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Backscattering enhancement from a randomly rough surface
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Theoretical evaluation of the angular scattering enhancement around the backscattering direction
from a randomly rough surface is studied using the Kirchhoff approach. An analytic formulation of
the polarized double-scattered intensity that takes into account the coherence of multiple scattering
from the rough surface is used to evaluate quantitatively the scattering enhancement around the
backscattering direction from a randomly rough surface.

I. INTRODUCTION

Scattering from a randomly rough surface has been of
interest primarily due to its broad application in physics
and engineering. Recently, the phenomenon of scattering
enhancement around the backscattering direction from a
rough surface has attracted attention. ' However, the
existing solutions ' to compute the scattering from a
rough surface with large slopes are restricted to the
single-scattering approximation. The scattering enhance-
ment around the backscattering direction is produced by
constructive interference from multiple interactions of
the scattered wave with the surface. A few of the
methods "on multiple scattering from a rough surface
are largely formal, and do not seem to be tractable yet to
assess quantitatively the enhancement effect of multiple
scattering. Recently, Monte Carlo calculations have been
performed by a number of authors that demonstrate the
backscattering enhancement from rough surfaces with
large slopes. ' ' In contrast to our primarily analytical
procedure these calculations include multiple-scattering
effects by numerical simulation. Tran and Celli' have
done a simulation that avoids the Kirchhoff approxima-
tion.

The object of this paper is to develop an explicit for-
mula to explain and evaluate the scattering enhancement.
The polarized scattered power from a randomly rough
surface is contributed to by high-order scattered waves as
well as single scattered waves. The constructive interfer-
ence of multiple-scattered waves near the backscattering
direction is due to the presence of "time-reversed paths"
as illustrated in Fig. 1. This has been pointed out in the
discussion of localization phenomena. ' ' The contribu-
tion of this paper is to demonstrate that double scattering
is sufficient to demonstrate the coherent angular enhance-
ment. An explicit formula for the polarized bistatic
double-scattering coefficient is obtained using an approxi-
mate Kirchhoff approach. Although the Kirchhoff ap-
proximation is not always valid, the backscattering
enhancement obtained in this paper demonstrates that
this phenomena is adequately included within the
Kirchhoff approximation. Moreover, although more pre-

cise quantitative results may require higher-order effects,
we demonstrate that the angular enhancement is already
explained by double scattering. Double scattering takes
account of constructive interference of the scattered
waves and is sufFicient to yield a quantitative estimate of
the angular enhancement from a random dielectric or a
highly conducting rough surface.

(a)

FIG. 1. Double scatterings from coincidental and anticoin-
cidental waves from a roughly rough surface.
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II. SINGLE-SCATTERED FIELD

Consider a plane wave incident upon a randomly rough
surface. The rough surface is described by the random

height z =f(x,y) .From Huygen's principle, the scat-
tered field E, from such a rough surface is written in
terms of the actual field E and incident field E; evaluated
on the surface

E,(r)= f dr, &[icy}uUgr, r, ), V'Xggr, r, }].[rin&XH(r, ), n, XE(r, )]T
A:—f dr&&G(r, r, ) R(n&, k„k;) E;(r&),
A

(la)

(lb)

VV exp(iklr —r, l)
g

4' I r
(2a)

The normal vector n& at r, is

—a x —ayy+z
(1+ 2 +a2)li2x y

where

Bg(x,y) Bg(x,y)

(2b)

(2c)

and we define

where g=Qpo/eo is the impedance of free space, A is

the illuminated area, and the free-space dyadic Green's
function is

G(r, r, )—:[ikg(r, r, ), VXg(r, r, )], (3a)

R(n„k„k;).E;(r, )—= [n, XriH(r, ), n, XE(r, )] (3b)

where the superscript T denotes the transpose, the sub-
script p in dr, denotes the transverse direction, and

E;(r&) denotes the incident field upon r&. We have re-
placed cop in Eq. (la) by cop/g=k and H by riH so that
the left and right halves of the bidyadic in Eqs. (3a) have
the same dimensions, as will the left and right halves of
the bivector in Eq. (3b).

