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Casimir effects for charged particles
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The theory of forces due to quantum electrodynamic field fluctuations are of great consequence in
condensed-matter physics and chemistry, and are routinely applied to polarizable media to explain
long-ranged van der Waals forces. Less well studied are the Casimir forces on particles with a net
charge. Some examples of the charged-particle case are discussed here. In particular, methods are
explored for treating the infrared photon "divergences" which arise from the ease with which an ac-
celerated charged particle emits radiation.

I. INTRODUCTION

The theory of long-ranged van der Waals forces in
condensed-matter systems rests on an interesting feature
of quantum electrodynamics in which the condensed-
matter renormalization of electromagnetic-field fluctua-
tions (in one region of space) produce "effective poten-
tials" (in other regions of space) via photon propagation.
For the case of polarizable media, these effects are well
studied. ' Less well investigated is the nature of Casimir
forces on particles with a net charge. In some situations,
Casimir forces on charged particles, when calculated to
lowest orders in quantum electrodynamic perturbation
theory, contain infrared divergences which require some-
what subtle soft-photon renormalizations. These will
here be explored.

The nature of Casimir forces on charged particles can
be argued in a simple manner as follows: (i) A particle
(having charge e and mass m) moving classically in an
electromagnetic field,

~m= —'
m 2 mc

(6)

U= ,'(e /mc —)[&i
Ai'& —(i Ai'&, ], (7)

where the first term on the right-hand side of Eq. (7)
represents the electromagnetic fiuctuations renormalized
by a condensed-matter environment, and the second term
is that contribution present if the charged particle were
in the vacuum. Equation (7) is the starting point for com-
puting the Casimir forces on a charged particle.

(iv) Of interest here is not the (divergent) vacuum fluctua-
tion contribution to the mass, which is included in the
"definition" of the "observed physical mass, " but the
change in mass (presumably finite) induced by
condensed-matter renormalization of the electromagnetic
fluctuations themselves. Using the rest-mass —energy
equivalence, the mass shift in Eq. (6} is then written as a
"potential" for the Casimir force on a charged particle,

has a four-momentum p obeying

[p"—(e/c) 3"][p„—(e/c) 2„]=—(mc)

(ii) In the charged-particle "center-of-mass" frame

p"=(O, m "c },
and in the temporal gauge

A"=( A, O),

(2)

(3)

(4)

II. PHOTON PROPAGATORS

In the temporal gauge, the retarded photon propaga-
tor is defined as

Dl(x, y, g)=(i/Rc) f dt e'~'([A;( tx), A (y, O)]& . (8)
0

In terms of the Matsubara frequencies,

Eqs. (2), (3), and (4) read, for the effective mass,

(m ) =m +(e/c ) i Ai

to„=(2n.ke T/fi)n, n =0,+1,+2, +3, . . . .

The electromagnetic fluctuations obey
(5)

(9)

Equation (5) can be derived nonperturbatively (for exam-
ple) from the Dirac equation for an electron in a plane-
wave radiation field by using somewhat more elaborate
mathematics. (iii) In lowest-order perturbation theory,
the mass shift due to electromagnetic fluctuations is
shown from Eq. (5) to be

(i A(r)i &=(kttTc) g trD(r, r, into„i),
n = —oo

(10)

where the trace in Eq. (9) is over vector indices in the
propagator. Equations (7) and (10) yield the Casimir po-
tential on a charged particle in terms of the photon prop-
agator; i.e.,
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U(r) =(ks T/2)(e /mc) g tr[D(r, r, i~|co„~ )

—D (r, r, i ~co„~)],

where Do is the vacuum photon propagator.

III. INTERACTION
WITH PERFECT CONDUCTORS

Consider a charged particle at a distance z from a per-
fect metal as shown in Fig. 1. For this problem the force
may be regarded as a photon exchange process with an
image charge. The static one-photon exchange process
gives rise to the usual electrostatic potential energy

trodynamic correction to the usual electrostatic image
force problem for a perfect conductor.

