and goes on to generate a cascade of secondary knock-
on atoms. The elastic collisions induced by the ion
bombardment cause recoil implantation (RI), wherein

target atoms are slammed downstream by collisions
and ion-beam mixing (IM), a process resembling ther-
mal diffusion but driven by collisions rather than ther-
mal motions. 2 The binary-collision approximation is
made throughout this paper, which assumes that these
collisions involve only two-body interactions. Other
major mechanisms of target-atom redistribution that
have been identified include radiation-induced segrega-
tion, radiation-enhanced diffusion, and many-body ef-
fects (cascade spike effects) in ion-beam mixing, and
these other mechanisms are thought to dominate over
the simple binary-collision mechanism for ion-beam
mixing. However, in evaluating these other mecha-
nisms it is essential that there be available a reliable cal-
culation of the binary-collision mechanisms for IM and RI
for the following two reasons: (1) In assessing redistribu-
tion experiments, the binary-collision contributions need
to be subtracted off in order to estimate the size of the re-
maining effects, and (2) the binary-collision mechanisms
are the fundamental forces driving these other mecha-
nisms. This paper sketches a transport-theory approach,
which, subject to certain restrictions, promises a realistic
calculation of these binary-collision eA'ects. The analysis
is in the spirit of and employs the concepts of Boltzmann
transport theory, but the fact is that the Boltzmann

transport equation is not used in this analysis: Equa-
tion (1) below has in it all the information that will be
required and, for the present analysis, serves the purpose
of and replaces the Boltzmann transport equation.

Consider a beam of atomic species 1 bombarding, in
slab geometry, an amorphous target consisting of atomic
species 2 and 3. The beam is considered to be energetic
enough that it comes to rest deep in the target, far be-
yond the region of interest. In the region of interest the
beam is considered to be paraxial and monoenergetic.
Consider a coordinate frame fixed to the deep interior
of the target, far beyond the range of the bombarding
ion beam, with the z axis perpendicular to the target
surface, and let z~ be the z coordinate of the target sur-

face, which is assumed not to vary with time. For the
moment, focus attention on the redistribution Aux J3 of
3-atoms considered as a function of depth z; an expres-
sion for that quantity is found as follows.

One can write djs ——¹(zs,t)Ss(vs) dzs da, where Ns
is the atomic density of 3-atoms at depth z3 at time t, ,

and dj3 is the number of energetic 3-atom recoils cre-
ated with velocity v3 at depth dz3 about zq per unit
area of the y-z plane per unit time, and in interval da
about a, where a are a set of variables yet to be de-
fined that determine vs. [An example of the variable
set a will be given later in connection with Eq. (7)
below. ] The source function Ss(vs) is defined by the
above expression. For brevity, the variable t will of-
ten be omitted in writing ¹(z,t) when that variable
is not the focus of interest. Let f(z; zs, vs) be the range-
distribution function for 3-atoms created at depth z3
with velocity vs,. such an atom has a probability f dz
of coming to rest at depth dz about z. This distribu-
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Equation (1) is the basis of the present analysis.
An important role will be played by the operator 'R

defined to be reflection with respect to the z axis: Rvs
is the vector that has an z component equal to —vs~
and whose other components are the same as that of vs.
One can always decompose the source function Ss(v3)
into a sum of parts that are even and odd with respect
to this reflection: Ss(vs) = Ss(vs) + Ss(vs), where

S~(vs) =—z[S(vs) + S(@vs)j. A source function that
is isotropic will be purely even; at the other extreme, a
source function Ss(vs) that is nonzero only for positive
vs~ will have equal even and odd parts.

