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Quantum size effect on the magnetism of finite systems
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The magnetic moments of the ferromagnetic transition metals Fe, Co, and Ni confined to one-
dimensional chains are found to fluctuate with increasing chain length before converging to the
infinite limit. This quantum size effect is derived from a simple first-principles theory that we
have developed to study the evolution of the electronic structure of systems as a function of size
and dimensionality. The quantitative accuracy of the predictions of this simple formulation is
confirmed by carrying out ab initio self-consistent calculations using the molecular-orbital ap-
proach. The convergence of moments to the respective infinite limit is found to depend on the

dimensionality of the system.

Recent advances in experimental techniques such as
molecular-beam epitaxy, metallo-organic chemical vapor
deposition, and supersonic jet expansion have made it pos-
sible to produce small particles ranging from a few
angstroms (quantum wells and clusters) to a few thousand
angstroms (nanostructures) in size. Studies of these finite
systems are unraveling some novel features hitherto un-
known to man. In very small systems (a few A in size),
the electronic length scales (e.g., mean free path) are
comparable to the physical dimension of the sample
whereas it becomes insignificant in nanoscale materials.
Thus, one expects to see quantum size effects in ultrasmall
particles. These effects are expected to diminish as the
particles grow and ultimately disappear when the particles
reach a certain critical size. Unfortunately, one does not
know a priori when this limit is reached nor how the criti-
cality depends on the electronic property under study.

In this Brief Report we report the observation of the
quantum size effect on the magnetism of ferromagnetic
transition metals. The magnetic moments per atom of Fe,
Co, and Ni confined to one-dimensional chains are found
to fluctuate with the chain lengths and approach the limit-
ing values when the chains contain about 20 atoms. In Ni,
the moments for odd-numbered atoms in the chain are
larger than those for even-numbered atoms. Our results
are based on a first-principles calculation' that utilizes the
features of the tight-binding as well as the linear combina-
tion of atomic orbitals (LCAO) theory. The method en-
ables us to calculate the electron-spin density of states and
magnetic moments for clusters consisting of two to a few
thousand atoms with remarkable ease, accuracy, and com-
putational speed.

The method has also enabled us to address an important
question that has plagued theorists modeling clusters of
atoms as fragments of bulk systems. How big does a clus-
ter have to be before its properties can converge to the
bulk value? Traditionally, one attempts to answer this
question by repeating the calculations in larger and larger
clusters. The largest size, of course, depends on the
method of the calculation and the computer time avail-
able. The more sophisticated the method is, the smaller
the size of the cluster it can handle. In semiempirical
techniques, such as the intermediate neglect of differential
overlap and the complete neglect of differential overlap,
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typically clusters of 100 atoms can be easily studied,
whereas those based on self-consistent field techniques can
treat clusters of 2-50 atoms depending on the level of ap-
proximation in the exchange and correlation potentials.
No theory based on first principles is yet available, to our
knowledge, that can realistically treat clusters containing
thousands of atoms. The only attempt we are aware of
that successfully treated the cluster convergence problem
to the infinite limit is that due to Hintermann and Man-
ninen.? These authors approximated a cluster by a jelli-
um sphere and calculated the electron-density distribution
as a function of cluster radius. They concluded that the
Friedel oscillations are not correctly reproduced until the
cluster contains about 100 atoms. Interesting as this re-
sult may be, it is clear that real clusters are not jellium
spheres and the results clearly are not applicable to
transition-metal systems.

We describe here a method that enables us to calculate
the magnetic moment per atom of transition-metal sys-
tems containing any number of atoms. Our procedure ex-
ploits the simplicity of the tight-binding and LCAO
theories. The method, hereafter referred to as the ab ini-
tio tight-binding (ATB) theory, contains no adjustable
parameters, requires no symmetry in the problem, and
therefore is versatile in its application. We shall first ap-
ply the theory to the studies of the electronic structure of
one-dimensional chains of Fe, Co, and Ni and discuss the
quantum size effect and the underlying physical mecha-
nism. We shall then model surfaces and bulks using clus-
ters of varying sizes until convergence is reached.

We start our theoretical procedure by carrying out ab
initio self-consistent electronic-structure calculations on a
dimer. Within a variational LCAO approach, the dimer
wave function ®; can be expressed as

2
¢2=212Cn|l',7»>- (1)
i=1 A

|i,A) is an atomic orbital located at size i and A is the
spin-orbital index. The coefficients of linear combinations
Ci are determined variationally by solving the secular
equation,?