Finally, the zero-temperature limit of Eq. (11) is in gen
eral obtained by replacing the sum over Matsubara fre-
quencies by an integral (as T~O};i.e., Eq. (11)becomes

U(r)=(tie /2irmc) J dcotr[D(r, r, ico) D—o(r, r, ico)] .
0

(16)

IV. INTERACTION WITH POLARIXABLE ATOMS

Consider a charged particle a distance r from a spheri-
cal object with polarizability a(g), as shown in Fig. 2.
The electric field E that the charged particle applies to
the atom has a magnitude

Uo(z)= —e /4z . (12) E =e/r (17)

In addition to the electrostatic potential of Eq. (12), we
have a fluctuation exchange force, i.e., the Casimir force
as given by Eq. (11}. It is (see the Appendix for the
geometry under discussion}

U, (z) = —(ks T/2mc )(e /z) g exp( —2~ co~z/ )c.

(13)

Adding the contributions in Eqs. (12) and (13) yields the
resulting total potential

U(z)= —(e /4z)[1+2(ksT/mc )

X coth(2irks Tz/Pic)+ ], (14)

which, in the low-temperature limit ( T~0, simplifies to

U(z) = —(e /4z)[1+(iri/irmc)(1/z)+ ] . (15)

Equation (15) describes the lowest-order quantum elec-

This static electric field lowers the atoms energy by an
amount

Uo(r) = —
—,'a(0)E = ea(0)/—2r (18)

The trace over vector indices in the vacuum propagator
product on the right-hand side of Eq. (19) is direct and
reads

U, (r)= (tie /ir—mc r )f dcoa(ico)co e

yielding a potential Uo(r) as in Eq. (18). In addition to
this static effect, there is a two-photon exchange potential
which can be calculated from Eq. (16) as

Ui(r)= (Ae—/2mmc )I dcoco a(ico)

Xtr[DO(r, Q, ico)DO(Q, r, ico)] .

(19)

Char ge

Xg (cor /c),
g(x)=1+2/x+5/x +6/x'+3/x4.

(20a)

(20b)
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Formally, the integral in Eq. (20a) diverges badly in the
infrared limit ~~0. The reason is related to the usual
"infrared catastrophe" of quantum electrodynamics, i.e.,
that an accelerating electron radiates more and more
photons at lower and lower frequencies. Thus low-order
perturbative expansions in powers of (e /A'c) are incap-
able of describing the very large nuInber of very-low-
frequency photons. The infrared catastrophe in the
divergent equation (20a) is due to the fact that here
(strictly) only two-photon exchange has been taken into
account in the integral.

The situation can be rectified by an infrared-cutoff fac-
tor of the usual "power-law type" in the elastic scattering
amplitude at the charged-particle vertex in Fig. 2, i.e., by
the replacement

g (x)~g (x,P}=x~g (x) . (21)
FIG. 1. Electron is attracted to a perfect metal by a one-

photon-exchange process with its oppositely charged image.
This includes the usual electrostatic term as well as the Casimir
term.

The perturbative limit P—+0 should be taken only after
the frequency integral is performed. In detail, Eqs. (20)
and (21) combine into the formal limit
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FIG. 2. Electron is attracted to a polarizable spherical un-

charged atom by a two-photon exchange process.

The new feature of calculating Casimir forces on
charged particles, as opposed to only considering un-

charged polarizable objects, is the possibility of having to
regulate "infrared divergences" in low-order photon ex-
change potentials. More often, in the computation of
Casimir effects, high-frequency divergences have to be re-
gulated. In all cases, the fact that the sign of divergent
sums can change during the process of renormalization is
not very intuitive and looks somewhat strange when writ-
ten out in the short direct form. An example follows.