Expanding Ns as a power series in zs about the (arbi-
trary) value z, substituting into Eq. (1), and truncating
at the second term, one finds

Js(z) = R3N3(z, t) —D30 Ns(z, t), (2)

with

d4 = / dc Sr(vs)dd, (vii),
o3 &0

D3= da 3v3Mg v3 ) (4)

and with the functions Mi and Mz defined to be
Mp(vs) = I GZ3 (z —z3) F(z' Z3, v3). It turns
out that, independent of the form of the range distri-
bution f(z;zs, vs), Mi —ZR and M2 ——2(ZR + o'R),
where zR(vs) is the projected range (projected on the
z axis) of an energetic 3-atom created with velocity vs
and oR(vs) is its straggling in projected range. It is sig-
nificant that the coef5cient R3 depends only on the odd
part of S3(V3) and Ds depends only on the even part
of Ss(v3). A similar analysis yields expressions for the
flux J2(z) of 2-atoms analogous to those of Eqs. (2), (3),
and (4) above. Having expanded N3 in a power series
in z, the coefficients R3 and Ds of Eqs. (3) and (4) are
spatially independent and do not involve the variable z;
these equations now consider the target to be homoge-
neous. Correspondingly, we must now set zR = —oo in
the evaluation of R3 and D3. These expressions for R and
D will be discussed, but first let us pause to examine the
flux equation (2).

Suppose that at time t = 0 the atomic density N3 is
given by N3(z, 0) = b(z), where b is the Dirac b func-

tion function is to be taken as zero whenever z is out-
side the target; in our case f = 0 for z & zs. Define
the function F to be F(z;zs, vs) = f dz' f(z', Z3 vs)
for z & zs and F(z;zs, vs) = —f dz' f(z', zs, v3) for
zs & z & zs. Using Gauss' law for conservation of par-
ticles, B~J3(z) = Oq—N3(z, t), one can show that, for z
values inside the target (z & zs), the flux Js is given by

Jii(z) = f daSii(vs) zds¹(z i(i) d(z;zs, v )ii.
&S

tion. Then one can show that the solution of Eq. (2)
is Ns(z, t) = G(z, t), where G(x,t) is the familiar Gaus-
sian function describing ordinary diffusion for this initial
condition, with standard deviation o = /2Dst, but cen-
tered at the plane z = Rst. The solution G is thus the
Gaussian describing ordinary diffusion, but drifting to
the right with velocity R3. Also note that, if R3 ——0,
Eq. (2) is just Fick s law for diffusion. Thus, there is a
clean separation between drift and broadening eA'ects in
the two terms of Eq. (2). This separation prompts us to
propose a difkrent usage of the terms recoil implantation
and mizin(t than that often employed: In this paper the
eff'ects of the first term of Eq. (2) will be referred to as
recoil implantation, and the effects of the second term
will be referred to as ion-beam mixing. Because of the
linearity of Eq. (2), the function G is a Green s function
for that equation: For Ns an arbitrary function Ns(Z, O)
at t = 0, one has Ns(z, t) = f dz' G(z z', t)N—s(z', 0).
Thus, for any experimental configuration (in slab geom-
etry), the flux Eq. (2) determines Ns(z, t) for all subse-
quent times from its value at t = 0.

The derivation of the flux equation (2) relied on the im-
portant approximation that the power series expansion of
Ns can be truncated at the second term. The sweeping
implications of this approximation must be emphasized.
To begin with, this approximation can only be valid when
individual collisions do not make abrupt changes in Ns.,
in this approximation the changes in Ns are due to the
cumulative eR'ect of many collisions, with each individ-
ual collision changing Ns infinitesmally. In addition, the
requirement that this power series can be truncated at
the second term is roughly equivalent to requiring that
B~N3 && Ns, in the Gaussian Green's function G(z, t)
this is equivalent to requiring, for the standard deviation
cr, that the time t be sufBciently large that

(rlA )) 1, (5)

where A is the largest significant mean-free path between
collisions.

