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The previous model for the low-energy anharmonic excitation of the interstitial oxygen in silicon
[D. R. Bosomworth, W. Hayes, A. R. L. Spray, and G. D. Watkins, Proc. R. Soc. London, Ser. A
317, 133 (1970)] is expanded so that the coupling to the local phonon is included. The result of the
calculation explains the previously observed absorption peaks of ' 0 and ' 0 in the 30-, 1100-, and
1200-cm ' bands, confirming the energy-level scheme and transition assignment of Bosomworth
et al. The coupling significantly reduces the level separations of the low-energy anharmonic excita-
tion, and plays an important role in explaining the ' 0 isotope peak shifts. A physical interpreta-
tion is given to the calculated negative coupling constant. The origin of the 517- and 1700-cm
bands is also discussed.

I. INTRODUCTION

The (111) bond-interstitial oxygen (0;) in silicon'

causes the series of infrared and far-infrared impurity ab-

sorption bands shown in Table I.' ' These bands, ex-

cept the 517-cm ' one, consist of a group of peaks (mul-

tipeak structure) that exhibit strong temperature depen-
dence at about 10—50 K.' '

Bosomworth et al. showed that the 0, is an off-center
impurity" ' whose (x,y) freedom of motion (Fig. 1)
causes the two-dimensional (2D) low-energy anharmonic
excitation (LEAE). They assigned the 30-cm ' band to
the transitions between the calculated LEAE multiplets
belonging to the zero-v3-phonon state. They further
determined experimentally the levels of the LEAE multi-
plets belonging to the one-v3-phonon state (Fig. 9 of Ref.
5). The 1100- and 1200-cm ' bands were assigned to the
transitions between the zero- and one-v3-phonon states.
They ascribed the 1200-cm ' band to the multiquantum
transitions due to the coupling of the LEAE to the v3 lo-
cal phonon. They also attributed the multipeak struc-
ture of the 1100-cm ' band to such an effect (of the cou-
pling) that the energy-level separation of the LEAE in the
one-phonon state becomes smaller than in the zero-
phonon state. We confirm these results and suggestions
of Bosomworth et al. , formulating the local-phonon
coupling which consistently describes both of the zero-
and one-phonon LEAE multiplets. Our model is an ex-
pansion of the model of Bosomworth et al. , which treat-
ed only the 2D LEAE. The double-peak structures due

to the ( 111) -oriented acceptor-hydrogen complexes in
silicon' may be due to the analogous effect of the cou-
pling.

Bosomworth et al. overestimated the ' 0 isotope
shifts of the 29.3- and 37.8-cm ' peaks by the 2D one-
body excitation model for the 0, in the static host lattice.
They took into account only the mass difference between
' 0 and ' 0, neglecting the coupling to other freedoms of
lattice excitation. We refer to such a model as the free
2D LEAE model. We try to resolve the overestimation
taking the local-phonon coupling into account.

The absorption bands have often been assigned to or
discussed with the normal vibrations in the bent
Si ~ 0~ Si virtual molecule with C2„,symmetry. ' '

This is a misleading modeling. In the LEAE, an off-
center Si ~ 0 & Si configuration, which is stable in the
statical point of view, quickly changes to the oppositely
bent Si L 0 r Si configuration by the radial motion of
0, as well as by z-axial rotation. Therefore, these normal
vibrations formally considered for one of the equivalent
off-center configurations are not physically meaningful.
To unambiguously describe the excitations, we adopt the
D3d configuration as the origin of the atomic displace-
ments. We first separate all degrees of freedom of atomic
motion into two systems: the 2D LEAE of the 0, , and a
system of phonons including the high-energy impurity
modes. We then take into account the relevant interac-
tion terms between the two systems: the local-phonon
coupling s.

