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Relaxation rates of Yb** ions incorporated in low concentrations into a host silicate glass have
been measured using a pulse saturation and recovery technique at 9.5 GHz over the temperature
range 1.5-7.0 K. Compared with similar measurements made on crystalline material, the tempera-
ture dependence of the recovery rates for the two-phonon Raman process is anomalously weak (T
instead of T°). This anomaly suggests the need to modify the Debye density of states. Fractal mod-
els have been suggested for the thermal properties of glasses and for similarly anomalous spin-
relaxation behavior in proteins. This model is discussed as well as other models of phonon localiza-
tion in glasses. An estimate for the localization frequency or crossover frequency between extended
and localized phonon regimes can be extracted from fits of the data from the sample with the lowest

Yb concentration.

I. INTRODUCTION

The nature of the vibrational density of states in disor-
dered solids is an open question and the subject of ongo-
ing research. Even in vitreous silica, which has been in-
vestigated extensively, a microscopic description of the
phonon density of states is ambiguous. This paper de-
scribes the results of electron spin-lattice relaxation mea-
surements on a series of Yb-doped silicate glasses. Be-
cause the relaxation rates depend on the phonon density
of states in the glass, at low concentrations the Yb spins
can be used as a probe. Similar measurements made on
protein single crystals' and frozen protein solutions® ™ '°
have shown deviations from the expected temperature
dependence of the Raman relaxation rates of a Debye-
like solid. Protein relaxation results led to the suggestion
of a fractal model®>!'~!7 of protein dynamics that is no
longer considered viable by most investigators. It was
the purpose of this investigation to determine if similar
Raman relaxation rate anomalies occur in glasses.

Our samples were provided by M. J. Weber of the
Lawrence Livermore Laboratory, where they were previ-
ously used in a study of stimulated emission cross sec-
tions.!®* Each sample had the host glass composition:
75 mol % 8Si0,, 15 mol % Na,O, 5 mol % BaO, 5 mol %
ZnO. Yb,0; was substituted for SiO, in five molar con-
centrations: 0.05, 0.5, 1.0, 2.0, and 4.0 mol %. The coor-
dination of Yb**' in phosphate, silicate, and germanate
glasses was studied by Robinson and Fournier." In their
silicate glass, similar to ours in composition, they found
that the SiO, tetrahedra cluster around the Yb** produc-
ing approximately octahedral symmetry at the Yb>™ site.
This leads to a splitting of the lowest, /=1, level into
four Kramer doublets with the ground doublet about 330
cm™! below the first excited state, thereby eliminating
Orbach (resonant Raman) relaxation mechanisms. Opti-
cal spectra of the Yb** ions are given in Ref. 19. There
is sufficient variation among Yb3™ sites to render the mi-
crowave absorption spectrum featureless. As shown in
Fig. 1, it is a broad, asymmetric absorption line peaked at
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0.23 T, corresponding to a g factor of 2.97. All pulse-
saturation and recovery measurements were made at the
absorption peak. Under our experimental conditions
(hv <<2kyzT) the temperature dependence of the direct
relaxation process is approximately linear:
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The rate for the two-phonon Raman-scattering process
involves an integration over all phonon frequencies. The
result for a Kramers ion is given by
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FIG. 1. Absorption spectrum for 0.05-mol % Yb-doped sili-
cate glass obtained at a microwave frequency of 9.5 GHz and a
temperature of 1.5 K.
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of states,
p(y)ecym~1, 3)

Eq. (2) becomes

x 2+2m
1 =CT3+2"‘f max X exg(x;dx
T\ |Raman 0 [exp(x)—1]
=CT* 7, om % , 4)

where x =hv/kT and x,, =© /T.