To see what is involved, one may consider the Casimir
effect for vibrations on a mechanical string (say, a guitar,
violin, or piano string) of length L with fixed ends. The
mode frequencies of such a string have the form

a)k =(n'v/L)k, k =1,2, 3, . . . , (27)

tie
U&(r)= —lim f deuce a(iso)

P o mme r

where v is the velocity of waves along the string. Includ-
ing the two possible polarizations, one has, for the quan-
turn zero-point oscillation energy of the string,

Xe "~'g (cur/c, p)
Ev=2 g (%col, /2),

k=1

(22}
yielding the obviously infinite sum

(28)

With the I function defined (as is usual in infrared-cutoff
integrals)

Ev=(mdiv/L) g k .
k=1

(29)

r(z)= f0 X
x'e (23a)

The power-law regulator involves the Riemann g func-
tion

r(1+z)=zr(z) . (23b) g(z)= g 1/k',
k=1

(30)

Equation (22) reads (for large r)

U&(r)= —[A'e a(0)/nrncr ] lim g(P),
p~p

(24a)

+48I (P)+481 (P—1)], (24b)

y(p)=(l/2 +~)[ r(3+p)+4r(2+p)+20r(1+p)

from which Eq. (29) is computed using

Eo=(nkv/L) lim g(z) .
z~ —1

Equation (29) is perfectly finite:

Eo = —(n 1/2)(A'v /L) .

(31)

(32)

which turns out to be perfectly finite (and repulsive); i.e.,

U&(r)=(11/4n)[Ae a(0)/rncr ] . (25)

Combining the two contributions in Eqs. (18) and (25)
yields the total potential between a charged particle and a
polarizable spherical atom (as r ~ co ):

U(r) = —[e a(0)/2r ][1—(11/2m )(fi/rncr)+ ] .

(26}

That the Casimir (two-photon) correction to the static at-
traction is repulsive (due to the soft-photon infrared re-
normalization) is not completely intuitive. However, it is
by no means new that power-law regulators can reverse
the sign of a diverging sum (or integral) in the course of
producing a finite result. This is discussed further in the
concluding section.

However, comparing Eqs. (29) and (32}gives rise to some
wonder that Casimir effects are indeed observed in la-
boratories (for the quantum electrodynamic case). This
leaves little doubt in the authors' minds that mechanical
(say, string) Casimir effects are also in principle observ-
able in the laboratory (for, say, a violin string, if not for
other kinds of "strings"), despite the fact that g-function
(or power-law} regulators are at first glance rather
strange. (We could have buried this "strangeness" in a
long-winded complicated derivation, but prefer to leave it
bare where it may be explicitly noted. ) In going from Eq.
(22) to Eq. (25), a similar sign change results from the
same sort of regularization as for the string; but it is the
low-frequency divergence that is here of importance.

This unusual feature of Casimir forces on charged par-
ticles, i.e., that infrared divergences have to be regulated,
is central to this work. Other examples (than those here
discussed} are worthy of further study.
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Do(x, y, g)=[I+(c/g) VV](e'&" '/cR),

R =[x—yf,
and obeys the trace condition

trDO(x, y, g)=(2/cR)e'~" ~' .

(Al)

(A2)

For the geometry of a plane separating a vacuum from a
perfect metal, with y as a vacuum source point, and yr as
the image of that source point in the metal, the propaga-
tor is that of the vacuum in addition to that of the image,
&.e.,

trD(x, y, g) = trDO(x, y, g ) —trDO(x, yl, g) . (A4)

APPENDIX

We here collect some we11-known equations for photon
propagators used in the above work. The vacuum tem-
poral gauge propagator is given by

& A(x) A(y) &r =(cks T) g trD(x, y,i le„ I }, (A6)

& A(x) A(y))r=(2ksT/R)coth(rrksTR/Pic) . (A7)

As the point splitting distance grows small (R ~0),
& A(x}.A(y))r= (2/ir)(Pic/R )

+(2n/3fic)(ka T)z+, (AS)

so that Eqs. (A5) and (AS) yield the temperature variation
of the mass of a charged particle in a blackbody radiation
fiel; j.e.,

'2

[& I
AI'& r —

& I AI'&0] . (A5)
m 2 mc

From Eqs. (Al) and (10) it follows (with split spatial
points R =~x—y~) that

Equations (A3) and (A4) have been einployed for deriving
Eq. (13) from Eq. (11).

Another interesting eff'ect concerns the temperature
variation of the charged-particle mass in a blackbody ra-
diation field. From Eq. (6) one finds

hm(T) ir e kaT
m 3 Ac mcus

to lowest order in the coupling strength (e /A'c).

(A9)
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