The paper includes a detailed description of our previ-

42 9650 1990 The American Physical Society



42 THEORY OF LOCAL-PHONON-COUPLED LO%'-ENERGY. . . 9651

TABLE I. Previously observed low-temperature infrared and far-infrared absorptions due to the in-
terstitial oxygen in silicon. The absorption peaks due to 'Si—' 0—'-'Si (second column) and "Si—
' 0—Si (third column) are classified into the bands in the first column. The fourth column shows the
initial state of the transition corresponding to each peak, which is determined from the observed tem-
perature dependence of the peak intensity. The symbol G (E) indicates the ground state (an excited
state); the E' excited state is lower in energy than the E" excited state. The fifth column shows the
symmetry of the irreducible transition dipole operator(s) associated with each band, which is deter-
mined from the measured stress-induced dichroism.

Absorption
bands
(cm ')

30'

517b

1100' "

1200'b'

1700'

160

29.3
37.8
43.3
49.0

517.3

1136.0
1127.8
1122.0

1203.0
1216.8

1748.6
1741.2
1735.5

Wave numbers of
the observed peaks

(cm ')
180

27.2
35.3

517.3

1084.4
1076.7
1071.0

1150.8

Initial
state

G
E'
Elf

G
E'
E/I

Symmetry of
transition
dipole(s)

(x,y)

(x,y)"

ZB g

Zd

Z
h

'Reference 5.
Table I in Ref. 2.

'References 1 and 4.
References 8 and 9.

'References 6, 8, and 9.
"Reference 7.
gReference 3.
"Reference 10.

ous publication. ' In Sec. II, we introduce the local-
phonon-coupling model to describe the 30-, 1100- and
1200-cm bands. The Schrodinger equation is reduced
to that for the local-phonon-renormalized 2D LEAE, and
solved numerically. In Sec. IV, we obtain, for both ' 0
and ' 0, the energy levels consistent with experiment.
We explain how the coupling gives rise to the 1200-crn
band and the multipeak structure of the 1100-cm ' band.
We calculate the relative intensities of the 1200-cm
band peaks. The coupling is shown to be an important
factor in explaining the isotope peak shifts. In Sec. V, we
explain the physical origin of the calculated negative cou-
pling constant. We discuss the origin of the 517- and
1700-cm ' absorptions.

II. MODEL AND METHOD OF CALCULATION

FIG. 1. The D,d atomic configuration and the Cartesian
coordinate axes. The origin of the coordinate axes is at the
center of symmetry; the z axis is parallel to the (111)crystallo-
graphic axis. This coordinate system is used all through this pa-
per. The displaced oxygen atom is also described by a dashed
circle.

We consider a silicon crystal containing a single 0, ,
and take, as the origin of the atomic displacernents, the
D3d-symmetric equilibrium configuration with the 0, at
the center of symmetry (Fig. l). Using Cartesian coordi-
nate axes shown in Fig. 1, we express the displacernent of
the 0; by (x,y, z)—:(rcosP, rsinP, z), and that of the jth sil-
icon atom by q . In accordance with Bosomworth
et al. , we take, as an unperturbed (uncoupled) system,
the free excitation due to the (x,y) freedom of motion of
the 0, in the static host lattice:
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p fi 1 i3 c3 1H =— + +v(r),
2m r Br df r2

u(r)=ar +pr (2)

We take into account only the relevant part of the in-
teraction terms between (x,y) and (z, q l, q2, . . . ):

2II —
g r2Q2A

2u 2
(4)

where g„ is the coupling constant, and Q„2„is the nor-

mal coordinate of the A 2„local mode, Q „

=/(&l2cvA )(bA +bA

We deal with the total Hamiltonian

where m is the mass of the oxygen atom, and v (r) is the
static host lattice potential with the P dependence
neglected. Bosomworth et al. employed, as u(r), the
Gaussian-bump-perturbed parabolic potential with three
parameters. Ab initio electronic calculations' ' suggest
that the P-dependent potential terms are negligible.