The Debye model requires that m =3 and results in the
well-known T° Raman relaxation rate for Kramers’ ions
when the Debye temperature @ =hv,,,,/k is large com-
pared to T. The T° dependence, verified in crystalline
materials, has not been observed for paramagnetic pro-
teins, either crystalline or as frozen solutions. In such
systems the temperature dependence of the two-phonon
relaxation mechanism varies more slowly, roughly as the
fifth or sixth power of T. Over small temperature re-
gions, a reduced power-law dependence could be attribut-
ed to a low Debye temperature, but measurements on the
samples of the copper protein plastocyanin,® for example,
between 1.4 and 15.6 K require m values between 1 and
1.2 and Debye temperatures of approximately 100 K
when the data are fit to Eq. (4).

Because the Debye temperature is such an important
parameter in the description of the phonon spectrum of a
solid, it is important to have an estimate of its magnitude
for a similar glass. The Debye temperature for vitreous
silica has been measured from elastic constants®® and
from the Debye-Waller factor in inelastic neutron scatter-
ing.2! The value obtained from elastic measurements de-
pends on the choice of vibrational unit in the solid. If the
calculation is made per ion, ®, =495 K. If the vibra-
tional unit is taken to be a SiO, tetrahedron, ®, =312 K.
When the calculation is made per ion, vibrations between
atoms in a SiO, tetrahedron are included (optic modes)
that are missing in the second value, giving a lower
cutoff. Neutron-scattering experiments yield a value of
370 K. For our temperature range (1.5-7 K), the T°
temperature dependence should hold if ®, is taken as the
upper cutoff.

We refer to the model described above, Eq. (4) with
noninteger m values less than three, as a generalized De-
bye model to distinguish it from a true fractal model pro-
posed and refined in a series of papers by Orbach
et al.''~'7 In that model, the quantized vibrational exci-
tations of a fractal lattice (fractons) are localized and lead
to a more complicated power-law expression for the Ra-
man (two-fracton) relaxation mechanism. The one- and
two-fracton mechanisms are direct analogues of the one-
and two-phonon mechanisms for the case of a solid that
exhibits fractal vibrational excitations. At very long-
length scales all materials will behave as Euclidean struc-
tures. It is only for short-length scales that one can ex-
pect to see evidence of fractal vibrational excitations.
The crossover between these two regimes occurs at a
length scale & such that £=A, where A is the phonon
wavelength. This corresponds to a crossover frequency
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v, =v /& where v is the sound velocity. In the Euclidean
regime, the Debye approximation is expected to apply for
acoustic phonons: p(v)<v? with a linear dispersion rela-
tion. In the fractal regime p(v)<v™ ~! and the disper-
sion relation acquires an imaginary part.

In Ref. 16 the time dependence of the recovery profiles
and the temperature dependence of the two-fracton relax-
ation process are discussed. It is found that in the pres-
ence of rapid electronic cross-relaxation the time profile
is exponential, with an average relaxation rate

2m[1+2d,/D)]~1

(1/T))yy=T , (5)

where m is the spectral dimension, defined by Eq. (3), D is
the mass fractal or Hausdorff dimension, and d, is a di-
mension that describes the range dependence of the frac-
ton wave function. D is defined by the relation My <R b
where M} is the mass within an imaginary sphere of ra-
dius R. Since the mass density of amorphous silica is
comparable to that of crystalline silica, we would expect
D to deviate very little, if at all, from the Euclidean di-
mension of three. If m, d ¢» and D are all variable param-
eters, any data set displaying a power-law dependence on
temperature could be fit by this model with a suitable
choice of parameters.

A brief discussion of the experimental apparatus and
the steps taken to ensure good thermal contact between
the samples and the bath are presented in Sec. II. The re-
sults of the measurements are presented in Sec. III. In
the lowest-concentration sample, the direct process is
found to dominate the relaxation to a temperature of
roughly 3 K, where the Raman process rapidly becomes
dominant. Fits of the glass relaxation data in the Raman
region to various models are presented in Sec. III. In the
higher-concentration samples, the direct and Raman pro-
cesses are still expected to occur, but it was necessary to
add a concentration dependent term to the overall ex-
pression for the rate in order to fit the data. An analysis
of these results will also be presented in Sec. III.