In the Kirchhoff approach, the fields at any point on
the surface are approximated by the fields that would be
present on the local tangent plane at that point. %hen
the implied relation between E and E; is inserted, we

have

R(n„k„k;):—[RH, RE]

=(1+a„+a )'~ [ —(1—Rz )(n, .k, )q q, + ( I+R )(n, Xq, )p, , (1+R„)(n,X q, )q, +(1—R „)(n, k, )qp, ],
(4)

where the local polarization vectors q;, p;, around r, are
defined as

q;=k; Xn&/lk; Xn&l, p,. =q,. Xk, . where

5ko —ao x aoyy+z
l~kol ( I+ao +ao )'

(8a)

The factor (1+a„+a )'~, the ratio of the actual area
dr, integrated over to that of the projected area dp, in
the x-y plane, has been absorbed into the bidyadic R.
Here R&,R are the local Fresnel reflection coeScients
for locally horizontal and vertical polarizations. ' In the
far-field approximation, the dyadic Green s function is

ggr, r, )= (h, h, +v, v, )exp( —ik, .r, ),exp(ikr)
4m.r

where the polarization vectors h„v, associated with the
direction of observation, or scattering s, are defined as

h, =k, Xz/lk, Xzl, v, =h, Xk, .

Note that for surfaces it is conventional to take h, as nor-
mal to the nominal plane of reflection defined by k, and
z. In the high-frequency limit, the scattered power is
principally contributed to by the specular stationary
phase points. At a stationary point, the normal vector is
determined by the incident and scattering directions as

5ko
5ko=k k ao„=—,ao~

=—
Oz

5ko

5ko,
(8b)

where the properties of the random surface are contained
in

I=f dp, exp[i(k, —k, ) r, ],
and the incident field is a plane wave:

E'; '(r, )=e,.Eoexp(ik, .r, ), e, =h, or v,

(9b)

(9c)

In the above equations dr& was replaced by dp& because

Substituting Eqs. (6) and (8) into Eq. (1), the single-
scattered field can be written as

E,'"(r}=f dp, G(r, r, ) R(n„k„k;) E'; '(r, )
A

(h, h, +v, v, ) R (ko„k; ) e;EoI,
7Tr

(9a)
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(9d)

the ratio of area elements was absorbed into the reflection
coefficient. Thus the integration is now over the nominal
flat surface element, although the point r, is evaluated on
the actual surface.

In obtaining Eq. (9a), we have taken the far-field limit
in which G can be approximated by

G(r, r, )=[ikg, ik, Xg]=ikg[I, k, X] .

G(r, r, ).R(n„k„k; ) =ikg|r, r, ) Ro(k„k, ), (9e)

where Ro is the ordinary dyadic:

The last step makes explicit use of the asymptotic form of
Eq. (6). The scalar product of the two bidyadics can now
be written as a product of simple dyadics:

Ro(k„k, )=RH+k, XRs

=(1+a2o„+ao2„)'~2[—(1—R& )(nio.k; )q;q;+(1+R, )(nio Xq; )p;

+(1+RE, )[k, X(n,oXq, )]q, +(1—R„)(n,o.k;)(k, Xq, )p; I . (loa)

Here Eq. (10a) is obtainable from Eq. (4) by combining
magnetic and electric dyadics and inserting the specific
directions of Eq. (8).

Since + is surrounded in Eq. (9a) by factors that retain
only the components transverse to k, on the left and k;
on the right, the reflection dyadic can be simplified, with
the help of Eqs. (7}and (8) to

Ro= [R„k;k,+Ri, (k, Xk, )(k;Xk, )] .
5ko, k, Xk;

(lob)

4~& ~E,&(r) ~') /( & /r')
y'b,"= lim lim

g ~ 00 f~ 00 cosH, E;,
where a and b are polarization components. Using Eq.
(9a},the squared field can be written as

& IE,',"(r)I2)

E' 16~'r'
By using stationary phase methods, it is easy to show'

that

(1 la}

(1 lb)

& ~l~') (2~}'
)2P2 Ox~ Og

(a ,a (1 lc}

The cancellation of the terms independent of Rl, and R,
is a check on our algebra. It is equivalent to the state-
ment that when the reflection coefficients vanish, there is
no scattered field. Thus in Eq. (la) the total fields H and
E can be replaced by the scattered fields 8, and E„re-
spectively.