(H—ES)C=0, ()

where H and S are Hamiltonian and overlap-matrix ele-
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ments given by {j,u|H|iA) and {j,u|i,A\). The Hamil-
tonian H is given in atomic units by

V2
H=———2—+Vcs(r)+ch(r). @3)

Ve is the electrostatic potential and V,. is the spin-
dependent exchange-correlation potential evaluated in the
local-density approximation. We solve Egs. (1)-(3) self-
consistently for the dimer as a function of dimer-bond dis-
tance R. It has been found' that the Hamiltonian and
overlap-matrix elements decrease exponentially with R.
We also find that the overlap matrix {j,u|i,A) is nearly
diagonal, i.e., our basis functions |i,A) are nearly orthog-
onal.

We now use the Hamiltonian matrix elements obtained
above to determine the electronic structure of a cluster of
N atoms. For the cluster of N atoms the wave function
®y is written as

N
Dy =.ZI;C,-lli,k>. )
=

For the N-atom cluster, the calculation of C; and the
eigenvalues require self-consistent solutions of Egs.

(2)-(4). Here we adopt an approximate procedure. We
replace the Hamiltonian matrix elements (i,A | H | j,u) in
the real cluster by the corresponding self-consistent ma-
trix elements obtained for the dimer. The electronic states
for the cluster are then obtained by diagonalizing the V-
atom Hamiltonian in Eq. (2). The Hamiltonian H in this
procedure, however, is not obtained self-consistently.

As the cluster size becomes large, the diagonalization of
the Hamiltonian in Eq. (2) becomes more and more
difficult (e.g., with nine orbitals per atom, a cluster of say
50 atoms requires diagonalization of a 450%450 matrix).
For a cluster having more than ~50 atoms we adopt a
different procedure to determine the eigenstates. Instead
of diagonalizing the Hamiltonian equation, we determine
the electronic spectrum via a moment and the recursion
scheme.* This method which constructs the electronic
density of states from its moments is numerically efficient
when the density of states is free from gaps and singulari-
ties. This is clearly the case for bigger clusters. For
smaller clusters, the electronic spectrum consists of &
functions and the moment approach becomes inefficient
since it takes a large number of moments to reproduce a
singular spectrum.

The Hamiltonian and overlap-matrix elements and the
spin density of states for Fe, Co, and Ni were calculated
by considering both 3d and 4s valence orbitals. This en-
ables us to take into account s-d hybridization. The
method has been applied to a large class of systems in-
cluding linear chains of Fe, Co, and Ni in which the in-
teratomic distances are set equal to the nearest-neighbor
spacing in the corresponding bulk, monolayers of Fe(100),
Co(001), and Ni(111), and clusters corresponding to
fragments of the respective bulk having bcc, hep, and fcc
structures. The number of atoms range from 2 to 19 in
the chains; from 3 to 21 in the monolayers, and from 3 to
43 in the clusters. In addition, we also present results on
infinite systems for comparison. These were obtained by
using the recursion technique.

In Fig. 1, the average magnetic moments per atom cal-

Fe

3_ o
. W‘
m
2 24
ES
Ni
|—< o "4 o~ e e * Ad - g

T 111111 rrrrrrt1v o111 1771
I3 5 7 9 1l 13 151719
N
FIG. 1. Magnetic moment u in Fe, Co, and Ni chains as a

function of the number of atoms in the chain.

culated by summing over s and d states are plotted as a
function of the number of atoms forming linear chains of
Fe, Co, and Ni. It is interesting to note that the moments,
instead of varying monotonically, fluctuate with the in-
creasing number of atoms before converging to their
asymptotic values. In particular, the moment in the odd-
atom chains of Ni containing less than 9 atoms are always
higher than those in the even-atom chains.

To understand the origin of the odd-even alternation of
moments in Ni, we plot in Fig. 2 the density of states for
majority and minority spins for Ni chains containing 2, 3,
and 4 atoms. These were obtained by broadening each ei-
genvalue with a Gaussian of half-width 0.2 eV. Note that
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FIG. 2. Density of electronic states in Ni chains having 2-4
atoms.
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TABLE I. Average moment per atom, and the d contribution to moment u4 in Fe, Co, and Ni chains

using DVM and the ATB methods.