II. EXPERIMENTAL PROCEDURE

The relaxation rates are measured at microwave fre-
quencies near 9.5 GHz using a custom-built, superhetero-
dyne pulse spectrometer. The frequency of the signal
klystron (Varian VA153) is locked to a tunable external
cavity using a Pound stabilization circuit??> and a Micro
Now model 210 cavity stabilizer. No frequency stabiliza-
tion is required for the local oscillator (also a Varian
VA153). Pulses of microwave power are generated with a
Microdynamics MD-20X30D microwave diode switch,
shunted by two 15-dB cross guide couplers, a 75-dB vari-
able attenuator, and a phase shifter. The recovery ampli-
tude is monitored with power through the shunt arm fol-
lowing a saturating pulse. The pulse power level, moni-
tor power level, and pulse duration are all adjustable.
The recovery signal is digitized and recorded with a
LeCroy 2256 signal averager. Through the use of pre-
trigger sampling we can determine the equilibrium base-
line signal, independent of the dwell time of the signal
averager.

In the normal mode of operation, the glass sample is
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placed in the bottom of a rectangular TE,(, cavity that is
insulated from direct contact with the helium bath by a
surrounding copper can filled with “He exchange gas.
Temperatures are measured and controlled to within +4
mK using the output from a bridge circuit that incorpo-
rates a calibrated germanium resistance thermometer,
which is mounted directly to the upper half of the copper
sample cavity. The bridge is part of a temperature con-
trol loop utilizing a Linear Research LR-130 temperature
controller.

The samples were cut with a Buehler diamond wafer-
ing blade. The thinnest slices were ~0.01 cm thick. The
samples were cut in thin slabs for two reasons: first, to
minimize the thermal path of phonons to the copper-
glass interface, and second, to minimize dielectric heat-
ing. Samples were attached to the copper cavity bottom
with a thin layer of Apiezon N grease. The thermal
boundary resistance of such interfaces has been discussed
by Anderson.??

For the lowest concentrations, the signal-to-noise ratio
was increased by attaching additional pieces of the glass
to the vertical walls of the cavity. Glass with a molar
concentration of 0.001 mol % Yb,0; was also available,
but failed to provide sufficient signal-to-noise ratio for
these measurements.

Because sample heating in these samples was suspect-
ed, measurements were also made in a different probe in
which the sample was in direct contact with the liquid-
helium bath. In this mode of operation, the measure-
ments were restricted to temperatures below the A point
(2.1 K). Even with the sample immersed directly in
liquid helium, the recovery profiles showed some depen-
dence on pulse duration and sample thickness, indicative
of sample heating. These results will be discussed in Sec.
II1.

Under certain experimental conditions, the recovery
profiles are not strictly exponential. This appears as a
slowing of the recovery rates near equilibrium. This
feature of the recovery profile would have made it
difficult to determine a baseline were it not for the fact
that the equilibrium EPR signal was sampled prior to the
saturating pulse. Further advancement of the averaging
channel was halted during the saturating pulse. For
nearly exponential recoveries, the recovery rate was
determined by making a linear regression fit to the loga-
rithm of the recovery amplitude. For extremely nonex-
ponential recoveries, the relaxation can be followed over
several orders of magnitude in time by digitizing the
same baseline for a number of different dwell times and
concatenating the files.

III. RESULTS AND DISCUSSION

A. Characterization of recovery profiles

In order to characterize the spin-lattice relaxation rate
as a function of temperature alone, it is necessary to
reach a regime where the measured rates are independent
of other experimental parameters such as pulse duration
and sample thickness. Stretched exponential functions
have been used to characterize the recovery profiles in an
Yb-doped phosphate glass.>* Our most consistent data

S. B. STEVENS AND H. J. STAPLETON 42

were obtained under the conditions that minimize sample
heating: thin samples and short pulses. A dependence of
the relaxation rate on sample thickness was most pro-
nounced for the higher-concentration samples. Some
thickness dependence in the lower-concentration samples
was observed, mostly at the lower temperatures where
the direct relaxation mechanism dominates, but the vari-
ation in the rates with sample thickness was small com-
pared to the variation with concentration. The main re-
sults can be summarized as follows: (i) Recoveries were
slower for longer pulse durations, (ii) recoveries were
slower for thicker samples, and (iii) pulse duration and
sample thickness dependencies were more pronounced
for higher concentrations.