The bistatic scattering coefficient of single-scattered
power is customarily defined' as the scattered power per
unit solid angle in the scattering direction k, multiplied
by 4m divided by the intercepted power in direction k;:

where p2(ao„, ao } is the probability densitgfunction of
the slope at the stationary points, Fb,'=b Ro-a and the
functions F&,

' are given in Appendix A. The subscripts of
the function F, ba(a, b =h or v), denote the a-polarized
incident and the b-polarized scattered fields. Equation
(1 ld) can be simply multiplied by a shadowing func-
tion S(k;,k, ) to take into account the shadowing
effect associated with the incident and scattered rays
k;,k, . Our numerical calculations will make use of a
convenient analytical approximation to the shadowing
function developed by Wagner. ' We note that a debate
between Brockelman and Hagfors and Beckmann2 was,
according to Sancer, resolved by Wagner ' and Smith.
Briefly, Brockelman and Hagfors argued that the tradi-
tional shadowing function S(k„k;), which describes the
probability that an average point of the surface will not
lie in shadow for light with the given incident and
scattering directions, must be replaced by a new shadow-
ing function R(k„k;) that performs an average condi-
tional on the local slope being perpendicular to the in-
cident beam. (They were interested in backscattering
only. ) In our language, in the general case, the slope of
the surface must be such that the point is a stationary
point, that is, such that a plane mirror with that slope
would reflect the incident beam into the scattered beam
direction. This is patently true, and has been verified by
comparison of computer experiments of Brockelman and
Hagfors with the analytical approximations of
Wagner ' and Smith. To the extent that our procedure
selects the points of stationary phase during the evalua-
tion of the spatial integrals, it automatically provides the
weighting desired by Brockelman and Hagfors.

Single-scattering results are not new but are displayed
in Fig. 2 for three incident angles. Figure 3 shows the
effects of shadowing at an incident angle of 40'.

Wk'S'
& IE,'"(r)l')=, ,

'
~F' '(k„k, }~ p2(a „,a ) (11d)

(1 le}

where the components of ao are given in Eq. (8b}. Thus
we can write

III. DOUBLE-SCATTERING FIELDS

For double-scattering depicted in Fig. 1, the scattered
power is contributed by those sequentially scattering
waves at r„r2 that undergo the reincident (on r2) and re-
bounced (from r, ) scatterings. Taking the single-
scattered field from r, in a specular direction k& as the in-
cident one upon r2, the double-scattered field can be writ-
ten as
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FIG. 2. Single scattering vs scattering angle for incident an-

gles: 8;=40', 20', and 0', for both ((},=180' and O'. Results for

$, =180' are plotted as negative 8, . In all cases we choose

P; =O'. All calculations were done using shadowing like that of
Wagner (Ref. 21). Parameters are rms height fluctuation 0 =2
pm, correlation length l= 1.7 pm, wavelength A, =0.633 p,m, and
dielectric constant e=( —11.77+i 1.24)eo.

FIG. 3. E6'ect of shadowing on single scattering. Parameters
are rms height fluctuation 0.=2 pm, correlation length 1=1.7
pm, wavelength A. =0.633 pm, dielectric constant
e=( —11.77+ i1.24)eo, and incident angles 40'. A comparison
is made with and without Wagner shadowing.

E,' '(r)= f dpz f dp, G(r, rz).R(nz, k„k, ) G(rz, r, ) K(n„k„k;) E'; '(r, ) . (12)

It is assumed that the scattering intensity is only contributed to by correlated closely located points. (In other words,
the dashed lines in Fig. 1 for scattering from adjacent points are assumed infinitesimally close to the solid lines. ) Then
the scattered intensity depicted in Figs. 1(a) and 1(b) is approximately written as

(~Et '(r)~ )S f dpzf dpt(~G(r, rz).K(nz, k„kt) G(rz, r, ) R(n, ,k„k, ) E', '(rt)~ )
A A

+S dp2 dp, G r, r2 .R n2, k„k, 6 r2, r, R n„k„k; E'; ' r,

.G'(r, r, ) R'(n„k„k', ).G'(r, , rz) R'(nz, k', ,k;) E'; "(rz) =( ~E,' +'(r)~ )+( ~E,
' '(r)~ ), (13a)

where S is an area to be discussed below. The first aver-
age (denoted by the superscript + in later equations) is
contributed to by the coincident waves [Fig. 1(a)], and the
second one (denoted below by the superscript —

) is by
the anticoincident waves [Fig. 1(b)]. This is similar to the
analysis of the ladder and cross terms in Feynman dia-
grams. The second average becomes smaller as the ob-
servation direction moves away from the backscattering
direction and increases to the same value as the first one
at the exact backscattering direction. Thus it is
guaranteed to yield an angular enhancement around the
backscattering direction.

