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Absence of long-range order in three-dimensional spherical models
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The spherical model is a unique model for which an exact solution at finite temperature exists
in three dimensions (3D). In this paper we prove that this model may show an absence of long-
range order (LRO) in 3D if a suitable competition between exchange coup1ings is assumed. In
particular we find an absence of LRO in wedge-shaped regions around the ferromagnet or
antiferromagnet-helix transition line or in the vicinity of a degeneration line, where infinite non-
equivalent isoenergetic helix configurations are possible. We evaluate explicitly the phase dia-
gram of a tetragonal antiferromagnet with exchange couplings up to third neighbors but our con-
clusions apply as well to any Bravais lattice. We also discuss the connection of the spherical mod-
el or classical Heisenberg Hamiltonian for parameters lying on the degeneration line with more
general spin Hamiltonians where the interaction may be written in terms of the adjacency matrix.
This seems particularly promising for describing a perturbative approach to the Hubbard Hamil-
tonian, which is of particular interest in high-T, superconductivity.

Very few statistical models exist that can be exactly
solved, and even less that allow an exact solution in three
dimensions (3D). One of these is the spherical model of
Berlin and Kac. ' It was born as an approximation to the
Ising model, obtained by relaxing the Ising constraint
S; +' I and replacing it by the spherical constraint
PP &

S;2 N. In this way the partition function

of the model results in
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where the saddle-point implicit equation for the parame-
ter k is given by

where P I/kaT and the Hamiltonian P is

—
2 QJ~)S;S, (2)

may be exactly evaluated by replacing the b function in

(I ) by its integral representation
I
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In Eqs. (5) and (6) U„ is the volume of the d-dimensional
lattice unit cell and integration is performed on the first
Brillouin zone of the reciprocal lattice. When the saddle
point coincides with the branch point of the integrals ap-
pearing in (5) and (6)

bW —QS2- Q +/OO

exp s N —QS; ds.
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a phase transition occurs at a critical temperature

%(s) & —,
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where J,.
„

is the maximum value of the Fourier trans-
form of the exchange coupling

J(k) g J k'(Ij (4)

and the integration over s can be performed by applying
the method of steepest descent. The free energy per spin

The Gaussian integrations over spin degrees of freedom
appearing in (I) can be exactly performed provided that
the complex integral over the Lagrangian multiplier s is
evaluated on a judiciously chosen path. For a Bravais lat-
tice it turns out ' that the order of integration over S; and
s can be exchanged if

kaT, (2tr)d" J .,„—J(k) (8)

If the integral on the right-hand side of (8) is convergent,
one obtains an ordered phase for T & T, where the saddle
point A, in Eq. (5) sticks at the value given by Eq. (7). For
T & T, Eq. (6) provides the value of k to be inserted in

Eq. (5) in order to obtain the free energy of the disordered
phase. However, if the integral in (8) diverges T, van-
ishes and no phase transition occurs.

Our interest in this model comes from a recent rigorous
result that establishes the absence of long-range order
(LRO) in 3D Heisenberg models on surfaces of the pa-
rameter space determined by suitable competition of ex-
change couplings. The spherical model may be a good ex-
ample of testing this rigorous result giving explicit equa-
tions for that surface which reduces to the ferromagnet-
helix (F-H) boundary at vanishing temperature. It is
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worthwhile noticing that the ground state of the Heisen-
berg model in the classical limit (S~ ee) is the same as
that of the spherical model ~hose internal energy per spin
at T =0 is given by

U(T=O) = —
2 J,„—= —

Y' J(Q), (9)

where Q is the wave vector that maximizes J(k). Even
more interesting is the fact that in a number of Bravais
lattices lines in the zero-temperature parameter space are
found where an infinite degeneracy of the ground state of
the Heisenberg model is present when the classical limit is
taken.

These infinite degeneration lines may be originated by a
suitable competition of the exchange couplings as for
tetragonal or hexagonal lattices 5 or by a frustration re-
lated to the lattice structure itself as in a rhombohedral
antiferromagnetic (RAF) model where the interaction is
limited to nearest neighbors (NN). Tetragonal and hex-
agonal lattices have been studied with exchange interac-
tions up to third-nearest neighbors (TNN) in the basal
plane and NN out of plane in order to assess the existence
of long-range order (LRO). The NN in-plane exchange
integral was assumed to be ferromagnetic in Ref. 4 and
antiferromagnetic in Ref. 5. These models are useful to
describe some helimagnets as NiBr2 (Refs. 7 and 8), NiI2,
and CoI2 (Ref. 9) when Ji)0 or RbNiC13, CsNiC13
(Ref. 10), TbGa2 (Ref. 11), LiCrS2 (Ref. 12), and VI2
(Ref. 13) when Jl & 0. In all these models an infinite de-
generation line appears at Jq 2J3, where Jq and J3 are
the next-nearest neighbor (NNN) and TNN exchange in-

tegral, respectively. '

In Ref. 6 the frustration is entered by the lattice struc-
ture and is present for any Jl & 0 and any coupling be-
tween planes i

J'i &
i Jl i. This model seems appropriate

to describe the oxygen in its P phase at low temperature. '

Even more exciting seems to be the tetragonal lattice
with J 1 & 0 where the infinite degeneration line seems to
be explored by the high-T, superconductor La2Cu04. '6

In this case the Hubbard Hamiltonian maps into a
Heisenberg Hamiltonian with Ji &0 and J2 2J3.

