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Results are presented that demonstrate the effectiveness of a calculational method of
electronic-structure theory. The method combines the power (tractable basis-set size) and flexi-
bility (transition and first-row elements) of the augmented-plane-wave method with the computa-
tional efficiency of the Car-Parrinello method of molecular dynamics and total-energy minimiza-

tion.

Equilibrium geometry and vibrational frequencies in agreement with experiment are

presented for Si, to demonstrate agreement with existing methods and for Cu, N, and H;O to
demonstrate the broader applicability of the approach.

Over the last fifteen years, ab initio methods based on
the density-functional formalism and the local-density ap-
proximation for exchange and correlation have accumu-
lated an impressive record of calculations.''? These in-
clude not only electronic and structural properties of mol-
ecules, clusters, surfaces, and bulk solids but also thermal
and kinetic properties as well. For many properties of
such systems, numerical accuracies of 10% or better are
systematically obtained and, with the continuous improve-
ments in computer codes and hardware, these techniques
may soon become an important tool in material and drug
design. But, in order to make the calculations practical, it
is frequently necessary to obtain not only the total energy
but also the forces on the atoms. This is particularly im-
portant for quantum-mechanical molecular dynamics?
and for the optimization of complex structures.®”¢ Un-
fortunately, some of the most powerful methods for total-
energy calculations have serious difficulties obtaining the
atomic forces directly. This is partly because in these
methods electron wave functions are expanded in basis
sets which depend on the atomic positions: when the
atoms move, the energy variations associated with the
change of the basis functions mask the relevant forces.
This problem does not occur in the plane-wave pseudopo-
tential (PWPP) method,” which gives the atomic forces
directly and with high precision. In this method, the basis
set is formed only by plane waves, which are of course in-
dependent of the atomic positions. This basis set has the
additional advantages of being completely general and
easy to improve systematically and it also makes the codes
simpler and easier to vectorize. The price paid for this
generality is high, however: Since plane waves treat all
regions of space equally, the same precision is used where
the wave functions vary rapidly or slowly and where the
electron density is high or negligible. As a consequence,
enormous basis sets are required (typically 1 or 2 orders of
magnitude larger than localized basis sets), and they are
especially inefficient when there are large interstitial or
vacuum regions. Furthermore, for transition metals and
other elements with localized orbitals, the pseudopoten-
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tials are very deep and calculations become impractical.
Thus, only a rather limited fraction of elements and sys-
tems is accessible to this method and, consequently, to
direct force calculations.

On the other hand, the augmented-plane-wave (APW)
method®® requires computations that are quite similar in
form to those arising in the PWPP method but offers the
advantage of making all the elements of the Periodic
Table equally treatable. Like the PWPP method, it de-
scribes the electron-ion interaction in terms of an effective
coupling among low-frequency plane waves. But, instead
of explicitly using an effective (pseudo)potential to de-
scribe such a coupling, it “augments” the wave functions,
close to the atoms, with exact solutions of the spherically
averaged potential. These augmented wave functions are
then used to calculate the effective matrix elements. A
key difference between the two approaches is the require-
ment of norm-conserving pseudopotentials that the linear
combination of plane waves constituting the *“pseudo’-
wave-function possess the full norm (charge) of the all-
electron wave function. This requires the pseudo-wave-
function to vary more sharply than its APW counterpart
and to converge more slowly with increasing plane-wave
frequency. Very recently, a scheme to release the norm-
conservation condition was proposed,'®!! bringing the
PWPP method even closer to our APW method.

APW formulations also vary in their detail. Among
them ours is the most similar to the PWPP method in that
only the low-angular-momentum components of the wave
function and the spherically symmetric component of the
potential are augmented. As in the PWPP method, high-
angular-momentum components of the wave functions
and nonsymmetric components of the potential are de-
scribed by the pseudo-wave-functions and the pseudoden-
sity (the part of the wave functions expanded in plane
waves and their square).

Although the APW method requires many fewer plane
waves than the PWPP method, its basis set is still much
larger than typical basis sets of localized orbitals.®'%!3
Since, in the standard Rayleigh-Ritz procedure, the com-
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putation time typically increases as the square or the cube
of the dimension of the secular matrix, the difference in
efficiency is still very large, Car and Parrinello® have
solved the bottleneck of the large plane-wave basis sets (in
the case of the PWPP method) by formulating the elec-
tronic problem in a way that the number of plane waves N
enters only as NIn/N. In addition, their method has the
crucial advantage of making quantum-mechanical molec-
ular dynamics feasible.® Both things together make the
increased basis set a more than reasonable price to pay.
In our APW method, we have used the same basic ideas to
make the computation time increase only as NIn/N with
the number of plane waves. Furthermore, we have
presented recently,'® a simple formula for the atomic
forces in the APW method. We have now implemented
this formula, together with a number of improvements
over the existing APW methods, to make a very efficient
and versatile total energy and force method.

