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Nonclassical wetting behavior in the solid-on-solid limit of the three-dimensional
Ising model
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Critical and complete wetting transitions are studied in the solid-on-solid limit of the three-
dimensional Ising model. The surface order parameter and coverage are calculated using Monte
Carlo methods for various T & TR (the roughening temperature). The critical behavior is found
to be universal but consistent with renormalization-group predictions. We predict that for
T~ Ttt. (i) the parameter tu= —, in the Ising model; this is much less than the previous estimate
to= 1; (li) the length scale in the effective interface potential is about twice as large as the Ising
bulk correlation length.

Wetting phenomena occur when the contact region
separating two distinct bulk phases a and y contains a lay-
er or film of a third phase P. Often, one of the two bulk
phases, say y, is an inert spectator phase which does not
equilibrate with the tt and P phases on experimentally
relevant time scales. This is the case, for example, for
multilayer adsorption on an inert solid substrate and for
the surface melting of a low-vapor-pressure solid in con-
tact with an inert vapor phase or vacuum.

From the theoretical point of view, the simplest realiza-
tion of such systems is the semi-infinite Ising model with
nearest-neighbor interactions. In this model, the inffuence
of the spectator phase is modeled by an eff'ective surface
field which favors the formation of a P layer of, say, down
spins between the surface and the bulk up-spin a phase.
For spatial dimension d 2, this model can be solved ex-
actly, and is known to lead to a line of critical wetting
transitions characterized by universal exponents. ' For
short-range forces, similar universal wetting behavior is,
in fact, expected for all dimensions 1 & d & 3. However,
for the physically most relevant case d 3, the wetting be-
havior is still a matter of controversy. While renormaliza-
tion group (RG) (Refs. 3-5) and Monte Carlo (MC)
(Ref. 6) studies of Gaussian interface models indicate
rather unusual nonuniversal critical behavior, the results
of recent Monte Carlo simulations of wetting in the 3D Is-
ing model are consistent with the (universal) predictions
of mean-field (MF) theory.

A possible explanation of this discrepancy is that the
asymptotic scaling region is very small in the 3D Ising
model and has not been reached in the simulations of Ref.
7. Indeed, a Ginzburg criterion has been used to esti-
mate that the crossover from MF to nonclassical behavior
was not yet reached in the simulations of Binder and co-
workers. A somewhat contradictory result has been ob-
tained from a numerical solution of the functional
renormalization-group equations: ' A broad crossover
region is predicted, with measurable deviations from MF
behavior even at rather large values of the reduced fields.
Neither approach is, ho~ever, conclusive because the pre-

dictions depend on the values of various unknown model-
dependent parameters. Furthermore, both results are
based on analyses of the Gaussian interface model, which

may not, in fact, capture the physics of wetting in the 3D
Ising model.

In order to resolve this discrepancy, we consider here
the solid-on-solid (SOS) limit of the 3D nearest-neighbor
Ising model on a cubic lattice with a (100) surface. On
the one hand, this model is close enough to the original Is-
ing model to allow a direct comparison of nonuniversal
quantities. On the other hand, it is simple enough that
much larger lattices (and smaller fields) can be simulated.
Restricting ourselves to the case in which the coupling
constant at the surface (J,) equals that in the bulk (J),
our Hamiltonian is given by

S/T (2J/T) g ~
z; —z, ~

+g V(z;)/T,
(ij ) i

where the discrete variables z; 0, 1,2, . . . , measure the
local distance of the (a,P) interface from the surface in
units of the lattice parameter a. The second term in (1)
represents the direct interaction of the interface with the
surface. It has the form

V(z) 2Hz +2H i b, ,p,

where H and H
~

are the bulk and surface fields in the
original Ising model. In order to investigate the inffuence
of the discreteness of the height variables, we also consid-
er another version of (1) with continuous z; ~ 0 in which
the surface field Hi is mimicked by a square-well poten-
tial $V(z) —Wp for 0 &z & l.

As described further below, we have performed exten-
sive MC simulations of this model, both for discrete and
continuous z;. A detailed analysis of our MC data shows
that this model belongs to the same universality class as
the Gaussian interface model described by the effective
Hamiltonian
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for the variable i —=az, with the interfacial stiffness
X/T c~(J/Ta) and c~ =10.4. The direct interaction po-
tential U(1) has the form

U(i) = gati
—ge "~'+ye (4)

for large i, where h=2H/Ta and the length scale ( is
given by ( c2T/J with cq=0. 175. ' The amplitude A is
proportional to the deviation of the surface field from its
value at criticality: A-H~, (T) —H~. Thus, we find that
the dimensionless parameter ro= T/4rrZa g which deter-
mines the singular behavior at the wetting transition has
the uniuersa/ value ro= —,

' for the Ising model in the SOS
limit.

