PHYSICAL REVIEW B

VOLUME 42, NUMBER 15

15 NOVEMBER 1990-I1

Brief Reports

Brief Reports are accounts of completed research which, while meeting the usual Physical Review standards of scientific quality, do
not warrant regular articles. A Brief Report may be no longer than four printed pages and must be accompanied by an abstract. The
same publication schedule as for regular articles is followed, and page proofs are sent to authors.

Molecular-dynamics study of self-diffusion in liquid transition metals

J. Mei
Department of Physics, State University of New York At Stony Brook, Stony Brook, New York, 11794-3800

J. W. Davenport
Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5800
(Received 10 April 1990; revised manuscript received 21 June 1990)

Molecular-dynamics simulations on liquid transition metals were performed with use of
Johnson’s analytic nearest-neighbor embedded-atom model. The coefficients of self-diffusion for Cu,
Ag, Au, Ni, Pd, and Pt at their melting points were computed. The temperature dependence of the
self-diffusivity for liquid copper has been studied with the value of the activation energy in good

agreement with experiments.

Dynamical diffusion properties distinguish the liquid
phase from the solid phase of a material. Atoms in a
solid will not self-diffuse in the absence of defects. On the
other hand, in the liquid the atoms will diffuse away from
their original positions. Many properties of a material,
such as the bond energy and force constants, directly
affect the rate at which atoms will diffuse. Experimental
data for the self-diffusivities of liquid metals are only
available for twelve or thirteen liquid metals.! So it is
quite interesting to simulate liquid transition metals and
calculate the self-diffusivities using computer simulation
methods.

The lower symmetry of liquids makes a band-structure
approach difficult to handle. Empirical-pair-potential
methods are computationally simple, but fail to give ac-
curate self-diffusion constants.>? Car and Parrinello* re-
cently developed a first-principles liquid theory. This
theory has been applied to calculate the activation energy
for diffusion in liquid sodium® and accurate results were
obtained. It has not been applied yet to the transition
metals because their narrow d bands are not adequately
described by plane-wave basis sets. Moreover, computer
limitations make this first-principles theory applicable
only to small (typically 100 atoms) systems. For many
calculations we need a theory that can handle a large
number of atoms. This requires a model that is both ac-
curate and computationally simple.

The embedded-atom method (EAM) proposed by Daw
and Baskes® provides such a computationally simple
model. It is applicable to the transition metals as well as
the simple metals. The wide application’ of this method
shows that it is quite successful. To simplify the fitting
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procedures of the EAM, Johnson® developed an analytic
EAM model for close-packed metals, which includes
nearest-neighbor interactions only. This model, to our
knowledge, has not been used to perform computer simu-
lations. In fact, the simple analytic form of the EAM
functions in the model make it just as easy to use as the
pair-potential methods for molecular-dynamics (MD)
simulations.

All EAM models are developed for the solid phase of
metallic systems. Foiles’ made the application of the
EAM to liquid transition metals and showed that the
EAM also provides a realistic description of the energet-
ics and structure properties of the liquid phase. For fur-
ther study on the EAM and to provide a ‘“‘computer ex-
periment” on the self-diffusion of liquid transition metals,
we have performed MD simulations on liquid Cu, Ag,
Au, Ni, Pd, and Pt using Johnson’s analytic model.? We
have calculated the diffusion coefficients of those six
liquid metals and the activation energy for liquid Cu.

The details of our calculations are as follows. The
simulations are performed by solving Newton’s equations
via the four-value Gear algorithm'® for a collection of
particles (atoms) confined within a cubic cell with period-
ic boundary conditions. We have chosen the canonical
ensemble, which has been realized by using Hoover’s con-
stant temperature technique!' during the simulations.
For a particular metal, the liquid phase near its melting
point (T,,) was obtained first by heating a perfect crystal
to a high temperature (approximately T =4T,, ), after
5000 time steps (which, we found, is long enough for the
crystal to be melted completely), and then gradually cool-
ing down to the desired melting point. Once the liquid
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TABLE I. Simulation results of the internal energy per atom and pressure for liquid metals at con-

stant temperatures and atomic densities specified.