Our most reliable data were obtained for the lowest
(0.05 mol %) concentration sample. For all other concen-
trations, the data sets chosen for the most extensive
analysis were those measured on thin samples using short
pulses. Even for the 0.05-mol % sample, the recovery
profiles below 3 K show some dependence on pulse dura-
tion and sample thickness. At those temperatures the
direct relaxation process is expected to dominate, and the
behavior in this region is consistent with a phonon
bottleneck. At 4 K, the recoveries in the lowest-
concentration sample were nearly pulse duration in-
dependent. Recovery profiles illustrating these points are
shown in Figs. 2 and 3.

Figure 2 shows a log-log plot of four decay profiles of
the 0.05-mol % —doped glass at 1.5 K. The recoveries
with 1, 10, and 100 ms pulse durations were measured
with the sample in direct contact with the helium bath,
and the temperature was controlled by a manostat. The
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FIG. 2. Recovery profiles for the 0.05-mol % —doped glass at
1.5 K with pulse durations as noted. Recovery profiles with 1,
10, and 100-ms pulse durations were measured with the sample
in direct contact with liquid helium. The profile with 0.1-ms
pulse durations was measured with the sample isolated from
contact with the helium bath. The fits were made to a stretched
exponential [Eq. (6)] using the fitting parameters listed in Table
I
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FIG. 3. Two recovery profiles for the same sample at a tem-
perature of 4.0 K.

fourth recovery profile (0.1 ms pulses) was measured with
the sample cavity enclosed in an isolation can. In this
configuration, the thermal contact is provided mainly by
the contact to the copper cavity bottom. Some additional
thermal contact may have been provided by the low pres-
sure of helium exchange gas. Over 3 orders of magnitude
of signal amplitude, the recovery signal for the sample in
the isolation can fell below the amplitude recorded for
the same sample in direct contact with the helium. This
behavior suggests that thermal contact for samples in the
isolation can is adequate.

As is evident from the plots of the decay profiles in Fig.
2, the profiles are not perfectly exponential. The profiles
display some curvature (concave up) on a semilog plot.
The data in these figures can be fit to a stretched ex-
ponential. The fitting parameters for these fits are shown
in Table I, and were made to a function of the form

y=A[exp—(t/7)P] . (6)

There are several ways that a nonexponential form for
the time dependence can be derived. One way is to as-
sume a distribution of relaxation rates for spins at
different sites in the glass. The derivation of the time

TABLE 1. Fitting parameters for the recovery profiles in Fig.
2 to Eq. (6) of the text. The data were fit so as to minimize the
rms deviation, which is listed as an indicator of the goodness of
the fit. Such a fit allows large percentage deviations from the
data near the tail of the recovery profiles where the amplitude is
small.

Pulse T rms
duration (ms) A (s) B deviation
0.1 1.4 9.88X107* 0.56 5.04%x1073
1 1.2 2.81X1073 0.66 5.72X1073
10 1.1 4.49x1073 0.68 4.59x1073
100 1.1 5.302X1073 0.64 5.79%X 1073
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dependence of a composite relaxation profile has been
calculated analytically for I" distribution of relaxation
times.?> This is a very general distribution with two ad-
justable parameters: the variance and the mean. The I
distribution of relaxation times integrates to a modified
Bessel function of the third kind. The lowest-order
Bessel function of this kind is a stretched exponential
with stretching factor f=0.5.