We approximate the excitation due to (z, ql, q2, . . . ) by
a system of harmonic vibrations, and assume that an A 2„
mode [Fig. 2(a)] of these vibrations is localized. This as-
sumption accords with the experimental fact: existence
of the high-energy bands due to the A2„(z-like) transi-
tion dipole (Table I). We express the Hamiltonian of this
A 2„localvibration as

mass m of the 0;, since Q„generally contains the z dis-
2u

placement of the 0;. The gA also depends on I, be-
2u

cause Q„ is defined by a form containing m and M
2u

(mass of the silicon atom): QA =co&mz
2 II

+g~. ,cI,&MqI„(lr=x,y, z), where co++, c,„=l. If
the A2„mode completely localizes at the 0, , & describes
a three-dimensional one-body motion of the 0; in the po-
tential u(r)+(mrv„ l2)z +mg„r z . The electric di-

2u

pole interaction with the applied electric field (E„,E,E, )

is written as e*r(E,cosltl+E sing)+MA' E,Q„,where
2u 2u

e* and MA* are the constants. We use this to deal with

the optical transitions.
Now we show the method of calculation. Neglecting

the higher-order perturbation part
w'—= —,'(«A, l~A, )"[(bA' )'+bA' ) (6)

in 8' ", we approximate it by the remaining part:

w '"=(«A lcvA )r'(b„bA + —,') .

We can show that the level separation change due to w' is
A2two orders of magnitude smaller than that due to w

in the case of the present problem. Because the A2„pho-
non number X, as well as the z-axial angular momentum l
(=0,+1,+2, . . . ), is the good quantum number of

P A2„A2uH +H '" +w '", its eigenenergy Ekt &, and eigenfunc-
tion

H+H '"—+ 8'

The & contains four unknown adjustable parameters a,
P, RrvA, and g„.The values of a and P should be the

2u 2u

same for all isotopic oxygens. The coA depends on the
2u

=gk~l~ N(r)e"~ N)(b„bA ~N) =N N))

are obtained from the following equation in each sub-
space of N:

Symmetry

Irreducible
Representation

(a)

4Si
I
I
I
I

q&o

4Si
Z

A2q

(b)

I
I

I
I I
I I

I I

~
I I
I I

I I

I I

8 = 8

I

I

0
I

I

I

J&

substituted for v(r) in (1). The label k(=0, 1,2, . . . ) dis-

tinguishes eigenstates t k, l, N ) with the same ( I, N). Here

we see that the interaction m
'" is renormalized into the

coefficient a of u (r). The renormalized part
uN(r) —u(r)=(figA IIvA )(N+ I/2)r can be shown to

2u 2u

be an adiabatic potential' contributed from m

We solve Eq. (8) by numerically diagonalizing the ma-
trix of %N represented by the normalized eigenfunctions
of a 2D harmonic oscillator, gk~l~(r)e' . Thus, we obtain
the radial part as

4, l, N(r) = X C~"'k' '&k Il (r) .
k'

(10)

~NNkl N('4) = [Ekl, N (N +T~)~~A „~kklN(" 4)

He«, 'li'N is the Hamiltonian with the renormalized po-
tential

uN(r) —= [a+(fig A lcvA )(N+ —,
'

) jr +Pr

FIG. 2. Displacements of the 0, and the nearest silicon
atoms in the normal modes belonging to the A2„,E„,and Jig
irreducible representations of the D&d point group. Note that
the normal modes have been defined in the excitation system
that does not involve the {x,y) freedom of motion of the 0, (Sec.
II).

We used 20 —60 basis functions for each (/, N), and then
ascertained that the calculated energy eigenvalues con-
verged to 7 —5 significant figures. Bosomworth et al.
employed the perturbation method for the center bump
of the potential to solve the equation for the 2D LEAE.
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III. PARAMETER DEPENDENCE
OF THE ENERGY-LEVEL SCHEME