During the ion bombardment diH'erent parts of the tar-
get will expand and contract because of atomic redistri-
butions, and the above discussion of the flux equation
(2) must be altered to take account of these lattice relax-
ations, which can be done in the following manner: Let
the labomtory frame be the coordinate frame defined in
connection with Eq. (1), that is to say, a coordinate frame
fixed to the deep interior of the target, and let the marker
frame be the coordinate frame of that name employed by
Darken in his analysis of the Kirkendall effect. To the
extent that a lattice plane maintains its integrity dur-
ing bombardment, the marker frame can be thought of
as a coordinate frame fixed to a particular lattice plane
perpendicular to the z axis. The marker frame moves
with respect to the laboratory frame, and, in general,
there is a diff'erent marker frame for each different value
of target depth z. Because of this motion, the flux J; of
target atoms of atomic species i will be diferent in the
two coordinate frames. Let vM(z) be the velocity of the
marker frame at depth z with respect to the laboratory
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frame. The cruxes seen in the two frames are related by
the flux transformation J;M(z) = J;r,(z) + vM(z)N;(z)
for atomic species i = 2, 3, where the subscripts M and
I denote the marker and laboratory frames. The flux
Eq. (2) is valid in the marker frame. In order to evaluate
experimental results, one must transform this equation
to the laboratory frame, which can be done as follows.

One must know how the target density varies with
varying concentrations of the constituent atomic species;
for this purpose we will assume that the target obeys
Vegard's law P,. in;N;(z) = 1, where ~; is the atomic
volume of an atom of species i. Using Gauss' law for
conservation of particles, one can show that this im-
plies P, i u; J;L,(z) = 0. Using this result together with
the flux transformation equation above to first determine
vM(z) and then to transform the flux equation (2) from
the marker frame to the laboratory frame, one finds

J3L(z) —[Rs R2 ~i Ji + wsN3(R2 Rs)]Ns
—[Ds + (D2 Ds)~3Ns]8~N3 s (6)

where Ji is the bombarding-beam flux. We will assume
that the atomic concentration of 3-atoms is small. In
the flux equation (6) one can then drop the terms that
contain the factor msNs, and this equation now becomes
linear, similar to the flux equation (2) and with a sim-
ilar Green s-function solution, but this time with drift
velocity given by Rs —Rz —ui Ji rather than by Rs.

In general, the surface will move with respect to the
laboratory frame because of sputtering and, as in ion-
beam-aided deposition, adsorption. The above discus-
sion of Jsr, remains unchanged in this case, provided we
retain the assumption of monoenergetic paraxial pene-
trating beam. However, when this assumption is relaxed,
as when discussing implantation-profile evolution in time
during ion bombardment, then a third coordinate frame
becomes cogent: The target frame, defined to be a coordi-
nate frame moving such that the target surface is always
located at the origin. The above analysis can be used as
a starting point to address this profile time evolution in
the presence of lattice relaxation, but that is not done in
the present work.

Let us now return to the discussion of the coefficients
Rs and Ds of Eqs. (3) and (4). Corresponding to the fact
that energetic 3-atoms are created in collisions in which a
1-, 2-, or 3-atom collides with a 3-atom at rest, the source
function Ss(vs) is a sum of three terms: Ss ——Ss +
Ss + Ss . The assumption that the concentration Ns of
3-atoms is small significantly simplifies the calculation of
R3 and D3 by allowing one to ignore the 3-3 collisions and
drop the Ss term. (The calculation of these quantities
can be done without this simplification. ) Corresponding
to the source function Ss now being a sum of two terms,
one has D3 —D3 + D3, and a similar sum for R3.
Similar observations apply to the calculation of Rq and
Dg, where one can write D2 ——D2 + D& .