A phonon bottleneck also leads to nonexponential
recoveries. If a phonon bottleneck is present, the relaxa-
tion will be governed by two coupled differential equa-
tions.?*?’ A more detailed description involving three
differential equations (two for phonons, one for the spin
system) has been given by Potter.?®

Several fitting functions were tried to find an appropri-
ate analytic form for the measured decay profiles. These
included stretched exponentials, power laws, sums of two
exponentials, and the sum of a stretched and an un-
stretched exponential. The last combination gave the
lowest rms deviation in a least-squares fit to the data. Al-
though this function fits the data very well, it has so
many free parameters that is is not a useful way to
characterize each decay profile. In practice, it was more
enlightening to operate under experimental conditions
that produced more nearly exponential recoveries, from
which a rate could be determined.

Figure 3 shows a semilog plot of two recovery profiles
at a temperature of 4.0 K for the same sample. By 4.0 K,
the recovery profiles are more nearly exponential and
pulse duration independent.

B. Lowest Yb concentration

Several pieces of each glass were examined under vari-
ous experimental conditions. Data for each concentra-
tion under the most favorable experimental conditions
(thin samples and short pulses) are shown in Fig. 4. The
relaxation data for the lowest Yb concentration will be
emphasized for two reasons. First, because it is only in
the limit of very low concentration that the true spin-
phonon interactions can be studied in these samples. At
higher concentrations, spin-spin interactions mask the
behavior of interest. Second, the temperature depen-
dence of the Raman rate for this sample is not the usual
T?® dependence expected for Kramers’ ions. Instead, the
observed temperature dependence in the Raman region is
approximately T°. The relaxation data for the lowest-
concentration data can be fit by a simple power law,
given by

1/T,=AT+BT" . (N

The values of the fitting parameters for this particular
data set are A=149+t1 K 's™!, B=0.1431+0.009
K "s™!, and n =6.08+0.04. The resulting rms percen-
tage deviation is 3.46%.

Fits to other data sets obtained for the same glass un-
der slightly different experimental conditions gave the
following results for the exponent n: 5.9940.02,
6.021+0.04, and 6.3110.05, giving an average value for n
of 6.1 and a standard deviation of 0.1. It should be noted
that the value of the exponent »n is very sensitive to mea-
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FIG. 4. Relaxation rates as a function of temperature for
each Yb concentration studied. The data from the 0.05-mol %
sample were fit to the sum of a direct process and a 7" Raman
process [Eq. (7)]. The fits for each of the higher concentration
correspond to the addition of a variable DT" term [Eq. (13)] to
the fit shown for the 0.05-mol % sample. Parameter values for
the concentration dependent term are given in Table II.

surements of the fastest rates at the highest temperatures.

Transport integrals of index 8 or less reach a value that
is within 0.01% of their limit for argument values of 21
or greater. Because our data were measured below 7 K,
only Debye temperatures less than 147 K should be dis-
cernible as deviations from a simple power law. Thus the
fit of the data to Eq. (7) with n =6.08+0.04 could be in-
terpreted as indicating a spectral dimension of 1.5410.02
and a Debye temperature greater than 147 K. Two addi-
tional methods of reproducing the observed temperature
variation of the Raman process are discussed below.

The Raman data can be fit to the standard Raman in-
tegral with an anomalously low Debye temperature,
which is required to reduce the effective log-log slope
from 9 to 6.08. The same data set was fit to Eq. (4) with
m fixed at 3:

1/T,=AT+BT%J4{(®/T) . (8)

The resulting values of the fitting parameters were
A=160+1.5 K~'s™!, B=(7.940.3)X107® K7%s7/,
and ®=40.410.5 K, and the fit has an rms percentage
deviation of 5.04%.

Values of ® for the other data sets, previously men-
tioned, are ®=40.210.9, 41.24+0.9, and 43+1 K, yield-
ing an average value of 41.2 K and a standard deviation
of 1.1 K. The value of ® was very sensitive to points at
the end of the data set where the uncertainties in the
rates were the largest.