Our approximation reduces an eightfold integral to a
fourfold integral. This can be seen if the absolute square
of Eq. (12) is written as a product of two fourfold in-
tegrals, with the second fourfold integral using the vari-
ables p', and p2. Our procedure is equivalent to introduc-
ing a factor

+ ik .(r —
r& j

g(r, rz)= f dk g
—(k,z, zz)e

where

(14a)

+(k )
1 1

H
ikz(z —z2)

g I zz2 2 r e
8m

(14b)

into the "crossed" term, where S is the area over which
overlapping paths are important. A crude estimate of S
is given in Appendix B. A more precise evaluation of S is
being investigated using stationary phase procedures.
For the moment, then, the two contributions to Eq. (13)
have an appropriate relative value but are not assigned an
absolute value.

Making use of the two-dimensional Fourier transfor-
mation of the Green's function of Eq. (2a), we have

S 5(Pt Pt)5(Pz Pz)

into the "direct" term, and a factor

(13b) where the tensor H projects out the transverse part of the
reAection coeScient:

S 5(Pz Pt)5(Pt Pz) (13c) H:—[h(+k, )h(+k, ) +v(+k, )v(+k, ) ] (14c)
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and + is, respectively, taken corresponding to z & z2 and
z (z2, and the two-dimensional integral can be written in
spherical coordinates in the form

f dk =k f d8sin8cos8f "dP .
0 0

Since multiple scattering from a rough surface is ap-
preciable in the problem of enhancement, the propaga-
tion constant of the scattered wave k in (14}should be un-
derstood as an effective propagation constant, which is

different from that in free space ko, and is related to the
underlying medium and roughness distribution. The
imaginary part of k, k"=x, /2, where a, is the extinction
coeScient. This is similar to the case of multiple scatter-
ing from discrete scatterers, where an effective propaga-
tion constant was introduced, and related to the dielectric
constant and fractional volume of scatterers.

Using Eq. (9e) above, and substituting the
Fourier transformations of the Green's functions
Qg r, r2), g (r2, r, ) into Eq. (13a), and approximating the
slopes at r, , r2 with the stationary values, we obtain the
first average of (13) as

&l@!"'(r)l') (f=&pe f dpi J«g'(kr r*»

~ exp[ik (r —rz }]fdk&Ro(k, k') g*(kz, zz, z~)
2

e)pkk A,
exp[(k' (rr —r, )] R (ek', k) e;Eeexp(ik; r, )

)
. (15)

In Eq. (15}and subsequent equations, the unknown dimensionless factor S k is omitted.
Fung and others have shown that if the scattered field intensity can be written in the form

& IE"+'(r)I'&= fdkg(k, )IE()l'

the bistatic cross section can be written in the form

(16a)

y' +'(k„k;)=4nk cos 8o;f (k, ) .

We can interpret f (k, } as the spectrum at k, of the electric field fluctuations, normalized to the incident field

( IE"+'(k„,z) I')f (k, )=
0

(16b)

(16c}

Note that f necessarily has the dimensions of an area, so that the bistatic cross section is dimensionless.
In the scattering direction, k =k, . Rewriting k' as k, we obtain

( I E,' + '(k „z)I ) = ( (2m ) fd k
I

F'+ '(k„k,k; ) I exp[2(k,", T k,
"

)zz ]exp[ —2( k,", + k,")z, ]), (17)

where "denotes the imaginary part, and the function

F'+'(k„k, k, ) =[h(k„)h(k„)+v(k„)v(k„)] Ro(k„k) [h(+k, )h(+k, )+v(+k, )v(kk, )] Ro(k, k; ).e;Eo