Our APW method will be described in more detail else-
where. In brief, the electron wave functions |y;), initially
determined by their plane-wave expansion coefficients
(G|, are expanded also in spherical harmonics and aug-
mented in each atomic sphere. The mean energies
&=y;|H|y)/{w:|S|w;) and the derivatives

(G|H|y) =8y | Hy)/o(G|y:)*
and

(G|S|y)=0(y;|S|y)/d(G|y)*

are computed. Then the expansion coefficients are
modified according to the formula '3
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6t is an “imaginary-time” step parameter and the second
derivatives Dg=07¢/8|(G|y;)|*> are approximated by
G *x (interstitial volume). Equation (1) is an extension
for a first-order differential equation of that proposed by
Payne etal.,'® and acts effectively as a preconditioned
steepest descent method. After reorthonormalizing the
wave functions by the Gram-Schmidt procedure, the
iteration is repeated until the “forces” (G|(H —¢.S)|y;)
become small enough. Although more efficient iteration
schemes have been proposed,'”'® the above formula works
adequately in the cases we have studied. Notice that only
electron wave functions, rather than individual plane
waves, are augmented. Thus, no matrix elements of the
form (G|H|G') are computed nor stored, this being an
essential feature of the Car-Parrinello® approach. Since
we do not construct a secular matrix, we do not need a
common basis set for all wave functions and therefore we
need not make a linear approximation for the energy
dependence of the augmented wave functions (linerized
APW, or LAPW, method®). More specifically, instead of
using the same linearization energies g for all wave func-
tions, each ly/i) is linearized at & =g¢;, thus effectively
making an automatic “infinite panneling.”

As mentioned earlier, another important feature of our
method is that the / > /,,x components of the “‘intersti-
tial” wave functions (which are not augmented), are al-
lowed to penetrate into the muffin-tin spheres.'** This
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ensures the exact continuity of the wave functions in value
and slope for every angular momentum /, and allows for a
substantial reduction of /max. In fact / ;=2 gives an ac-
curacy of better than 1 mRy in the total energy for all the
cases that we have studied and /., =1 was sufficient to
get the same precision with first row molecules. Also, the
nonspherical components of the potential inside the atom-
ic spheres are treated using their plane wave expansion
rather than augmenting them as in the full-potential
LAPW method (FLAPW).?' ~2* This approximation can
be tested by reducing the muffin-tin radius (and increas-
ing the plane wave cutoff accordingly) and it also gives
very small errors in all the cases studied. The initial wave
functions are constructed by diagonalizing an atomic
muffin-tin Hamiltonian (with a superposition of atomic
densities in the interstitial region) in the subspace of a
minimal LCAO basis set (with each atomic orbital fitted
by a single Gaussian, expanded in APW’s).

Table I presents the frequencies of various phonon
modes of Si, compared with experiment and with those
obtained analogously with the PWPP method.” We have
used the same supercells of Ref. 7 and between 18 and 44
special k points?’ in an irreducible wedge of the Brillouin
zone (IBZ) of the supercells. All the frequencies are ob-
tained from the first derivatives of the forces (rather than
from the second derivatives of the total energy), using
atomic displacements of 1% of the lattice constant. A
muffin-tin radius of 2.0 a.u. and a plane-wave cutoff of 10
Ry were used, which give a convergence of the total ener-
gy better than 1 mRy. It can be seen that the results com-
pare with experiment as well as those of the PWPP
method. In Table I we also compare with experiment
several phonon frequencies of Cu, for which the PWPP
method is not practical. In this case we used rp=2.3
a.u., Ec, =15 Ry, and between 36 and 121 special points
in the IBZ of the two-atom supercells.?® Again, there is
good agreement with experiment.

Efficiency depends critically on the speed of the conver-
gence of the atomic forces with wave function accuracy.
Figure 1 shows the interatomic force in the nitrogen mole-
cule for different self-consistency iterations. This is an

TABLE 1. Experimental and calculated phonon frequencies
for silicon and copper. Experimental values for Si and Cu are
taken from Refs. 7 and 26, respectively. PWPP refers to Yin
and Cohen (Ref. 7). Frequencies are in THz, lattice constants
in a.u. Deviations from experiment are given in parenthesis.