Fe Co Ni
No. of atoms DVM ATB DVM ATB DVM ATB

2 Hiot 3.62 3.0 2.0 2.0 1.0 1.0
Hd 3.31 2.0 1.0

3 Hiot 3.33 3.33 2.33 2.33 1.31 1.32
Hd 3.30 2.05 1.0

4 Hiot 3.50 3.19 2.06 2.45 1.0 1.0
Iy} 3.27 2.02 0.98

5 Hiot 3.56 3.20 2.20 2.20 1.17 1.19
Hd 3.33 2.04 1.0

6 Hiot 3.34 3.33 2.24 2.33 1.0 1.0
Hd 3.29 2.04 0.97

7 Hiot 3.42 3.14 2.14 2.14 1.13 1.12
Ua 3.26 2.03 1.0

for even-atom chains there are bonding and antibonding s
states that are well separated from the d manifold. How-
ever, for the odd-atom chains, a nonbonding s state occurs
in the center of the d density of states. The 4 band in
linear chains is fairly narrow due to the low coordination
number and the majority d band is always full. If the to-
tal number of d electrons were fixed, then the number of
minority spin electrons and, consequently, the magnetic
moment would be independent of the location of the Fer-
mi energy. Therefore, the origin of the moment fluctua-
tion would have to incorporate the s band contribution to
the moment.

The behavior of the s band is similar to that of the d
band. For an odd-atom chain an extra peak due to the
nonbonding orbital appears in the middle of the d band
just below the Fermi energy and has to be filled up. To
occupy this extra band some electrons are transferred
from the minority d band to the s band causing the mag-
netic moment to increase. This situation does not arise in
the even-atom chains. Thus, the moment fluctuation in
the linear chains originates from the electron charge fluc-
tuation in the d band caused by s-d mixing. The nature of
fluctuation of moments would, in general, depend on the
relative spacings of s and d levels and the total number of
electrons. Thus the variation in the moments with chain
size is different in Fe and Co from that in Ni, as seen in
Fig. 1.

The features in the density of states in Fig. 2 can also be
understood using a simple Hiickel-type model.® In this
model, there is an on-site energy term a (the diagonal ma-
trix element) and the hopping term B (the off diagonal
term). For N=2, the diagonalization of a 2X2 matrix
yields the energy eigenvalues a * B corresponding to anti-
bonding and bonding states. For N =3, the diagonaliza-
tion yields three roots at e=a++/28, a, and a—/28.
These correspond respectively to antibonding, nonbond-
ing, and bonding states. The nonbonding states are situat-
ed at exactly the same position as the original atomic lev-
el. It is easy to show that when N is odd, there is always a
nonbonding state which is absent when NV is even. It is the
appearance of this nonbonding state that is responsible for

the fluctuation in the moment. When NV is large, the
broadening in the density of states wipes out this special
feature and the quantum size effect ceases to exist.

The first-principles approach, used above to show the
quantum size effect, is non-self-consistent. Since the ex-
istence of quantum size effect involves electron transfer
between s and d states, it is only fair to ask if the findings
of the ATB are reliable under such charge-transfer situa-
tions. To investigate this, we carried out ab initio self-
consistent molecular-orbital electronic-structure calcula-
tions on Fe, Co, and Ni chains containing 2-7 atoms. The
particular scheme we have employed is the discrete varia-
tional method (DVM) and the local-density functional
theory. The reader is referred to earlier papers® for de-
tails. In Table I we compare the results of the DVM cal-
culations with those based on the ATB method. For the
DVM calculations we also give the net spin moment from
the d orbitals. The magnetic moment per atom obtained
from DVM again fluctuates with chain length as predicted
by the ATB theory. Whereas the DVM and ATB results
are nearly identical for Ni, there are minor differences for
Co and Fe. A comparison between the average total mo-
ment and the 4 component of the moment from the DVM
calculations reconfirms our earlier conclusion that the os-
cillations in the moment are due to the s component.

Now we turn our attention to the convergence of mag-
netic moments as the number of atoms increase. The re-

TABLE II. Average moment per atom in Fe clusters.