Regarding a, P ( & 0), and the impurity mass m as pa-
rameters, we investigate the dependence of the energy-
level scheme of H on these parameters. By using the di-
mensionless distance R —= r (2mP/fi )', H in (1) is
rewritten as follows:

c4 p ~+ ~ and —~ correspond, respective ly, to the
harmonic oscillation and the rigid rotation. The region
0 3„,„corresponds to the on-center anharmonic excita-
tion, and the region A„,„&0to the off-center excitation.
In the region of strong off-center nature, A„,„~—10, the
picture of the excitation is the potential-ditch-confined vi-
brating rotation.

a a 1 aH =E„„,. — R +
R dR dR R~ c)y2

+ W„„„R'+R4

-15 —IO lO

20 20

15 15

IO 10

0 I I I I I 1 I j, I I I I l~ I I I i I I I I I I I 0-I5 —IO -5 0 5 IO

D!MENSIONLESS POTENTIAL PARAMETER A non

where E„„;=—[i)i P/(2m) ]'/ is the scale of energy, and

A„,„=a[2m/(fiP) ]' is a parameter that characterizes
the picture of the excitation. We express the eigenenergy
of H as EkI, and the coordinate of the minimum point of
u(r) as r;„.The solid curves in Fig. 3 show the A„,

„

dependence of the normalized eigenenergy relative to the
potential minimum, [Eki —u(r;„)]/E„„;,calculated by
the method shown in Sec. II. The dotted curve indicates
the normalized excitation energy fico;„/E„„;of the
radial harmonic oscillation at r;„, where
co,„—:j[d u(r)/dr ], „

/m]' . The dashed curve in-

dicates the normalized height of the center bump relative
to the potential minimum, —u(r;„)/E„„;.The limits of

IV. RESULTS OF CALCULATION

Obtained parameter values are shown in Table II ~ The
corresponding energy levels of H +H '" +~ '", togeth-

2Mer with those of H +H '", are described in Figs. 4(a)
(' 0) and 4(b) (' 0). The peaks in the 30-, 1100-, and
1200-cm ' bands (Table I) are assigned, respectively, to
the transitions represented by the solid arrows in Fig. 4.
The transition ~1,0,0)~ ~1,0, 1) may contribute a super-
imposed peak to the 1127.8-cm ' (' 0) and the 1076.7-
cm ' (' 0) peaks. These calculated transitions well ex-
plain the experimental data in Table I. Disagreement be-
tween the calculated transition energy (Fig. 4) and the ob-
served peak energy (Table I) is less than (1 cm ')hc for
nearly all peaks. Our level scheme and peak assignment
are the same as those of Bosomworth et cil. (Fig. 9 of Ref.
5). This confirms their arguments about the essential as-
pects of the excitation: the 2D LEAE in the
independent potential, and its coupling to the 1100-cm
local vibration. Figure 5 shows the static host-lattice po-
tential uir), and the renormalized potentials uo(r), u, (r)
of ' 0 and ' 0, with the origin of energy at each potential
minimum. Although the center bump of u(r) is lower
than that calculated by Bosomworth et al. (3.3 meV),
the distance r;„ofthe potential minimum is close to
theirs (0.22 A). Eigenenergies other than those shown in

Fig. 4 can be known from Fig. 3. For ' 0, we find

E„„;=1.5849 meV, and 3„,„=—0.9009, —1.5262, and
—2.7769 for u(r), uo(r), and u&(r), respectively. These
values of A„,„areindicated in Fig. 3.

The energies of the 1100-cm ' band transitions shown
in Fig. 4 were the same, without the coupling. The cou-
pling with negative g„(Table I) makes the shape of

2M

u, (r) wider than that of uo(r), as is seen from the values
of r,

„

in Fig. 5. Hence, as shown in Fig. 4, the level sep-
arations between the one- A 2„-phonon states become
smaller compared to the zero-phonon states. (This is the
level-separation reduction in the one-phonon state which
Bosomworth et al. derived experimentally. ) Thus the