Expt. APW PWPP
Silicon lattice constant 10.26 10.21 (—=0%) 10.30 (0%)
LTO() 15.53 1530 (—2%) 15.14 (—3%)
LOA(X) 12.32 12,11 (—2%) 11.98 (—3%)
TO(X) 13.90 13.67 (—2%) 13.51 (—3%)
TA(X) 449 441 (—2%) 437 (—3%)
Copper lattice constant 6.82 6.70 (—2%)
L(X) 7.25 7.44 (3%)
T(X) 5.13  5.27 (3%)
L(L) 7.30 7.57 (4%)
T(L) 342 3.58 (5%)
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especially demanding system for the APW method. First,
molecules in general represent an extreme case of
“inefficiency” for a plane-wave basis set because most of
the volume is empty in the unit cell. Furthermore, nitro-
gen has the shortest and strongest bond among first-row
molecules (10% shorter and 90% stronger than oxygen).
Finally, to be able to study the potential curve, we have
used a muffin-tin radius of only 0.95 a.u., which is less
than half the equilibrium distance. To make the interac-
tion between repeated molecules small enough, we used a
simple cubic unit cell with a side of 8 a.u. and one special
k point. Under these conditions, the total energy is con-
verged to 1 mRy with respect to the lattice constant but
we need a plane-wave cutoff of 60 Ry and over 4000 plane
waves to obtain such a precision. However, because of our
Car-Parrinello-like approach, this calculation is not espe-
cially demanding in terms of computer resources (much
less demanding than that of the Cu phonons, for exam-
ple), showing the great potential of this method is molecu-
lar calculations. It can be seen in Fig. 1 that the calculat-
ed forces converge very fast and that they agree perfectly
with the derivative of the total energy after a few itera-
tions. Notice that reasonable forces are available already
at the second iteration, when the total energy is still 8 eV
away from its final value. In fact, even at the first itera-
tion, when the total energy is 3.5 Ry above its converged
value, the force cancels at a distance only 6% smaller than
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FIG. 1. Total energy of N at different self-consistency itera-
tions, as a function of interatomic distance d. The solid circles
are the calculated total energies for five distances (for the first
iteration, other solid circles are out of the range of the figure).
Solid curves give the total energies obtained by integrating the
calculated forces. These are previously fitted to a cubic polino-
mial from the five calculated points. The curves have been ad-
justed vertically to the calculated total energy at d =2.0 a.u.

TABLE II. Experimental and calculated parameters for ni-
trogen and water molecules. Deviations from experiment are
given in parenthesis.

Expt. APW
N; binding energy (eV) 9.9 11.5 (16%)
Bond length (a.u.) 2.07 2.07 0%)
Vibration frequency (cm~') 2358 2400 2%)
H,O binding energy (eV) 9.5 11.6 (22%)
Bond length (a.u.) 1.81 1.83 (1%)
Bond angle (deg) 104.5 102.4 (—2%)
Vibration frequencies: 1595 1610 (1%)
(cm™") 3657 3600 (—2%)
3756 3670 (—2%)

the final equilibrium distance. The values obtained for the
bond length, binding energy, and vibrational frequency
are presented in Table II and compare very well with ex-
perimental values. Only the binding energy is substantial-
ly overestimated, this being a well-known problem of the
local-density approximation.

The rapid convergence of the forces suggests the feasi-
bility of a simultaneous relaxation of nuclear and elec-
tronic degrees of freedom. We show such a simultaneous
relaxation in Table III for a simple but nontrivial system:
the waver molecule. Starting rather far from its equilibri-
um structure, we move the hydrogen atoms according to
their forces (with the steepest descent method), keeping
the oxygen atom at the origin. The unit cell was the same
as for the nitrogen molecule. A plane-wave cutoff of 30
Ry was used during the minimization. This was then in-
creased to 50 Ry in order to obtain pcrfcctl%' converged
forces, total energies, and the Hessian matrix?’ at the final
positions. From these we find the bond length, bond an-
gle, binding energy, and vibrational frequencies, which are
given in Table II and also compare very well with the ex-
perimental values.

In conclusion, we have presented a very accurate, fast
and flexible ab initio method to study molecules, clusters,
and bulk systems with elements of the whole Periodic
Table. Atomic forces are obtained directly, opening the
door to optimization of complex structures and to ab initio
molecular dynamics for transition metals.

TABLE III. Evolution of the bond length (in a.u.) and bond
angle (in deg.) of the water molecule and of the total force of
each H atom (in mRy/a.u.) during a simultaneous optimization
of electron wave functions and atomic positions.

Iteration Bond length Bond angle Force
5 2.000 90.0 89.3

10 1.943 91.4 37.9

20 1.885 94.4 17.7

40 1.861 98.6 8.2

60 1.855 100.9 4.1
80 1.854 102.0 2.1
100 1.854 102.4 1.1
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