F(+ ) —p(2, + )p(]+ )+p(2+ )F(1+)
hh hh hh h v vh

p(+) =F' +'F"+)+p(2+)p(&+)
VV VV VV vh hv

F'+'=I' +)p"+)+p( +)p"+)
hv hv vv hh hv

/(+ ) —/(2+ )y (1+ ) +y (2+ )y (1+ )
vh vh hh vv vh

(18a)

(18b)

where F' + ), F"+' (p, q =h or v) are listed in Appendix A, and k=k +k, z.
The scattered field in (17) is contributed to by all statistically distributed pairs of r„rz, which are illuminated, not ob-

scured, and there is no obstacle between them. Therefore, any shadowing to obscure the incident ray k;, and to inter-
sect the scattered rays k, k, should be taken into account. We formally write this shadowing function ' as

S(k;,a,o)S(k, a&o a2o(p))S(k azo} ~ (19a)
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where a&o, a20 are the stationary slopes determined by

k —k,
k —kZ SZ

(19b)

This means that k=kz k, z can be interpreted (in stationary phase) as a vector from r, to rz .
Taking the average over all possible z2 =$2, z& =g& on the surface, whose distance ir2 —r, i

= [p +(g2 —g, ) ]', we
obtain

(iE,'+'(k „z)i )=(2n) f dk
z

iF'+'(k„k, k;)i

OO (X)

d g, d (2p6[ (,(0),gz(p), a,o, a20]S (k;,a,o)S (k, a,o, azo)S (k„a20)

X exp[2(k" + k,")gz]exp[ —2(k,", +k,")g,], (20)

where @6[A„g2,a,o, a20] is a two-point joint probability density function for heights and slopes. The implicit depen-
dence on p has been removed by replacing p by its stationary value, p, in terms of g„g2, and k. This dependence ap-
pears only in gz(p). Equation (20) will be evaluated in the next section.

Now we turn to the second average in (13). We obtain

&(E'2 '(r)( &=(f dr2 f dr, f ding+(kzz2)e,
I

~ f dk'Ko(k, k') g (k', z2, z|)e ~ '~ '~ Ro(k', k;) e;Eoe

—)p'+. (g —g )
IQ

dP' Ro(BI) )g~*(()'',z z )e ' " " Ro(P , k;) "eEoe '' ') .

(21)

Taking k =k „and rewriting k' as k, we readily find

(iE' '(k „z)i )=((2m) Jdk g+(k „z,z2)e ~' '~ Ro(k„k) g*(k,zz, z, )e ' '~ ')' Ro(k, k;) e;Eoe

where

.g+'(k, z z }e ~' ')' Ro(k„k, ) g*'(kl z z )e ' " ')' Ro(k k ) e E e ' ')
(22a)

k)=k;+k, —k . (22b)

Substituting the Fourier transformations of the Green s functions shown in (14) into (22a), and averaging over all pos-
sible z| = g&, z2 =$2, and taking account of all shadowing effects, we obtain, similarly to (20), that

(iE,' '(k „z}i ) =(2m. ) Jdk F'+'(k„k, k;)F' "(k„k„k;)
00 00

X d g, d (2p6[g, (0},gz(p), a,o, az]S (k, ,a,o)S (k, a,o, a20)S (k„a20)

XexpI 2[k&', + k,"+i(k,', +k,'; })$2Iexp[ —2[k,' + k,"+i(k' +k,', )]g& I,
(23)

where ' denotes the real part, + denotes z2)z& and
z2 (z, , respectively, and the function F' ' is defined in
Appendix A in a similar way as F'+' in Eq. (18). Thus
the bistatic scattering coeScient due to the second aver-
age in Eq. (13) can be obtained as in Eq. (16b):

Oq

IU. ANGULAR SCATTERING ENHANCEMENT

expI —2o (1—C )[(6') —(k,",+k,")~]I, (25)

Comparing Eq. (23) with Eq. (20), it is easy to see that
Eq. (23) follows from Eq. (20) by replacing k,

"
by k,'+ id, ',

where b'=—k,', +k,';. After integration over g„gz, there
will be a term in Eq. (23) like
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Xexp[ —2(k,", T k,")g,], (26a)

where C —={gigz) /o is the normalized correlation func-
tion and cr is the variance. As the observation moves
away from the backscattering direction, 5'=k' +k2,.
&&k,". Thus, the bistatic scattering y,( ' of the second
average of Eq. (13} will be negligible comparing with

y,' +' of the first one. However, as the observation moves
closer to the backscattering direction, 5' approaches
zero, the difference between y', +' and y', ' is dimin-
ished, and y,' ' increases and reaches its maximum
value, when b, '=0 (in the backscattering direction). This
contribution causes the scattering enhancement around
the backscattering direction.