Consider now the calculation of Ds2s. Let g2 be the
single-particle distribution function for steady-state pro-

duction of energetic 2-atoms during the ion bombard-
ment: Qz(vz) d i)2 is the number of 2-atoms with veloc
ity in d v~ about v2. For the variable set a, which de-
termines vs in Eq. (1), choose v2, cosx, and p, where

y is the center-of-mass scattering angle in a 2-3 collision,
and P is the azimuthal angle for that collision. (The ve-

locities are in the laboratory frame; the angles are in the
center-of-mass frame. ) Define the quantity I&2s by say-
ing that the cross section for a 2-3 collision is given by
N3ICQ3 d(cos y) dP. One can show that Eq. (4) for D
gives

v~d cosy d K~3 2 & 2 M~

The recoil-implantation parameter R3 has a similar ex-
pression, but with $20 instead of gz and with Mi instead
of M2. It is significant that D depends only on the even
part of gz, and R depends only on the odd part of Qz.
The physical mechanism for IM expressed by DP of Eq.
(7) is that of cascade mixing, which is the Einstein pic-
ture of gaseous diffusion as extended to ion bombardment
by Haff and Switkowsky. s According to this picture the
flux Js(z) is the algebraic sum of positive and negative
contributions which are equal and opposite unless Ns is
spatially varying, in which case this algebraic sum is pro-
portional to the gradient of Ns.

Similarly, for the contribution from 1-3 collisions one
finds

Ds = Js f d(sos x) dPÃ, sMs(vs), (8)

with a similar expression for Rsis, but with Mi instead of
Mz. The ion-beam mixing Dsis caused by 1-3 collisions
involves a different mechanism than the cascade-mixing
mechanism Ds2s caused by 2-3 collisions. In contrast to
the situation in the Dszs of Eq. (7), where all of the
atoms incident on and colliding with the target 3-atom
have the slab-geometry analog of isotropic velocity dis-
tributions, all of the incident atoms in the Dsis of Eq.
(8) are moving downstream (in the marker frame). We
will see later, in Table II, that this 1-3 mechanism, sur-
prisingly, contributes very significantly to IM. If N3 is
spatially constant, this gives rise to the flux Rsi Ns of
the first term of the flux Eq. (2). If Ns is spatially vary-
ing, then the Aux seen at the plane z must be corrected
for the fact that the 3-atom density at the creation site is
difFerent than Ns(z); this correction leads to the second
term of the flux Eq. (2). The condition Eq. (5) implies
that the sum of these two terms will always be positive;
Jsis is always pointed downstream (in the marker kame),
but in such a way that the Green's function Gsis(z, t) for
the solution of the 1-3 flux equation for J3 is that dis-
cussed in the paragraph above containing Eq. (5), with
a downstream drift (in the marker frame) determined by
Rsis and a broadening (in the marker frame) determined
by D13

To calculate DP and Rszs one must be able to evalu-
ate the steady-state distribution function $2(v2), which
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TABLE I. Comparison of the present calculation of the ion-beam mixing parameter D3 with
the data of Ref. 14.

Zg 50-keV Ne
—,
' D, (Io' A')

110-keV Ar 220-keV Kr 300-keV Xe

Ni expt.
calc.
Ge expt.
calc.
Sn expt.
calc.
Sb expt.
calc.
Pt expt.
calc.
Au expt.
calc.

0.12+0.04
0.334

0.9+0.3
0.277

0.9+0.3
0.217

0.7+0.3
0.213

0.7+0.3
0.170

1.3+0.5
0.161

0.6+0.2
1.30

1.4+0.5
1.06

1.8+0.6
0.766

1.7+0.6
0.747

1.4+0.5
0.599
2.7+1
0.563

1.7+0.2
5.46

4.8+0.8
4.54

4.3+0.9
3.21

4.1+1
3.31

3.4+0.9
2.55

7.3+1.5
2.42

3.7+1
10.7

8.8+1.4
9.18

5.5+0.8
6.68

5.9+0.8
7.08

4.1+1
5.62

8.2+1
5.46

was done by employing the Monte Carlo computer code
TRIMCAS, s modified to evaluate this quantity. The sis-
ter cade TRIMMED was used to obtain the range param-
eters needed for Mi and M2. These two codes used
the universal interatomic potential described in Ref. 11
for elastic collisions, and both codes were modified so
that inelastic (electronic) stopping was that of Lindhard-
Scharff-Schiott (LSS) with a k value given by Ref. 12.is
In all of the calculations about to be described, a vacancy
was not produced unless the target atom was given an en-