The previous fit can be improved by making the Debye
cutoff less abrupt. We consider the following form for
the density of states, referring to it as an exponentially
damped Debye model:
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V2 (v<wv,)

p(v)= {vlexp[ —a(v—v,)] (v,<v<wvp) 9)
0 (v>wvp).

This function has the Debye form for frequencies
below a crossover frequency v., then a more gradual
cutoff, determined by a damping factor a, and equals zero
for frequencies above the Debye frequency. Partitioning
the frequency range in this manner was done to be con-
sistent with theoretical predictions of a crossover frequen-
cy."* This improved the quality of the fit, but the op-
timum value of v, was zero.

A fit of the data was made to a transport integral of or-
der 8 [Eq. (2)] and the density of states of Eq. (9), with
v.=0 and v,,, arbitrarily large. The result was charac-
terized by a damping factor a of 4.4+0.1 THz ! and an
rms percentage deviation of 3.71%. The coefficient of
the 1asscl)ciated direct relaxation rate was 4 =155%1.1
K7's™

Figure 5 plots the point-by-point percentage deviation
of the three fits, just described, to the data shown on the
lower curve of Fig. 4. All of the fits in Fig. 5 show the
same general features with respect to the data, although
the fit using Eq. (8) (curve 1 in Fig. 5) results in a slightly
larger rms deviation than the other two.

C. Higher Yb concentrations

The fitting of data for the more concentrated samples
of Fig. 4 was done using a function with a term linear in
T for the direct process, a T" Raman process, and a
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FIG. 5. Point-by-point percentage deviation of the data from
each of the functions used to fit the data from the lowest Yb
concentration. All three fitting functions assumed a direct re-
laxation rate, linear in temperature. Various functional forms
for the Raman process were considered. Curve 1 includes the
standard Debye density of phonon states [p(v)<=?] with an
upper cutoff temperature of 40.4 K [Eq. (8)]. Curve 2 includes
the standard Debye density of states with an exponential damp-
ing factor [Eq. (9)]. Curve 3 uses a simple T" power law to
characterize the Raman rate [Eq. (7)]. The rms percentage devi-
ations for curves 1, 2, and 3 were 5.04%, 3.71%, and 3.46%, re-
spectively.
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concentration-dependent term,
1/T,=AT+BT"+(1/T)), . (10)

Values for A, B, and n were taken from fits to the
0.05-mol% —doped glass [Eq. (7)] and were held constant
for the fits to each of the other concentrations. This
method of fitting the concentration dependence has been
used by Harris and Yngvesson?® and Schulz and Jeffries.*®
The method assumes that a cross-relaxation mechanism
occurs in parallel with the spin-phonon relaxation path-
way. Various trial functions were wused for the
concentration-dependent process (1/7),, including the
two functional forms given by Schulz and Jeffries for two
limiting cases of cross relaxation between single ions and
exchange-coupled pairs. The first of these trial functions
is the form appropriate when the single-ion—pair relaxa-
tion is the rate-limiting step in the overall relaxation pro-
cess:

-1

(1/T,), =D’ |exp +1 (11)

A
kyT

The values of A/kp obtained from these fits ranged
from 11.3 K for the 0.5-mol % —doped glass to 6.9 K for
the 4.0-mol % —doped glass. The fit of the parameter D’
to a power-law dependence in concentration is complicat-
ed by the variations in A. If the relaxation followed the
form predicted for the single ion-pair relaxation process,
the concentration dependence would be given by D’ « 2.
Instead, the concentration dependence is proportional to
¢ %%, We conclude from this that the single-ion—pair
relaxation process is not the rate-determining step in the
overall relaxation mechanism.