T n P E E*
Liquid (K) (A7) (kbar) V) V)

Cu 1349 0.0740 0.04 ~3.08 —2.99
Ag 1227 0.0510 —0.16 —2.42 —2.33
Au 1330 0.0526 —0.11 —347 —3.38
Ni 1720 0.0764 —0.58 —3.80 —3.72
Pd 1818 0.0584 —1.24 —3.27 —3.18
Pt 2037 0.0578 —0.31 —5.04 —4.95

?From Ref. 9.

phase was obtained, we performed a standard run, con-
sisting of 2000 steps for equilibration, and then 10000 ad-
ditional steps for the statistical average. All the simula-
tions were performed with the particle number N =256.
For a particular metal, the time step is 0.005¢,, with the
reduced unit t,=(mr2/$,)'’%, where m is the atomic
mass of the metal, r, is the nearest-neighbor distance of
the atoms at zero temperature, and ¢, is the model pa-
rameter,® which has the units of energy 7, =2.70X 1013
sec for Cu.

Table I lists the input temperatures and density, as well
as the pressures and internal energies per atom computed
for the liquid metals Cu, Ag, Au, Ni, Pd, and Pt. The
temperature and density have been chosen to be close to
the melting points of the metals. The pressures obtained
here are very small compared to the typical 1-Mbar bulk
moduli. The last column of the table lists the internal en-
ergies per atom computed by Foiles,” which are about
0.09 eV higher then our results due to the different mod-
els used. Figure 1 presents the pair-correlation function
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FIG. 1. Pair-correlation fcunction g(r) for liquid Cu at
T=1349 K and n=0.0740 A°. The solid line is the MD
simulation result and the points are the experimental data (Ref.
1).

computed for liquid Cu along with the x-ray scattering
results.! The agreement between the simulation and ex-
periment is quite good.

The coefficient of self-diffusion D can be calculated
from the long time behavior of the mean-square displace-
ment of the atoms:

4

D:
dt

(Ir(t)—r(0)*) |, (1

where ( ) represents the average over ¢,,, = 10000 time
origins and N particles. Our simulation results showed
that the curves for the mean-square displacements plot-
ted against time have the well-defined linear behavior at
large times. This linearity characterizes the liquid struc-
tures. The coefficients of self-diffusion D computed by
Eq. (1) are listed in Table II. There are few experimental
data of self-diffusion available for liquid transition metals.
Table II also lists both the experimental'? and theoretical
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FIG. 2. The calculated coefficient of self-diffusion D as a
function of inverse temperature 7T (K) for liquid Cu.
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TABLE II. The coefficients of self-diffusion D for the liquid metals near their melting points. D is in units of 10~® m*sec .

Liquid Cu Ag Au Ni Pd Pt

D 0.365+0.007 0.302+0.011 0.375+0.012 0.385+0.009 0.449+0.007 0.287+0.005
D? 0.397 0.256

D® 0.340 0.277

2Experimental data (Ref. 12).
"Theoretical data (Ref. 13).

data'® for Cu and Ag, which are comparable to our re-
sults. There are no experimental data for the other met-
als.

The temperature dependence of the self-diffusivity
D (T) has special interest since the activation energy is
experimentally accessible. In order to compute the ac-
tivation energy, we need to compute D at various T and
fit the data to the Arrhenius form:

D(T)=Dexp(—E, /k,T) . 2)

We simulated liquid Cu over a wide range of temperature
(1200-2500 K) with the results shown in Fig. 2. The
simulations were still performed in the canonical ensem-
ble, but the constant-pressure constraint method due to
Evans'# has been used to find the equilibrium density at
each temperature. The data in Fig. 2 fit well to formula
(2). Points with T below the melting temperature
represent supercooled liquid states. From least-squares
fitting we obtained E,=(40.4+1.1) kImol~' and
Dy=(1.30%0.14)X 10”7 m?s~!, which are close to the
experimental values of E,=40.6 kImol™! and
Dy=1.46X10"7 m?s~!. The agreement between the
simulation results and the experimental data is remark-
able for this simple EAM model valid only for nearest-

neighbor interactions. It suggests that the short-ranged
interactions play the dominant role in the liquid metals.
We have used canonical ensemble for all the calculations.
The constant-pressure MD simulations'® tend to overesti-
mate the values of self-diffusion constants due to large
density fluctuation.

In conclusion, we have applied Johnson’s EAM model
to liquid transition metals using MD simulations. The re-
sults showed that even though this model contains only
nearest-neighbor interactions, it provides a realistic
description of the self-diffusion constants and the activa-
tion energy for liquid copper. The pair-correlation func-
tion of liquid Cu computed using the EAM is also in
good agreement with x-ray scattering results. The calcu-
lated self-diffusion constants for liquid Ag, Au, Ni, Pd,
and Pt provide useful data for the study of diffusion in
liquid metals.
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