ergy of at least Eg, in which case the recoiling atom has as
energy the transferred energy less Et„all the calculations
here used Eg =14 eV and Et, =0.5 eV. Let Ns ——0 and
B~N2 ——0, in which case the version of the flux Eq. (2)
for J2 gives (exactly) Jd e2 vq@q(v2) = RqN2. Actually,
this equation can be considered the sum of two equations
for recoiling 2-atoms created by, respectively, 1-2 and 2-2
collisions. In the equation involving R2i~ the contribution
to $2(v2) is from PKA's only, while the contribution to
$2(v2) in the equation involving Ri is from secondary
knock-on atoms only. These two equations constitute
two sum rules that must be exactly satisfied by any self-
consistent calculation. For the case of Figs. (1) and (2):
the sum rule for @~2 was satisfied with 5.1% error and
the sum rule for P~2 was satisfied with 2.0% error, which
are consistent with the Monte Carlo fluctuations in the

calculation of gg(vs). (In all of the TRIMCAS calcula-
tions of this paper, the number of histories was chosen to
produce about four million vacancies per run. )

To compare the above expressions with experiment,
consider as a typical case the data of Ref. 14, where
Z2 is silicon. In these experiments, the targets were all
initially prepared as thin layers of 3-atom material sand-
wiched between 2-atom material. Our assumption that
Ns is small is violated here and, equally serious, it will
turn out that the requirement of Eq. (5) is also violated,
so comparison with experiment cannot properly be made.
Comparison could be made in an experiment in which the
target is bombarded long enough so that 0 of Eq. (5) is
sufficiently large, the target then taken out, measured,
returned for another bombardment, and taken out and
measured again. Nevertheless, it is of interest to com-
pare the data of Ref. 14 with the present calculation,
which is done in Table I. This table indicates that binary
collisions make a larger contribution to ion-beam mixing
than heretofore thought. 4 s Table II indicates that the 1-
3 collision mechanism makes a very significant contribu-
tion to IM. There are even cases where this contribution
far outweighs the contribution from the (cascade-mixing
mechanism) 2-3 collisions. This is a surprise because the
incident atoms in 1-3 collisions are all moving in the for-
ward direction (in the marker frame). One would expect

TABLE II. The recoil implantation mixing parameter R3 and the fractional contribution of 2-3
collisions to the ion-beam mixing parameter D3 for taro representative 3-atoms.

Zg

Z3

Ge
Pt

Ge
Pt

50-keV Ne

46.2
41.1

0.813
0.774

110-keV Ar

34.4
32.7

1.56
1.42

D3'/D3 (Fo)

+R, (IOA')

220-keV Kr

20.8
22.0

3.53
3.23

300-keV Xe

17.4
16.8

6.03
5.36
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these collisions to make a small contribution to IM in

comparison with the 2-3 collisions, where the incident
atoms are more isotropic. In the calculations for the two
tables, the energy used for the beam was not the actual
beam energy listed in the Z' row but a lower value corre-
sponding to the energy degradation the beam suAers in

traversing the target to get at the 3-atom layer. For the
Ni, Ge, and Sn targets the energies used were 31.6, 72.4,
145, and 187 keV, respectively, while for the Sb, Pt, and
Au targets, the energies used were 40.8, 91.2, 183, and
243 keV, respectively.