FIG. 3. The normalizeed eigenenergy [EI,.I —v(r, „)]/E„„,as
a function of the potential parameter A„,„(solid curves). The
figure also shows normalized excitation energy of the radial har-
monic oscillation defined at r,„(dotted curve), and the normal-
ized center bump height relative to the potential minimum
(dashed curve). Symbols, 0, 1, . . . , 0', 1', . . . , 0",1",. . . by each
solid curve show the values of (k, l), e.g. , the symbols 0, 0', and
1' mean (k, l)=(0,0), (1,0), and (1,+1), respectively. The arrows
on the abscissa with symbols (s), (0), and (1) indicate, respective-
ly, the values of 3„,

„

in the problem of ' 0 in v(r), vo(r), and
v, (r) shown in Fig. 5. The symbols HO, RR, and VR express
the picture of the motion: the harmonic oscillation (HO), rigid
rotation (RR), and vibrating rotation (VR).

Fitting parameters

a (meV/A )

P {meV/A )

(mev)
2M

2
Ag, /~, (mev/A )

2M 2M

160

142.767
—24.2392

—17.4615
237.017

180

135.899
—19.8842

TABLE II. Values of the parameters obtained for ' 0 and
"0 in the "Si—0—"Si defect structure. Instead of the values

of g~, those for fig~ /co~ are shown for convenience. Note
2M 2M 2M

that we use 1 meV =(8.06548 cm ')hc for conversion, where h

and c are Planck's constant and light velocity in vacuum.
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Decoupled
excitation

levels

)0,+3, I )

ll, 0, I )

lo,+2, I)
lO, +I, I&

Coupled
excitation levels

, ', ll, +I, I&

l245.9
I224.6
l203.8
I I 87.8

I I 5 I.5
l0, 0, I)

One-A2U- phonon states

II57. I

I I35.7
C)Q
a~@' l200cm I

&&m eucu band
Zero- Phonon states ~~~ ~l IOOcm '

band
~+ lO, +3,0& I I9.8

I 09.6
I I, 0, 0) 834
l 0,+ 2,0) 73.9
l 0, + I,O) 33.4

29.4
,~IO, O, O& 0,+ O

I k, g, N &
Energy Y 30cm ' Energy

(cm' hc) band (cm' hc)

77.7
66.6

Decoupled
excitation

levels Coupled
excitation leve I s

(8O

lo, +3, I&

ll, 0, I )

0,+2, I

'. l I,+ I, I)
I I 88.8
I I 70.2
I I 48.5
I I 34.7
I I 05.2
I 084. I

~ . I200cm'
%co

l0, I, I&

l0, 0, I &

One-Aqu-phonon states
band

CI oi
Zero- phonon states oooo I I 00cm '

lO,+3,0) II0.2

I I, 0, 0) 76.8
l 0, 2,0) 67.9 r )',|xI''

,
62.2

lO, +I,O) 30.7

I k, l, N&
Energy ~30 cm i Energy
(cm h c) band (cm h c)

FIG. 4. Energy levels of H +H "+w " (coupled excita-
A2tion levels) and those of H +H '"

I',decoupled excitation levels)
calculated for ' 0 (a) and ' 0 {b). The ground-state energy lev-
els are drawn in the same energy position. The calculated
eigenenergies relative to the ground state are shown at each lev-
el. The solid arrows indicate the transitions to which the peaks
in the 30-, 1100-, and 1200-cm ' bands (Table I) are assigned.
Calculated transition energy is given in each arrow. The dashed
arrows in (b) indicate the transitions which may be observed as
peaks in case of higher "0concentration.

transition energy of the 1100-cm ' band is smaller for
the transition from the higher zero-phonon level (Fig. 4).
This is how the rnultipeak structure of the 1100-cm
band appears. As has been pointed out by Bosomworth
et al. , the 1200-cm ' band is regarded as a 2D LEAE
sideband of the local-phonon transition, because k as well
as N increases in the transition (Fig. 4). Also this side-
band originates from the N dependence of u~(r) due to
the coupling. The N dependence causes nonorthogonali-
ty (g& ~I~ ~ ~go~I~ o) WO, which gives a nonzero probability to
the sideband transition ~0, 1,0)~~1,1, 1), as shown
below. For low temperatures, the intensity of the 1100-
and 1200-cm ' absorptions is expressed as