A second function, predicted for the pair-bath relaxa-
tion process, appropriate when the pair-bath relaxation is
the rate-limiting step in the overall relaxation process, is

(1/T,),=D"csch(A/kyT) . (12)

The value of A/kjy obtained for these fits ranged from
11.1 K for the 0.5-mol % —doped glass to 6.4 K for the
4.0-mol % —doped glass. Again, the fit of the parameter
D' to a power law in concentration is complicated by the
wide variation in A. If the relaxation followed the form
predicted for the pair-bath relaxation process,® the con-
centration dependence would be a simple proportionality.
Instead, D"’ exhibits a ¢®3 variation. The range of ex-
change splittings (from 6 to 12 K) derived from these fits
is consistent with the values of the exchange constant
measured in the trifluoride system.:‘o'3 ! However, the
corresponding concentration dependence is significantly
lower than the linear concentration dependence predicted
by this simple theory.

A simple power law yields fits with a lower-percentage
deviation than those resulting from the functions of Egs.
(11) or (12). Fits were made to a function of the following
form:

| S
| -or
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TABLE II. Parameter values for fits of the concentration-
dependent term [Eq. (13)] of the overall relaxation rate [Eq.
(10)] to a power-law temperature dependence. These fits mini-
mized the rms percentage deviation and are shown in Fig. 4.

c D E=D/c rms %
(mol %) n (sT'K™") (sT'K™") deviation
0.5 4.17 20.43 40.86 5.36
1.0 3.83 39.87 39.87 2.34
2.0 3.05 126.6 63.3 4.66
4.0 2.90 176.6 44.15 1.57

The parameter values obtained from the fit using this
concentration dependence in Eq. (10) are given in Table
II along with the rms percentage deviation of the fits.
These fits to the experimental data are the ones shown in
Fig. 4. Although the variation of D with concentration is
nearly linear (¢ -1y very little can be inferred because of
the range of n values.

As is apparent from the previous analysis, it is difficult-
to extract a meaningful concentration dependence with-
out a specific functional form for the associated tempera-
ture variation. In Ref. 30, relaxation measurements were
made on crystalline LaF; containing 1 at.% Yb. In
fitting the data, terms corresponding to both of the limit-
ing cases given by Egs. (11) and (12) were used and result-
ed in values of A/ky=0.47 and 3.9 K for the exchange
splittings, respectively. Since A /kp is not uniquely deter-
mined in a crystalline host, it is reasonable to expect the
exchange splittings in a glass host to be randomly distri-
buted.

IV. DISCUSSION

In fitting the Raman process in the lowest Yb concen-
tration samples we have attempted to use functions com-
patible with the current theories of vibrational excitations
in disordered solids. These can be characterized as con-
ventional phonon modes, two-level tunneling states,’>*
inherently local vibrational modes, localized phonons,
and fractons (localized vibrations of a fractal structure).
Reference 34 provides a general discussion of the univer-
sal characteristics of glasses, including phonon localiza-
tion. Examples of the inherently local modes are bond-
bending or breathing modes in isolated structural units.
They are detected by Raman spectroscopy, infrared spec-
troscopy, and inelastic neutron scattering.?* They do
not transport heat nor contribute to thermal transport
measurements. Localized phonons are analogues of ex-
tended acoustic phonons in crystals. The localization can
result from strong scattering or fractal geometry. Experi-
ments sensitive to these excitations include thermal trans-
port properties, such as thermal conductivity or thermal
boundary resistance, and spin-lattice relaxation measure-
ments. The theory of Orbach et al.!'~!7 describing lo-
calization due to fractal geometry has already been men-
tioned. Another description of the phenomenon of locali-
zation is localization in the Anderson sense.’® This
theory was first developed to explain electronic transport
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in a random lattice. This theory has been extended to the
case of phonons in a disordered elastic medium by Som-
polinsky and Stephen.’