For simplicity, the correlation between heights ( gi, gz)
and slopes (a,p, azp) is now omitted, i.e.,

P6(41 kz 10 azp}~P2(41 42)P4( 10 20)

Thus, we consider herewith the integrations over g, and

gz in Eqs. (20) and (23) in

I'+'= f dg, f dgzP2(g„gz)exp[2(k" W k,")gz]

Xexp[2(k" +k,"T i6' }gz]

Xexp[ —2(k,", Tk,"+ih')g, ] . (26b)

Assume that the roughness distribution is a Gaussian

1
Pz(41 42} 2 2 igz e"P( opf 1 cpklkz o042}

21ro (1—C }'~

(27a)

where

2/I 2

2o(1—C) o(1—C)
(27b)

where I is the correlation length.
Substituting (27) into (26b), and integrating over gz

{gz& g„denoting u, upgoing), we obtain

I' '"= exp[ —2cr (1—C )[(b,') —(k" k,")—]Iexp[ —i4oz(1 —C )LL'(k" —k,")](-).

2

X f d — exp —
z +2[( 1 C)(iL—L'+k,") {k,' —Ck"—)]pi&2o 2o2

Xerfc — &(I—C)/(1+C) —v 2o(1 —C )' (k~ —k," id')—
&2o

(28a)

and for gz (g, (denoting d, downgoing),

I' ' = exp[ —2cr (1—C }[(b,') —(k"+k,"}]texp[i4o (I —C )b,'(k" +k,")]

X f d — exp — —2[(1 C)(ib, '+k,"—)+(k,' Ck")]gi—
&2cr 2(7 2

X 2 —erfc — &(1—C)/(1+C) —v 2o(1 —C )' (k"+k"+ilk')
&2cr

(28b)

I'+' of Eq. (26a) simply follows from Eq. (28) by setting
b, '=0

We can see that when 6'))k,", k,", I' ' is much less
than I'+' due to exponential decay. When one ap-
proaches the backscattering direction, O~-b, '=k" k,",
I' ' approaches I'+'. This produces the enhancement.
The angular width of the enhancement depends upon the
factor from Eq. (25):

exp[ —2(2mr /A, ) (1 C)[(cos8—, —cos8, }2

—(k"~k') (1/cos8, +1/cos8) ] I . (29)

The shadowing function S (k, a,p, azp) takes account of
any shadowing in the scattering between g, and gz. It de-
pends on the slopes, heights of the correlated points r,

and r2, and the distance between them. It is a complicat-
ed function, ' and requires integration over all possible

Since we further approximate C=O, the depen-
dence of C on p disappears. This approximation is
equivalent to neglecting correlation between the heights
at separate stationary points, r& and r2. This assumption,
valid when the correlation length is less than the average
separation between stationary phase points, is not part of
our basic theory but is used to facilitate obtaining an ex-
plicit analytic answer. We intuitively take the shadowing
function to be

S (k a ip azp) =e(cot8 —a „az cot8)cos8,—

X exp[ —(2&2o /i)tan8(pli)], (30a}
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FIG. 4. Double scattering vs scattering angle with Wagner
shadowing, showing forward and backward enhancement. Pa-
rameters are the same as in Fig. 2.