The Gaussian interface model defined by (3) and (4)
should be regarded as the coarse-grained version of (1)
and (2). In the SOS model, the interface has an intrinsic
width which is set by the lattice parameter a. In the pro-
cess of eliminating short-wavelength interface fluctua-
tions, this width increases to (. In the Gaussian interface
model previously investigated, the scale f is replaced by
the bulk correlation length gb The l.atter scale is deter-
mined, in part, by interfacial overhangs and droplet exci-
tations which are ignored in the SOS limit.

The SOS model represents a low-temperature approxi-
mation to the Ising model. We are concerned here with
critical wetting transitions which occur for T) TR, where
J/TR=0. 41 is the Ising model roughening temperature.
A priori it is not clear if the SOS limit is still a good ap-
proximation for such temperatures. However, we esti-
mate that the parameters g and Z/T obtained for the SOS
model are in reasonably good agreement with the corre-
sponding quantities for the Ising model, as derived from
the wetting simulation data, at temperatures J/T=0. 35.
This allows us to make two predictions concerning critical
wetting behavior in the 3D Ising model: (i) The dimen-
sionless parameter cp is approximately equal to —,

' for
J/T=0. 35, i.e., is much smaller than the previous esti-
mate co= 1.7 This implies that the length scale g is about
twice as large as the bulk correlation length of the Ising
model" at this temperature. (ii) In order to observe devi-
ations from MF critical behavior and enter the asymptotic
scaling regime in MC simulations of the 3D Ising model,
one needs to study lattices with a lateral dimension of at
least L —100-200.

Simulations were performed on model (1), (2) at
J/T 0.35 and 0.175 using an (L+1)XL square lattice
with helical boundary conditions. In the model with con-
tinuous z;, several temperatures, J/T 0.125, 0.175, 0.25,
0.35, and 0.7, were investigated in order to verify the
universality properties discussed above. In this case,
square lattices containing L sites with periodic boundary
conditions were used. Lattice sizes up to L-200 were
employed and generally on the order of 10 MC updates
per site were used in evaluating the averages. Speeds of
over 10 updates/sec were obtained on a Cray X-MP us-

ing a fully vectorized code.
In all cases we find that for 0 0, a plot of e

vs H~/J (or Wp/J) is asymptotically a straight line. We
determined the critical values of the surface field in this
way to be H~, /J= —0.897 for J/T-0. 35 and H~, /J= —0.086 for J/T 0.175. Plots of (z) and log~p(hm~)
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FIG. l. (a) Coverage &z) and (b) logarithm of excess surface
order parameter log~p(hm~) for model (1) at J/T= PJ 035—
and 0.175 (and H 0) plotted vs log~p(8H~/J). The solid lines
are fits to the asymptotic data described in the text.

(where hm~ 1 —(b, p)) vs log~p(bH&/j) are shown in

Fig. l. Asymptotically, we find (z) =A~ In(bH~/J)+82
and ln(hm~) =M,„ln(BH~/J) with A~, A2, and M,„
given in Table I. Since Am~ —(bH~/J) ', we thus obtain
P~=1.62 (1.57) for J/T 0.35 (0.175). The difference
between these two values for P~ is not statistically
significant. This result for P~ agrees with the RG theory
developed in Refs. 3-5 for a unique value of m. In partic-
ular, for ro ( 2, this theory implies P~ (I+rp)/(I —rp)

and (z)/g = —[(I+2ro)/(I —cp) jln(bH~/J), where g is a
model-dependent length scale. Thus, we obtain co=0.24
(0.22) and gJ/T=0. 18 (0.19) at these two temperatures.

Next, consider field-driven critical wetting, i.e., the
singular behavior for H/J 0 at H~ H ~, . Our results
for (z) and Am~ at J/T 0.35 in this case are shown in

Fig. 2. Fits to the asymptotic behavior (z) = 8~ ln(H/J)
+82 and ln(dm~) =Mrdln(H/J) yield the coefficient
listed in Table I. Since we expect hm~ —(H/J)
with vt (1 —rp) ' and (z)/g = —

2 (1+2ro) ln(H/J)
for ro ( —,', we obtain ra=0.26 and gJ/T=0. 18, which is

again consistent with our previous results.
As a final check, we have plotted data for (z) vs

log~p(H/J) obtained at the complete wetting transition
(using Wp 0 with continuous z;) for J/T 0.125 in Fig.
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TABLE I. Coefficients of fits to the asymptotic behavior of the coverage and In(hm ~) at the critical
wetting (A~,Ai, M, ), field-driven critical wetting (8~,8i,MM), and complete wetting (C~,Cz) transi-
tions.
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3. A fit to the asymptotic data yields (z) = C~ ln(H/J)
+Cz, with C~ and Cz given in Table I. On the other
hand, the above-mentioned RG theory predicts
(z)/g = —-,

' (2+ ro)ln(H/J) at the complete wetting
transition, so that we obtain ra=0.25 and gJ/T =0.12.