The rigorous theorem proved in Ref. 3 was not able to
establish that LRO is absent on surfaces that reduce to
these infinite degeneration lines for vanishing tempera-
tures even if simple spin wave theory supports this conjec-
ture. This important question may be answered, on the
contrary, evaluating exactly the critical temperature of
the spherical model in the vicinity of the infinite degenera-
tion lines. We anticipate the interesting result that
wedge-shaped regions of absence of LRO appear in vicini-

ty of these infinite degeneration lines as well as in the vi-

cinity of the F-H or AF-H phase boundary.
As an example let us take a spherical model on a tetrag-

onal lattice with NN J] & 0, NNN J2, TNN J3 in-plane,
and NN J' out-of-plane exchange couplings.

The ground state of this model, which is the same as the
corresponding classical Heisenberg model, is shown in

Fig. 1 where AF, AFi, H 1, and Hq mean the usual antifer-
romagnet with Q = (m, z), a configuration where fer-
romagnetic lines of spins alternate antiferromagnetically
characterized by Q (x,0), and two helix phases charac-
terized by wave vectors Q ={x,cos ' [—(1 —2j2)/4J3]]

- 0.5
I

I I I I I I 1 — Jg
1

AF

--0.5

FIG. 1. Phase diagram at zero temperature of the spherical
or classical Heisenberg model on a tetragonal lattice with
Jl &0: AF, AF1, Hl, H2 mean usual antiferromagnetic phase,
antiferromagnetic stacking of ferromagnetic lines, and two heli-
cal phases (j,=—J,/Ji).

l —2j2 —4j3 0 j2(
The line between the Hi and H2 phases of equation

2j3, j3

(io)

is an infinite degeneration line where all helix wave vec-
tors satisfying the equation

cosQ» +cosQy (12)
4j3

minimize the ground-state energy. The boundary line be-
tween AF| and Hl phases is 1

—2j2+4j3 0, jq) —,',
while the one between AF and AFi phases is jq
j3 (0.

The critical temperature of the spherical model is given

by Eq. (8) ~here the integration over k, can be easily per-
formed leading to the equation

1

kq T„z~"0 ~ 0 [a (k) [a (k) + i
j'

i ]] '

(»)
where

and

a(k) = y(k) —y(Q), j'=J'/Jl

y(k) —,' (cosk, +coski. )+j2cosk, cosk,

(i4)

+j3(cos k„+cosk, ,
—1) .

In Eq. (14), y(Q) is the maximum of y(k).
(is)

and

Q [cos ' [—I/(2 j2+4j3)],cos ' [—I/(2 j2+4j3)]],
respectively. The lattice constant is assumed to be unity.
The reduced exchange couplings are defined as j, J,/Ji.
The sign of J' simply determines the order along the c
axis. The stacking of planes is ferromagnetic or antiferro-
magnetic depending on whether J' is positive or negative.

The line between the AF and Hl, H2 phases (AF-H
line) is
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In order to find where the integral in (13) diverges, it is
convenient to expand a(k) aroun —Q.nd k=g. Indeed the
main (possibly divergent) contribution to the integral
comes from that region. The result is

and q k —Q. The right-hand side of (13) diverges if
8 C 0. This condition is verified on the line

AF-H. Indeed in the AF phase one has

a(q) =Aq, +Bq,. +Cq„q,2

where

A ——,
' [cosQ„+2j2cosg„cosgy+4ji(2cosQ„—1

8 g [cosgy+2J2cosg» cosgy+4J3(2cos Qy 1

C-j2 sing„sinQ,

(i6) A 8 4 (1 —2j2 —4j&), C 0,
'

e 10)so that A and 8 vanish approaching the AF-H line
and T, decreases logarithmically to zero as this line is ap-
proached from the AF phase. The same behavior is found
approaching the AF-H line from the Hi or H2 p ase
where one has

or

) (4ji+ 2J2 —I ) (4ji —2J2+ I )(4ji+»2
8j3 16j3

' (4' +2' —1)(4Ji+2jp+ I) j2(4ji+2J2 1)(4J3+2J2+I
A 8

)24 j2 4(j,+2J,)'

respectively. On the contrary, the critical temperature
remains finite on the AF-AFi and AF~-H~ lines. On line
(11) between the H ~

and H2 phases the divergence of the

(12) which enters a whole line of zeros in the denominator
of (13). On this line Eq. (16) becomes

a(q) j&(sing»q»+ singyqy)