—90 —60 —)0 () 30 60
Scattering angle es (deg)

90

FIG. 5. Double scattering showing forward and backward
enhancement vs scattering angle. A comparison is made at 40'
between the presence and absence of Wagner shadowing.

where t/2rr/I is the mean-square-root slope, and the
function

1 as x and y &0
0 otherwise

L

(30b)

(where a, = at„cos(I)+a tr sing az ——az„cosP+ a2r sing)
takes account of the self-shadowing effect. The shadow-
ing function of Eq. (30a) can be understood that at

S(k;,a,o)S(k„a20)=S(k, ,k, ) (30c)

is taken as in Ref. 20. Substituting (28) and (30}into (23)
or (24), we obtain

cot8=&2(r/I and p=I, the shadowing function is ap-
proximately 0.1; as 8 or p/I ~0, the shadowing function
approaches 1 (no shadowing}, and

2~
(2 )

F cos 80i n/2 2w'

p4(ate, a20)S(k k )
cos8~ 0 o 2 20

(F (k„k +k, z, k;)F" (k„kt +kt, z, k;)cos[4rr 5'(k,", +k,' —2k,")]
X —,(exp[ —2(r [(b,') —(k,", —k,") ])exp[ —2o [(b,') —(k,' —k,") ]I

+F (k„k —k, z, k, )F'(k„k, —k„z,k;)cos[4(r 5'(k~, +k,", +2k,"))
X —,'expI 2rr [(6')—(k,", +k,"—

) ]Iexp{—2(r [(6') —(k,' +k,") ]I ) . (31)

.25 0.25
e=(—11.77, 1.24)

.2— 0.2 -e

.15— 0.15—

0.1—

.05— 0.05—

-90 -60 —)0 () 30 6(1
Scattering angle Bs (deg)

90 -5i0 -60 -30 0 30
Scattering angle Os

60 90

FIG. 6. Double-scattering enhancement at normal incidence.
Parameters are those used in Fig. 2.

FIG. 7. Double-scattering enhancement at 20 incidence.
Forward and backward peaks visible at +20'. Parameters are
those used in Fig. 2.
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.06 *10 '
1

e=(3,0)
XW.633/, m

.8 -e;=40'

.6-

.02— 4

.2-

-90 -60 -50 () 30
Scattering angle es

60 90 0-90 -60 —)0 0 30
Scattering angle es

60 90

FIG. 8 ~ Double-scattering enhancement at 40' incidence.
Forward and backward peaks visible at +40'. Parameters are
those used in Fig. 2.

FIG. 10. Double scattering at 8; =40' incidence to a dielec-

tric surface. Parameters ares are same as in Fig. 9, except for
incidence angle.

y' +'
simply follows from Eq. (31) by setting b, '=0.

V. NUMERICAL RESULTS

Numerical calculations for single-scattering y~t' of Eq.
(11}, were displayed in Eqs. (2} and (3). The double-
scattering y' +' and y' ' of Eqs. (16b) and (24) are ob-
tained, and are shown in Figs. 4-11, respectively.

From Eq. (29), we see that the width Wof the enhance-
ment lines varies as

W=
cr sin8,

(32}

The decrease of width as the angle of incident (or scatter-
ing) increases is shown clearly in Fig. 4. The width de-
creases markedly as the incident angle increases from 0'
to 20' and 40. Figure 5 shows a comparison at 40' be-
tween scattering with and without the inclusion of

scattering effects. Two points are clear: The effect of
shadowing is appreciable, but it does not modify the
width of the enhancement peaks.

Figures 6-8 demonstrate that the enhancement peaks
are definitely due to the reversed path included in y
They also show that the peaks for the case of a polariza-
tion change (hu) are comparable to those (hh) that have
no polarization change.

Figures 9 and 10 show that the enhanced peak can
occur in the case of dielectric refiection as opposed to the
metallic re6ection considered earlier.

Figures 11 and 12 show that an enhancement occurs at
the longer wavelength of 10pm, but as expected from Eq.
(40} the linewidth has increased significantly with the in-
crease in wavelength. The results displayed in the above
figures are quite consistent with the available experimen-
tal observations.

VI. CONCLUSION

e,=(3,0)
&0.633@m pI2+&~pI2-&

e -o.

Upon employing the Kirchhoff approach, an analytic
formula of polarized bistatic double-scattering intensity is

.25 s=(—

.2—

.15—

vP;

—90 —60 -)0 6 30
Scattering angle eS

60 90

FIG. 9. Double-scattering enhancement at normal incidence
to a dielectric surface A forward or backward peak produced
by the reversed path contribution is clearly visible. Parameters
are those used in Fig. 2 except the dielectric constant, which has
been set to e=(3,0).