I(k, l, O~k', 1, 1}=(M„' ) (A/2'„)pI(o(EI, I )
—Eklo)

l&(1, ((, ] gf, ((,o) I, (12)

V. DISCUSSION

As seen from (9), the sign of the coupling constant g„
2M

significantly affects the energy-level scheme. Here, we ex-

with irrelevant factors omitted. Here, pI, I p is
Boltzmann's occupation probability for the initial state

~
k, 1,0). The radial integral in (12) defined by

Jo d» r(„~,~, (r)gj,.~&~
o(r) corresponds to the phonon over-

lap integral in the problem of the localized electron-
phonon system. For ' 0, the values of this integral calcu-
lated from (10) are 0.997, —0.999, —0.997, 0.062, and
—0.008 for ( k', k,

~
l

~ ) = (0,0,0), (0,0,1), (0,0,2), (1,0,0),
and (1,0, 1), respectively. Thus, ~(g]p ]~(cop) /
& goo, ~gee o) ~

=0.062. This value is about 30% smaller
than that derived by applying (12) to the measured ratio
of the peak absorbance between the 1203- and the 1136-
cm ' peaks. These values, however, well explain that
the measured intensities of the 1200-cm ' band peaks are
2 —3 orders of magnitude smaller than those of the 1100-
cm ' band.

As shown in Fig. 4, the level separation change due to
the coupling is considerably large even in the zero-
phonon states. To investigate the eft'ect of the coupling
on the isotope peak shift, we calculated the energy levels
of ' 0 in the renormalized potential Uc(r} of ' 0 shown in
Fig. 5(b). This calculation corresponds to such a situa-
tion where the renormalization effect [the second term in
the brackets of (9)] for ' 0 is assumed to be the same as
that for ' O. %e can also regard this calculation as a free
2D LEAE model with the potential assumed to be uo(r)
of ' O. This calculation estimated the ' 0 isotope shifts
of the 29.3- and 37.8-cm ' peaks to be 2.7 and 3.1 cm
respectively. Both of these are larger than the observed
values: 2. 1 and 2.5 cm ' (Table I). Similar overestima-
tion was given by the free 2D LEAE model of Bosom-
worth et al. (2.7 and 3.1 cm '). Our model has resolved
this overestimation, giving the values of 1.9 and 2.5 cm
(Fig. 4), which are much closer to the observed ones.
This improvement has been brought about by taking into
account the coupling which gives larger renormalization
effect (i.e., larger potential-widening effect) to ' 0 than to
180
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I ~ I
I I I I } I I I

v[(r)
IO

5 10,0, 1)3.021
0-. . M

0.337K~
eV /-

0.316A
5 -10, 0, 1)2.715 meV

0 -. . .M.~
15= v (r)

l6

I I I I I I I i I I I I I I t I I I

li I

}& I

20
l

15-
~ ~ ~

/
~ ~ I r I I l

r ~ I

(e)

Ii)

I) I

i I I I i
V

I i P~ I I I I i i

0.250
5 10,0, 0&2.842 meV j -10,0,

I a I I

0.6 04

0.24
0)2.635meV

Ls ~ I ~ ~~ I e ~ I I ~

0.2 0 0.2 0.4 0.6
0) I ) I I I t i I I I I I

r (A,'1

10- 037meV, 0
91meV leO

~ ~ ~~ I I j I i I

0.4 0.2 0 0.2 0.4 0.6
r (A)

FIG. 5. Calculated static host-lattice potential (c), renormalized potentials of ' 0 and "0 in the zero-phonon state (b), (e), and
those in the one-A2„-phonon state (a), (d). The radial coordinate r,„ofeach potential minimum is indicated. Only the lowest ener-

gy level in each potential is described.

plain the physical origin of our result of negative gz
2Q

The total potential energy of our A2„-mode-coupled 2D
LEAE is the sum of the potential
parts of 0 and 8 ", and 8' ", that is,E(Q„,r) —= v (r)+(cu„ l2)Q& +gz r Q„.There-
fore, the "force constant" for the A z„-mode displacement
is expressed as (BIBQ„)E(Q„,r)=co„+2g„r.

