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Pattern formation in phase-separating alloys with cubic symmetry
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Computer simulations of spinodal decomposition in alloys are performed in two dimensions us-

ing a simple dynamic model which takes into account the elastic eN'ect. We examine the domain

morphology in late stages of the phase separation in the presence of cubic elastic anisotropy and

external stresses.

A numerous number of experimental data have been
accumulated on the morphologies of modulated structures
in two-phase cubic alloys in the metallurgical literature.
In such alloys we observe somewhat ordered arrays of an-
isotropic domains in late stages of the phase separation.
In his linear theory, Cahn examined effects of the cubic
elastic anisotropy on the phase transition and found that
spinodal decomposition should be triggered by concentra-
tion fluctuations varying in the "softest" directions on
lowering of the temperature. Domains then tend to grow
on the habit planes which are perpendicular to the softest
directions. Furthermore, when external stresses are ap-
plied, more varied morphologies have been observed in a
number of experiments' and a Monte Carlo simulation.
As a simple typical case, lamellar structures can be select-
ed if the applied stress is uniaxial along [100]. We gen-
erally expect complicated competition between the in-
herent cubic anisotropy and external stresses. Obviously
the elastic effect is crucial in these phenomena. s Howev-
er, most theories of phase separations in the physical
literature have neglected elastic interactions, ' and its
theoretical study is still premature at present. 5 Recently
one of the authorss has proposed a Ginzburg-Landau
theory for systematic analysis of the elastic effect in al-
loys. The purposes here are to demonstrate emergence of
the modulated structures from our dynamic model and to
study effects of external stresses on the domain morpholo-

First we briefly explain our model for cubic solids under
the coherent condition. ' We assume that the concentra-
tion field c is coupled with the strain tensor 8u;/8x, in the
free energy F in the form

F „dr[f(c)+ 2 (Vc) +ac(V u)+f, i], (1)

where f(c) is the Ginzburg-Landau free-energy density
for c, c is measured from some reference value, and a is
the coupling constant between c and V u. The f,i is the
usual elastic free energy measured from the reference
state in which c=0,

f,i —,
' (Cii —Ci2)g u;

i 8xi

+ 2 Ci2(V' U) + 4 C44 g uij, (2)
I&J

where u, =8u;/8xj +8uj/8x; and C;~ are the stifl'ness con-
stants. The domain morphology can be influenced by

external stresses only when the two phases have different
stiffness constants as long as f,i is composed of terms bi-
linear in u. To take into account such an effect we allow

C;I to depend linearly on c as

CJ CJ +cC~I~, (3)

where Cpj and C;J are constants. The stress tensor rrI is
given by

o;; ac+Cia u;+Ci2 V u — u;
xt xi

(4)

a
cr~I C44 uj + u; for iWj

xi xi
(5)

Since we have assumed that c is a conserved variable, the
relaxation time of c is much slower than that of u at long
wavelengths and we may assume that the elastic field in-
stantaneously relaxes to adjust to a given concentration
field. This is the condition of mechanical equilibrium,

bF/Bu; —g cr;I 0.
I 8'

The dynamic equation for c is assumed to be of the
diffusion type,

(8/8t)c kV (bF/bc) kV (f' —V c+tt,i), (7)

where X is the kinetic coefficient, f' 8f/8c, and p, i is the
elastic part of the chemical potential given by p, i

aV u+8f, i/8c from (1).
Next we make the linear stability analysis. Expecting

only small fluctuations, we assume that c is composed of a
homogeneous average and a small sinusoidal deviation,
c c+ci exp(ik r). The strain is then of the form

8u;/8xj A I+i~au i; exp(ik r),
where the average strain A;I (8u;/8xj) arises from the
external stress imposed at the boundary. From (6) we
may readily calculate the small displacement u i; in terms
of the concentration deviation c[ to obtain the linearized
version of (7),

(8/8t)ci - &k'[f"+k'+r. i(k—)]ci,
where f"-8 f/8c . The effective temperature shift
'z i(k) arises from the elastic field and depends on the
direction k k 'k of the wave vector. ' ' Its com-
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piete expression was given in Refs. 8 and 9 with c-
dependent moduli and general A;J. For simpHcity we ex-
pand zeI{k) in powers of the elastic anisotropy f, =-(CII
—CI2 —2C44)/C44 and the concentration-expansion
coefficient C4'4 for the shear modulus C44. To first orders
in g, and C44, we find a very natural form

z,I(k) const+ —,
' z, g k; k~ +g QS;,k;kj+, {9)

&+J & j
where the first term is a constant independent of k,

2a2C44(o/(C»+2C44) 2, and g —2aC44/(CI I

+2C44). The S;~ is the following symmetric traceless ten-
Sof,

where d is the spatial dimensionality of the system. The
second term of (9) arises from the cubic elastic anisotropy
and the third term from the external anisotropic stress.