No. of atoms Chain Plane Bulk

4 3.19 3.50 2.5(Tq)
6 3.33 3.0(0n)
9 3.20 3.33 2.89
13 3.23 3.38
15 3.20 2.80
21 3.24
27 2.96

Infinite 3.21 3.15 2.53




TABLEIII. Average moment per atom in Co clusters.
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TABLE IV. Average moment per atom in Ni clusters.

No. of atom Chain Plane Bulk No. of atoms Chain Plane Bulk
3 2.33 1.67 3 1.33 0.67
4 2.45 2.00 1.50(Tq) 4 1.00 0.89 0.5(Ta)
6 2.33 2.33(0n) 6 1.00 0.94(Oy)
7 2.14 1.86 1.57 7 1.12 0.85
13 2.23 2.07 1.79 13 1.06 0.73 0.71
19 2.26 1.87 2.05 19 1.05 0.66 0.63
Infinite 2.23 1.85 1.69 43 0.61
Infinite 1.02 0.65 0.59

sults for Fe, Co, and Ni for linear chains, as well as for
surfaces and bulk, are given in Tables II-1V, respectively.
First, we discuss the results in the chains. The moments
per atom of the 15-atom chain of Fe, and 19-atom chains
of Co, and Ni are, respectively 3.20, 2.26, and 1.05up.
These agree very well with the “infinite” limit result (ob-
tained from the recursion technique) of 3.21, 2.23, and
1.02up. It is worth pointing out that our calculated
“infinite” chain results of 3.21up for Fe and 1.02up for
Ni agree very well with the full-potential linear augment-
ed plane-wave (FLAPW) results® of 3.30 and 1.10u5.

Next we discuss the magnetic moments of monolayers
and bulk given in Tables I[[-IV. We start with the results
of Ni.

Reading row by row, we see that the moment in the
chain is higher than that in the plane, while the moment in
the plane is higher than that in the bulk. It turns out gen-
erally that the lower the dimension, the more open the
structure is and, consequently, the higher the magnetic
moment. The reason is that in the case of low dimension
or open structure, the overlap between adjacent atomic or-
bitals is smaller. Consequently, the band is narrower.
Magnetic moment is proportional to the effective ex-
change splitting J and inversely proportional to the band-
width W so that narrowing of the band leads to an in-
crease of the moment.

A column-wise examination of the results in Table IV
reveals that the moment per atom in chains, planes, and
bulk containing 19 atoms have converged to their respec-
tive infinite limit. We should, however, note that 19
atoms correspond to nine shells in chains, three shells in
(111) monolayer, and two shells in bulk fcc Ni. Thus it
takes a larger number of shells in linear structure than in
monolayer and a larger number of shells in monolayer
than in bulk to converge to the corresponding infinite lim-
it.

The results in Table II for Fe and in Table III for Co
are similar to those discussed above with one exception.

The moment in the Fe chain is lower than that in the Fe
(100) monolayer containing the identical number of
atoms. This anomaly arises due to the competition be-
tween two factors: the coordination number in the mono-
layer is larger than that in the linear chain, thereby caus-
ing the moment in the plane to be less than that in the
chain. On the other hand, the interatomic spacing in the
Fe(100) plane is larger than that in the Fe chain causing
the moment in the plane to be more than that in the chain.
Clearly, the interatomic separation dominates over the
coordination number in determining the size of the mo-
ment. Several calculations on small clusters using self-
consistent-field LCAO and on monolayers of Fe using
FLAPW have been carried out. It is instructive to com-
pare our results with these to gain additional confidence in
the predictions of the ATB theory. The moment of
3.15up for Fe(001) monolayer agrees well with the
FLAPW result® of 3.20uz. For 9-atom Fe cluster our cal-
culated value of 2.89up agrees well with the SCF-LCAO
result” of 2.89up. For 15-atom Fe cluster the multiple
scattering xa (Ref. 8) and the local spin-density methods®
yield the moment to be 2.67up.

In conclusion, we have developed a theory that is cap-
able of predicting accurately the magnetic moments of
atoms from clusters to crystals. We have also demonstrat-
ed that the fluctuation in the magnetic moment of linear
chains of Fe, Co, and Ni is a manifestation of the quan-
tum size effect. This originates from the nature of non-
bonding orbitals. It is hoped that with sophisticated ex-
perimental techniques such as molecular-beam epitaxy, it
will be possible to make Fe, Co, and Ni chains of finite
size. Experimental investigation of the magnetic moments
may confirm the novel quantum size effect predicted here.
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