2ll 2Q 2ll 2ll

Thus, the negativeness of g~ indicates that the force
2 ll

constant becomes smaller for larger r. The actual Si—
0—Si bond has this characteristic: the force constant for
the bendinglike A 2„-mode displacement (Fig. 6) would be
smaller than that for the pure stretching one [Fig. 2(a)],

2 18 The present negative gz is rejecting this physi-
2ll 2ll

cal property which issues from electronic mechanism.
Table I indicates that the 517-cm ' absorption should

be described by irreducible transition dipole operators
(displacement operators) of (x,y)-like symmetry, which

belong to the E„representation of the D3d. Consequent-
ly, if the interaction with the 2D LEAK is neglected, this
absorption is attributed to an E„mode [Fig. 2(b)] in the
perturbed phonon system. The lowest-order interaction
is of the form

E„W "=g r[(cosg)Q +sinPQ& ] (13)

[ Q~, Q~ I are the E„normal coordinates.
M&X

However, the 517-crn absorption exhibits neither a
multipeak structure nor a measurable ' 0 isotope shift.
Thus, the coupling constant gz is estimated as nearly

zero. Consequently, this absorption is ascribed to the
0;-induced host-lattice mode belonging to the E„.

The 1700-crn ' band resembles the 1100-crn ' band in
the shape of the rnultipeak structure and its temperature
dependence. ' This implies that the 1700-cm ' band is
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g„„Q„Q„,reproduces the 1700-cm ' band as
1g' 2u lg 2u

the one- A, -phonon replica of the 1100-cm ' band.
This explanation is, however, a speculation, and not the
result of the present theoretical treatment.

I

I

/
t /

lr

FIG. 6. The A,„mode displacement for r&0. The figure
shows such atomic displacement that each atom displaces from
an rWO configuration in accordance with the A2„normal dis-

placement Q„defined at r=O [Fig. 2(a)].
2u

a replica of the 1100-cm band which originates from
the A2„-mode-coupled 2D LEAE (8) further coupled to
another excitation of an energy of about 613 cm 'hc.
The silicon isotope shifts of the 1748.6-cm peak due to
"Si—0—Si (

—6.4, —13.2 cm ' for x=29, 30) are con-
siderably larger than those of the 1136-cm ' peak.
(
—1.8, —3.5 cm '). ' This implies that "another excita-

tion" is a localized mode having large amplitude at the
nearest Si, rather than the bulk phonons speculated previ-
ously. A candidate for it is an A, s mode [Fig. 2(c)],
which, combined with A by the coupling

VI. SUMMARY AND CONCLUSIONS

To consistently explain the previously observed 30-,
1100-, and 1200-cm ' absorption bands, the coupling to
the 32„localphonon has been added to the 2D one-body
excitation model of Bosomworth et al. , which treated
only the 30-cm ' band. We obtained, for both ' 0 and
' 0, the energy levels (Fig. 4) that explain the experimen-
tal data for these bands (Table I). Our level scheme and
transition assignment are the same as those of Bosom-
worth, et al. (Fig. 9 of Ref. 5). We clarified how the cou-
pling causes the 1200-cm ' band and the multipeak
structure of the 1100-cm ' band. The calculated relative
intensity of the 1200-cm band was in satisfactory
agreement with experiment. The coupling considerably
reduces the level separations of the 2D excitation, de-

pending on the oxygen mass. This is an important factor
in explaining the ' 0 isotope shifts of the peaks. The neg-
ative sign of the calculated coupling constant reAects the
physical property of the Si—0—Si bond. The 517-cm
absorption was ascribed to the O, -induced host-lattice
mode of the E„symmetry.
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