To describe late stages of the phase separation the quar-
tic term (cee ) in the free energy for the cubic term in
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FIG. l. Evolution patterns in cubic alloys at p 2 vrithout

external stresses. The numbers belo~ the 6gures are the times
after the quench.
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FIG. 2. Evolution patterns in cubic alloys at p 0.3 without

externa1 stresses.
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(7)] is indispensable. We hence set up the following mod-

el in the real-space representation,

V'w -c—(c) . (12)

The first term on the right-hand side is the usual term, ro

being the reduced temperature. As explained in the
derivation of (9), the second and third terms of (11) are
obtainable for the case,

141- I
C„—C„—2C44 I/C, 4«1 and I C44y I « I a I,

(13)
where y is the characteristic strain (approximately the
largest component of S;J). We expect that the last two
terms of (11) can reproduce salient features brought
about by the cubic anisotropy and the external stress. To
be precise, however, a systematic perturbation theory
beyond the linear scheme shows that there appears a cubic
term proportional to C44 in the free energy after elimina-
tion of the elastic field. ' It corresponds to an interaction
introduced by Eshelby" and can significantly infiuence
the morphology. In this paper we focus our attention on
the effects of the last two terms of (11) and defer analysis
of Eshelby's interaction to future work.

We numerically solve (11) in two space dimensions by
setting I, 1, ro —1, and r, 0.675 after quenching at
t 0. Both the mesh size and time step are unity and the

c XV~(ro V—+c2)c+ —,
' kr, QV2VJ2w

gWJ

+kg+S~)V;Vjc, (11)
E,J

where V;=8/8x; and w is related to the deviation c —(c&

by

system is a 128 x 128 square lattice with the periodic
boundary condition. As the initial configuration, values of
c at sites are random numbers uniformly distributed be-
tween ~ 0.3 around a given mean value. The second term
(cs- r, ) of (11)becomes r, V„V»w r, V„V»V c for d 2,
V being the inverse operator of V . As a strategy to
calculate this term, we solve the diffusion equation
Bp/Bt' D(V p —V„V»c) from t'-0 to 20 with D
where each given c(r, t) is held fixed. We then substitute
this result into (11) expecting @=V V,V»c V„V»co for
large t'. As regards the integration of (11) we use Oono
and Puri's method' and, at each mapping t n, we solve
the above diffusion equation. ' The softest directions are
[10] and [01] if no external stress is applied. Figures 1

and 2 show the growth of domains without external
stresses at a critical quench, P 2, and an off-critical
quench, p 0.3, respectively. Domains are rectangular
stripes aligned in [10] or [01]. The length of the shorter
sides has a sharp distribution peaked at a length R, (t),
while the length of the longer sides is broadly distributed.
The characteristic features agree with experiments' and
the simulation. Figure 3 displays the formation of lamel-
lar structures under a uniaxial stress of gS„„—gS»»—0. 15 at p —, . The layer separation is sharply distri-
buted around R„(t). In Fig. 4 we apply a shear stress of
gS„,, —0.225 at p- —,

' . Note that (9) becomes

r,~(k) const+ r, (k„k») +2gS„»(k„k»)+

for the case of pure shear stress and its minimization gives
the softest directions. We notice that, if z, &0 and

T=500

T=1500
FIG. 3. Lamellar patterns under uniaxial stress. The system

is compressed or stretched along [10I.

T=1500
FIG. 4. Patterns under shear stress. The system is softest in

the two directions making angles of 21 and 69' with respect to
the horizontal axis. These patterns change into lamellar pat-
terns for larger shear stresses.
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& r„ there still exist two such directions making

angles of Hp and n/2 —
Hp with respect to the x axis where

Hp is determined by sin(2Hp) —2gS9/r, The, pa. rame-
ters in Fig. 4 are in this region with 80=-21 . However,
our two-dimensional system becomes softest in only one

FIG. 5. Coarsening of R~~(t) for the cubic case without

external stress (&), the uniaxial case (&), the shear case (0),
and the isotropic case (&). The three anisotropic cases corre-

spond to Figs. l, 3, and 4.

direction, [11] for gS„~)0 and [11] for gS„, (0, in the
other regions of r, and gS,~, and this is the normal direc-
tion to resultant lamellar structures. The unique patterns
in the shear case are produced by competition between the
cubic anisotropy and the external shear. Note that most
attention so far has been paid to the uniaxial case.

In Fig. 5 we calculate the mean size R~ ~ (t) in the [11]
direction at p —, by averaging over all the lines passing
through sites in the [11]direction. It is nearly proportion-
al to the inverse peak wave number for the structure fac-
tor in the [11]direction. In particular, R~ ~(t) =-2' R, (t)
or 2'i2R„(t) in the cubic or uniaxial case. The effective
exponent a=d[lnR~~(t)]/d(lnt) behaves as follows: a
=0.15 in an early stage, t ~300, in all the three aniso-
tropic cases. For later times t&500, we have found
a~0. 17 for the uniaxial case and a=—0.2 for the other
two cases. On the other hand, by setting r, g 0, we
have obtained an excellent fitting, R ~(t) CL t 'l', for the
isotropic case. ' The slower coarsening in the anisotropic
cases originates from appearance of lamellarlike regions,
where the interface motion is observed to be much slower
than near the ends of long stripes. However, we have no
appropriate theory leading to a -0.2 at present.

We can thus examine various patterns produced by the
elastic interactions using the model (11), which is much
simpler than the microscopic model in the Monte Carlo
simulation. More quantitative analysis will be reported
in the near future.
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