.05—

-90 -60 —50 () 30 60 90
Scattering angle es

FIG. 11. Double-scattering enhancement at normal in-

cidence. A forward or backward peak produced by the reversed
path contribution is clearly visible. Parameters are those used
in Fig. 2 except the wavelength has been set to 10.6 pm.
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.09—

d=0,
a =i for Eqs. (11), (17), and (18),
b=s,

.06—

.03—

d =1+,
a=i,
b =1, k)—=k,

and . a =i,
b =1,k] =k,-+k, —k. ,

-90 —60 —)0 ( 30
Scattering angle es

60

I

I

90
d =2+, d=2 —,

A A A A
a =1, k, =k, and a = l,k, —=k,. +k, —k,

FIG. 12 Double-scattering enhancement at normal in-
cidence. A forward or backward peak produced by the reversed
path contribution is clearly visible. Parameters are those used
in Fig. 11 except the angle of incidence has been set to 8=40'.

=S,

where

b=s,

klk. xk, I'5k„'

obtained. This formula contains the contributions from
constructive interference of the coincidental and an-
ticoincidental waves from a rough surface. The behavior
of the latter causes an angular enhancement around the
backscattering direction, since its change depends upon
k,', +k, in comparison with k,". It takes a maximum as
k,', +k, =0 at the backscattering direction, and becomes
negligible as k,', +k, »k,". The angular distribution of
the enhancement depends upon crjA, crjl, i,ncident 8;, the
underlying medium dielectric constant e&, and some other
parameters (e.g., k"/k'). Incorporating an approximate
shadowing function, this formula is used to evaluate the
scattering enhancement and bistatic double-scattering
from rough surfaces. The results are consistent with the
observations.

5k)+ =k; —k, 5k) —=k —k, ,

5k~+:—k —k„5k~ =k, —k,
and the local Fresnel reflection coeScients are

cos8&z —(e,„—sin 8&d )'
hd

cos8&d+(E,„sin 8,—d )'~

e, „cos8,d —(e,„—sin~8, d
)'~2

E,„COS8,d + (6,„—sin 8rd )'

Ei„=E)/60 . '

The local angle cosOId = —n k„where n is the stationary
slope at the point g, or g2, respectively.
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APPENDIX A

We say

Fqj, '=Md[(vb k~)(v, .kb)RId+(hI, k, )(h, .kb)R«d],

F~«'=Md[(hb kg)(vg kq)RId —(vb k, )(h, kb)R„d],

APPENDIX B

/ E,'"(r }/ // E
/

= /Mf

where

~M~ =k f dp&ggr, r, } Ro(k„k, ).e,.exp(ikr, ) (B1)

If the approximation, Eq. (13b) is made, the fourfold in-
tegration of Eq. (B2) is reduced to the twofold integral:

We can estimate the area parameter S of Eq. (13) by
comparing our exact results, Eq. (11) for single-scattering
with an approximation of the same sort; see Eq. (13b) as
was used in the double-scattering case.

If Eq. (9a) is squared and Eq. (9d) is introduced, we ob-
tain

F«r,'=Md [(vb k, )(h, .kb )RI d
—(h&.k, )(v, kb )R „d],

F'„"„'=Md [(hb k, )(h, kb )R„d +. (vb k,.}(v,.kb )R „~].,
/M/ =k SJdp, fg(r, r, ).RO.e;/ (B2)

If the integral representation Eq. (14a) is introduced
for the Green's function the integration over p, yields a 5
functionwhere the parameters d, a, b are
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(2m ) 5(k' —k ) .

The result is that

IMI'= J de(kp), (83)

where the electric field spectrum of Eq. (16c) is given by

f(k )=k S(2n) ~ggk, z,z, ).Ro.e;~ (84)

Introducing the expression, Eq. (14) for the Green's
function in k space, we can write

e; and b for the polarization of the scattered light.
If we make use of Eq. (1la} the bistatic cross section is

given by

k'((b)R, (a) (' k'S cos'e,
Xha 4 kSZ

(86)

Comparison between this approximation procedure, and
the better one used in Sec. II, Eq. (lie), permits the fol-
lowing crude estimate of the area S:

f(k )=
z 2 f(b[Ro[a&f',

(k, )' (4~)'
(85}

1 cos 8, ( iris')
4 cos8;

(87}

where we have written a for the input polarization vector where the last factor is given in Eq. (11c).
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