In the expressions for Ds, Eqs. (7) and (8), imagine
that the integrations are arranged so that an integration

f&' *
dEaI is done last, where Es is the energy of a 3-

atom recoil at creation, and consider D3 to be a function
of the lower limit of integration Es. These functions for
Ds's and Ds2s are depicted in Fig. 1 for the case of Zq ——

Ar and Zs ——Ge of Tables I and II, along with the corre-
sponding functions of Rs, as well as the projected range

z~ of 3-recoils as a function of Es for vs parallel to the
z axis. The experimental data of Ref. 14 imply that
in this case o of Eq. (5) was 91.7 A. . Figure 1 shows
that 96% of the contribution by D's to IM and 66% of
the contribution by Dss involves 3-atom ranges zp larger
than this value, which is why comparisons of the present
calculation to those data are not properly valid.

Now imagine that the integrations for Rs and Ds
are arranged so that an integration Jz' *

dE& is done

last, where E2 is the energy of the 2-atom incident on
the 3-atom in a 2-3 collision; Fig. 2 shows Ds's and R~s

considered as functions of the lower limit of integration
E2. Here one finds that 88% of the contribution by D2s

to IM comes from E2 energies involving 2-atom ranges
zp larger than the value of 0.

The high-energy contributions in Figs. 1 and 2 come
mainly from large-excursion events that probably would
not satisfy the power-series approximation leading to Eq.
(2). The big role played by these high-energy contribu-
tions raises the question of to what extent these large-
excursion events should be included in the calculations
of g and D and, equally important, to what extent they
are included in the reported experimental measurements
of R and D. This is an important point requiring further
investigation.

It would be of interest to relax the condition of Eq.
(5) and the condition that Ns be small by avoiding the
power-series expansion of Ns(zs) by dealing directly with
Eq. (1) and by dealing with the resulting nonlinear
laboratory-frame flux corresponding to Eq. (6). At least
for the 1-3 contribution, it should be feasible to numeri-
cally evaluate Eq. (1) combined with numerical integra-
tion of the laboratory-frame flux corresponding to Eq.
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FIG. 1. Ion-mixing parameters D3 and recoil-implantation parameters 83 for 1-3 and 2-3 collisions, considered as a function
of the lower limit of integration E3, the 3-atom recoil energy. The projected range x~ of 3-atoms as a function of E3 is also
shown for v3 parallel to the x axis. The case depicted is that of Zz ——72.4-keV Ar, Z2 ——Si, and Z3 ——Ge.
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FIG. 2. Ion-mixing parameter Dq and recoil implantation parameter R, for 2-3 collisions, considered as a function of the
lower limit of integration Ez, the 2-atom incident energy. The projected range x& of 2-atoms as a function of E2 is also shown
for vq parallel to the x axis. This is the same case as in Fig. 1.

(6).
The dependence of IM and RI on the displacement

energy Fg2 for 2-atoms and Eg3 for 3-atoms is of interest
because a strong dependence on E~ would imply a strong
binary-collision contribution to chemical, beam fluence,
density, and temperature effects in IM and RI. Figure 2

shows that there will be very little dependence on Ed~,
but Fig. 1 indicates a strong dependence of R3 and a
moderate dependence of Ds on Egs. Correspondingly,
we can expect a fairly strong dependence of Rs and a
rather weak dependence of Ds on Egs.

Table II also shows calculated values of Rs for two
typical targets of the data of Ref. 14. Recoil implan-
tation was not measured in that work, but data for two

cases of RI is available in Ref. 15. There, for Zq —300
keV Xe, Z2 ——Si, and Zs —Pt, the measured R/Jq was
110+50A; the corresponding calculated values turn out
to be Rs/Jt ——62.6 A and Rs/Jq —71.7 A, which would
predict a negative drift rather than the positive drift, ob-
served. Similar results were obtained for the other case
of Ref. 15. Negative drifts were also found by Littmark. 2

If, as seems likely, this disagreement between experi-
ment and the present calculation were to persist after
a proper comparison was possible, then the discrepancy
would have to be attributed to some mechanism other
that of binary collisions, such as radiation-induced seg-
regation.
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