Experimentally, the strongest support for these models
come from measurements of the thermal conductivity.’
The mean free path / can be extracted from measure-
ments of the thermal conductivity, and plotted as a func-
tion of the phonon energy. A localization frequency can
be derived from such a plot by drawing in the line
AMlw)=I(w) and taking the intersection to be the localiza-
tion edge. This is called the Ioffe-Regel localization cri-
terion.’ In comparing values extracted from these fits in
units of temperature to other measurements made in
units of frequency, we arbitrarily use the simple conver-
sion hv=kzT. The peak frequency in the exponentially
damped cutoff model occurs at 0.45 THz. The fit [Eq.
(8)] with a low Debye temperature of 40.4 K corresponds
to 0.84 THz. We interpret this to mean that phonons at
frequencies above roughly 1 THz are not contributing
significantly to the spin-lattice relaxation process. The
Ioffe-Regel localization criterion is satisfied for silicate
glass at T=29 K corresponding to v=0.58 THz. Given
the approximate nature of these calculations, this numer-
ical agreement is good.

Another experimental measurement with similarly in-
terpreted results is the measurement of thermal boundary
resistance at epoxy-metal interfaces.*>*! Although the
values for parameters describing epoxy and glass samples
differ, the general aspects of the models are the same.
This supports the hypothesis that the vibrational excita-
tions in disordered solids have certain universal charac-
teristics.

Because the spin-lattice relaxation rate is proportional
to the integral over the phonon spectrum, it is not a very
sensitive way to probe phonon localization. Our present
analysis does not allow us to distinguish between various
models for the localized modes. In particular, we cannot
infer that the modes are fractons.

V. CONCLUSIONS

The dependence of the relaxation rates of Yb’" spins
in a host silicate glass on various experimental parame-
ters has been explored. The experimental conditions of
short pulses, low power, and thin samples provided the
experimental conditions that yielded approximately ex-
ponential recoveries, independent of pulse duration and
power level. Operating under these conditions allowed us
to characterize the spin-lattice relaxation rate as a func-
tion of temperature for each Yb’* concentration. This
concentration dependence is interpreted in terms of cross
relaxation to exchange-coupled pairs. No single value for
the exchange energy A could be extracted from the fits to
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these data. If the fits were made to the simple form pre-
dicted for one of the limiting cases for this cross relaxa-
tion, the values of the exchange splitting obtained were in
the range from 6 to 12 K. Better fits to the data were ob-
tained using a power law.

In the glass with the lowest Y concentration, the
effects of cross relaxation between Yb spins are mini-
mized, and the spins provide a means of probing the low-
energy vibrational excitations of the host glass. Com-
pared with similar measurements made on crystalline ma-
terial, the temperature dependence of the recovery rates
for the two-phonon Raman process is anomalously weak
(approximately T instead of T°). This suggests the need
to modify the Debye density of states. Several models
describing the vibrational density of states in a glass were
presented. One feature that all of these models have in
common is a critical or crossover temperature or frequen-
cy, where the vibrational excitations change in character
from extended to localized. It is not possible to distin-
guish between the various models presented on the basis
of our measurements alone. Specifically, we cannot con-
clude that the localized vibrational modes are fractons.

An estimate for this localization temperature or cross-
over temperature based on the Ioffe-Regel localization
criterion can be extracted from thermal conductivity
measurements in silicate glass. One of the results of this
study has been to notice that a Debye temperature close
to that of the localization temperature in these glasses
will produce the observed T temperature dependence of
the Raman rate. This suggests that the relaxation mecha-
nism is closely associated with unlocalized phonons. Ex-
actly why this should be is not obvious, as it does not re-
sult from the usual Hamiltonian describing the spin-
phonon interaction. We have used fits to the data from
the lowest-concentration sample to model the phonon
density of states in the glass. The models indicate that
the portion of the phonon spectrum participating in the
relaxation process is the low-frequency portion of the
phonon spectrum.

While it is tempting to draw strong parallels between
these results and similar relaxation data in frozen protein
solutions, data exist from crystalline protein samples that
similarly exhibit this anomalous behavior.! Any theory
attempting to model the vibrational density of states in
both the glasses and frozen protein solutions will have to
account for the similar behavior exhibited by crystalline
protein samples.
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