All of our results are therefore consistent with the RG
predictions for ra= -„'. Several comments are in order.
First, note that rather large system sizes are required to
determine the critical value of the surface field H ~,/J. In
addition to the fact that vt is rather large (=1.3 in the
present case), another complicating factor is that for

8 0, static expectation values of many quantities are
well defined only in the thermodynamic limit. In fact, for
H 0 and any finite L»gi, there is an exponentially
small probability that the interface will "tunnel" out into
the wet state. '~ This will almost never happen on normal
simulation time scales until gt +L. As can be seen from
Fig. 1, the requirement gt & L is rather severe. Except for
one data point for L 40 at J/T 0.35, only data
unaffected by finite-size effects have been plotted in this
figure. For a given lattice size, data taken at smaller
values of BHi/J exhibit noticeable deviations from the
infinite system behavior. For L 40 this means that reli-
able data can be obtained at J/T 0.35 only for
bH i/J &' 4.5 x 10 ', and for L 100, bH i/J & 2.2 x 10
The asymptotic scaling regime can thus only be entered
when L is greater than 40 or 50. This leads us to the con-
clusion that in the temperature direction (i.e., for
bH ~/J 0 at H 0), Binder and co-workers have just
started to enter the asymptotic regime for their largest
system size (for J/T 0.35). Nevertheless, their value for
the critical surface field, Hi, /J —O.S9, at this tempera-
ture is remarkably close to our value.

In the H direction, gs-(H/J) '/ so that the system
size requirements are less stringent. s Furthermore, one
has better control over the finite-size behavior, ' and it ap-
pears that for J/T 0.35, Binder and co-workers do
indeed enter the asymptotic scaling region in this case.
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FIG. 2. (a) Coverage (z) and (b) logarithm of excess surface
parameter log~o(hm~) for model (I) at J/T= PJ 0.35 (and-
H~ H~, ) plotted vs log~o(H/J). The solid lines are fits to the
asymptotic data as described in the text. The deviations of the
data from the fit at small H/J are due to finite-size effects (see
Ref. 11).
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FIG. 3. Coverage &zl for J/T= PJ 0.125 at the com—plete
wetting transition (Wo—=0 and continuous z;) plotted vs

logio(H/J). The solid line is a fit to the asymptotic data. The
deviations of the data from the fit curve at small H/J are due to
finite-size etfects (see Ref. 11 ).
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The coverage m, which they measure is related to the
mean distance (z) of the interface from the surface by
m, =2M (z), where M is the bulk magnetization. The
data for m, in Fig. 1(a) of Ref. 7(a) (field driven critical
wetting) thus yields (z) = —0.35 ln(H/J). Assuming
co= —„', this implies that the length scale ( discussed above
is approximately equal to 0.46 in this case, in surprisingly
good agreement with the value 0.5 we obtain from our
data. Identifying this length scale with the bulk correla-
tion length ps=0. 3, however, does not allow for a con-
sistent interpretation of the data. It should also be men-
tioned that the finite-size effects they observe for H/J 0
at H~ H~, are in agreement with what we find [compare
Fig. 1(a) of Ref. 7(a) with our Fig. 2], indicating that (t
is approximately the same in both cases. Finally, note
that the data for dm~ (at J/T 0.35) in Fig. 9(c) of Ref.
7(b) is also consistent with ca= —,

' . This makes us reason-
ably confident that ca=0.25 at J/T 0.35 in the 3D
nearest-neighbor Ising model. ' However, as discussed
above, lattices with a lateral dimension L on the order of
100-200 will probably be required to confirm this behav-
ior.

It would be extremely interesting to have a quantitative
RG or coarse-graining procedure to map the SOS Hamil-
tonian onto model (3), (4). A simple Migdal-Kadanoff
procedure does indeed generate a single-site potential
similar to (4) as the SOS interaction term is mapped into

the Gaussian fixed-point potential; however, the resulting
recursion relations are only qualitatively correct and do
not indicate why co= 4 in this case.

In summary, we have shown that the SOS model for
wetting in d-3 belongs to the same universality class as
the effective interface model (3) with ca= 4 for all tem-
peratures T & TR. On the other hand, a detailed compar-
ison of our data with the MC data of Ref. 7 indicates that
the SOS model is a good approximation to the Ising model
for T+ TR. This implies that near the roughening tem-
perature the length scale ( in the interface potential (4) is
about twice as large as the bulk correlation length. In
contrast to previous estimates we therefore conclude that
the parameter ca is indeed ra = —,

' for T & Ttt.
An open question which still needs to be resolved con-

cerns the value of tls(T) for the 3D nearest-neighbor Ising
model in the temperature regime J/T, (J/T (0.35. Al-
though ca is believed to be of order 1 at T„ the data in

Ref. 7 give no indication that ca is larger for J/T 0.25
than for 0.35. Our work indicates that it should be possi-
ble to resolve this question in the near future using highly
optimized vectorized codes on a supercomputer.

These simulations were performed on the Cray X-MP
22 at the Forschungszentrum Julich (GmbH). Part of
this work was supported by the National Science Founda-
tion under Grant No. DMR-8613598.
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