The divergence is easily seen replacing the integration
variables q„,q, , by the variables qi, q& define as

q i sing„q»+sing, , qy,

q &
—sing, ,q„+sing„q, ,

which are the abscissa along the curve (12) and its per-
pendicular direction, respectively. With this choice the
main contribution to the integral in Eq. (13) becomes

41J I

kaT. (1'1jg)'t'(sin'Q, +sin'Qy)j
(20)

which diverges logarithmically for qi 0 when mtegra-
tion over qi is performed. The phase diagram at finite
t mperature of the spherical model is given in Fig. 2 foremper
j' =1. As one can see a wedge-shaped region whewhere

LRO is absent in 3D onsets in the vicinity of the AF-
and H~-H2 lines.

The degenerate helix appearing on the line Ji=2Ji
may look like an exotic phase never to show up in any real

f th-neighbor coupling' and with respect to quantumour
areductuations. owHowever, a number of works has appe

on thewhich treated the Heisenberg-spin Hamiltonian on t e
square lattice with NNN and TNN just in the above pro-
portion, as an approximation of the single-band Hu ard
model with doping. '

In fact, the hole motion induces a superexchange cou-

I

pling wit spins w ic ar
'

n
' h' h are NNN in the hopping sense, i.e.,

which are connected to the spin in the origin by a pat two1;th are NNN and TNN in the Euclidean
metric sense, and it is readily seen that the diagonal NN
are counted twice, since it is possible to reach them a ong
two distinct paths.

Let us now ma ek the following remark: If we assume
ted bthe same interaction between spins on sites connecte y

the same number of steps, it is possible to write any spin-
quadratic Hamiltonian in the form

(2i)P —
—,
' QS;J;,S, ,

IJ

where J is a polynomial in the adjacency matrix A of the
( " ' 'f i and j are NN, and zero otherwise).lattice &A;J s one i i an j

This happens because the matrix element A;~ o e
nth power of A is the number of n-step paths connecting i
and j."

This in turn implies that it is always possible to find a

"k Tc/IJ, l

AF

FIG. 2. Phase diagram of the spherical model at finite tem-
f r '

1 ~ Symbols have the same meaning as in ig. 1.
-sha d re ionsP means paramagentic phase. Notice the wedge-shape regions

of absence of LRO springing from the AF-H and H~-H2 phase
boundaries.
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P = —gS;(J'8+J"2 —4J"I);iS) . (22)

Calling Jp and a~ the eigenvalues of J=—J'2+J "At
—4J"I and 3, respectively, the ground-state energy is
obtained by maximizing the J~'s as functions of p. It can
be readily seen' that the p —J relationship is many top
one when (J"/J') ) —, , since then the maximum J~ is

given by

Jmax J I max+ J II( max) 2 4J II
p p p

where

Jlgmdx~
p ~t

o

(23)

(24)

The last equation reads, for the square lattice p = (k„,k~),
I

cosk„+cosk, =—
4J It (25)

which has to be compared with Eq. (12), keeping in mind

combination of the coefficients in the matrix polynomial J
such as to give an infinite degeneration in the classical
ground state.

To show how this works, consider a classical spin model
on the square lattice with NN and NNN couplings J' and
J", respectively; NNN are to be understood in the hop-
ping sense. Then the Hamiltonian is

that J"corresponds exactly to J3. This substanciates our
claim that an infinite degeneration in the ground state, of
the same kind as the degenerate helix we have just dis-
cussed, naturally appears for the appropriate values of the
exchange integrals, as soon as one considers neighborhood
in terms of hopping (i.e., graph-theoretic distance) instead
of Euclidean distance. This fact enables us to foresee how
the infinite degeneration lines are affected by farther
neighbor interactions. For instance, if one takes the
three-step neighbors into account a new infinite degenera-
tion line has to be expected for J2 2J3, J4 6Js, where
J4 and Js are the fourth and sixth nearest-neighbor ex-
change couplings, respectively.

This persistence of the infinite degeneration line for far-
ther interactions could be particulaily interesting in view
of an application to the high-T, superconductors. In fact,
recently it has been proved' that the Hubbard Hamil-
tonian maps into a Heisenberg Hamiltonian with J ~

& 0
and J2 2Js if the hopping is limited to second order (two
steps). This map onto the infinite degeneration line could
be more general since higher-order perturbation theory
(more steps) should enter further neighbor interactions
but always remaining on these infinite degeneration lines.

We thank L. Reatto and A. Tassi for helpful and stimu-

lating discussions.
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