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Logarithmic corrections in antiferromagnetic chains
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Various numerical estimates of critical exponents for antiferromagnetic chains are compared
with conformal field-theory predictions. Field theory allows the explicit calculation of logarithmic
corrections, and hence the value of the effective exponent that is expected to be observed numeri-
cally. Comparison is made with numerically obtained exponent values, and agreement is found to
be very good, even when logarithmic corrections are as large as 70%. Logarithmic corrections can
lead to misleading results, for example an incorrect phase diagram, and examples in the literature

where this seems to have occurred are discussed.

The extraction of critical exponents for quantum anti-
ferromagnetic chains by a variety of numerical tech-
niques, including finite-size scaling, has long been plagued
by the presence of marginal operators which lead to loga-
rithmically slow finite-size convergence. For example, for
the case of the S =% alternating chain, there have been
over twenty attempts at numerical calculation of spin-
Peierls exponents. The earliest such work, real-space
renormalization-group calculations by Fields, Blote, and
Bonner,' produced exponents significantly larger than an-
alytic predictions of Cross and Fisher,? a result also typi-
cal of subsequent studies. It was later suggested that log-
arithmic corrections could result in such a discrepancy,3
and numerical studies attempting to verify this suggestion
include work by Spronken, Fourcade, and Lepine* on
chains up to L =18 sites, and by Soos, Kuwajima, and
Mihalick® on the longest chains with L =26. In addition
to their power to frustrate many workers, logarithmic
correction terms have frequently given rise to misleading
results. It was noted by Bonner and Muller® that numeri-
cal scaled-gap techniques used by Botet and Jullien in
their pioneering work on spin-1 XXZ chains and the Hal-
dane conjecture’ would also yield a Haldane-like phase
diagram for the S = + XXZ model, in contradiction to ex-
act results. The culprit is the essential singularity at the
Heisenberg point. In fact, recently a Haldane-like phase
diagram for the S = ¥ XXZ model has actually been pro-
posed.® Discrepancies resulting from logarithmic correc-
tions can be quite large. Moreo® found a numerical value
of n=0.53 for the spin-+ Heisenberg antiferromagnetic
chain which differed considerably from the Haldane pre-
dicted value n=1. A resolution of this problem was pro-
vided by Ziman and Schulz, invoking logarithmic correc-
tions. '

Recently, exponents have been obtained for the integ-
rable spin-1 chain with Hamiltonian '

H=Z[S,--S;+|—(S,-S,~+|)2]. (1)
!
Some exponents were estimated for long chains by ex-
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ploiting the Bethe ansatz integrability of this model.'>'?
Generally, exponents involving nonintegrable perturba-
tions of H cannot be obtained in this way and are calculat-
ed numerically from rather short chains. A previous com-
ment'* by one of the present authors on a paper by Singh
and Gelfand'’ inadvertently neglected to mention prior
numerical work by Oitmaa, Parkinson, and Bonner,'®
Blote and Capel,'” and Blote and Bonner,'® and others,
which also agrees very well with field-theory predictions
for the integrable S =1 antiferromagnetic chain once log-
arithmic corrections are taken into account. As noted in
Ref. 18, an essential singularity appears explicitly in work
by Babudjian,'' in an expression for the susceptibility.
The essential singularity is also apparent in a set of inte-
grable models which are spin-s analogues of the S = 3
XXZ model'® and their anisotropic generalizations of the
Takhtajan-Babudjian models.!' The existence of a mar-
ginally irrelevant operator for the spin-1 isotropic model
[Hamiltonian (1)] was noted in Ref. 20, but the conse-
quent presence of logarithmic corrections was first dis-
cussed, at some length, in Ref. 18.

The assumption that a gapless, isotropic antiferromag-
netic quantum spin chain should renormalize to a confor-
mally invariant fixed point leads naturally to a discrete set
of possible critical theories, the Wess-Zumino-Witten
(WZW) models, labeled by the integer-valued topological
coupling constant k. (Throughout this Brief Report, we
have used concepts and terminology from conformal field
theory. For a review see Ref. 21.) The k =1 model is the
only stable isotropic fixed point; the higher k models are
increasingly multicritical. The dimensions of all scaling
fields have been calculated explicitly for these models.
They each have a finite number of relevant operators and
one invariant marginal operator. Such a marginal opera-
tor is a consequence of isotropy and conformal invariance
in (1+1) space-time dimensions. In these theories, con-
tinuous symmetries are necessarily chiral; i.e., there are
independent symmetry groups for left and right moving
excitations. Thus there are corresponding density opera-
tors J, and Jg, which have scaling dimension one (since

954 ©1990 The American Physical Society



42 BRIEF REPORTS 955

their integrals along the chain give dimensionless con-
served quantum numbers). The product J; Jr is the mar-
ginal operator referred to above. In the case of SU(2)
symmetry, we have triplets of densities, J; g and the in-
variant operator is J. - Lg. [The operator (J7 +J32) is also
marginal but is redundant; it corresponds to merely shift-
ing the spin-wave velocity. When the symmetry is only
U(1), the marginal operator J;Jr does not renormalize,
for a range of parameters, and labels the well-known criti-
cal line, occurring, for example, in the s = 4 XXZ chain.]

Exponents which have been ‘“measured” numerically
for the spin-1 chain include the spin-spin correlation ex-
ponent 7, the exponent determining the scaling of the gap
with the addition of an alternating interaction v,, the ex-
ponent determining the scaling of the gap with respect to
a change in biquadratic strength v,, and the exponent
determining the scaling of the gap with XXZ anisotropy
v;. The field-theoretic treatment '’ gives the following ex-
pressions for these exponents: n=2x,, v,=Q—x,) !
ve=0Q2—x51) "', and v. =(2—x,;) ~'. The quantities x,,
Xs, Xs1, and x;, are the dimensions of trgo, trg, (trg)?, and
trg ’c, respectively, where g is the fundamental field of the
WZW model with topological coupling constant k. (Note
that k =1 corresponds to S= %, k=2 to S=1, etc.; and
Xs1, X1 do not exist for k =1.) For the k =2 model [Eq.
(1)1, the dimensions are x, =x;=13%, and x;;=1. The
effect of the marginal operator is to shift the effective di-
mensions for chains with large but finite length L accord-
ing to the following expression: '3

Sx=—A(L)@x/3k)S.-Sg+0(0?), )

where S; g are the left and the right spin quantum num-
bers of the operators of the SU(2)xSU(2) algebra, and
A(L) is the marginal coupling constant which flows loga-
rithmically slowly to zero with L. Equation (2) is the re-
sult of first-order perturbation theory in A, and corrections
exist which are O(A?) and higher. It is possible to calcu-
late them explicitly, but we have not done so. Thus efforts
to estimate A from an exponent shift can only be accurate
up to corrections of O(A?) [or more precisely O((4x/
V3)A2)]. For example, three estimates of A(20) were
made in Ref. 13 for the k =2 WZW model of Eq. (1);
namely, 0.064, 0.073, and 0.041, showing the expected
differences of O(A?). The quantum number S;-Sg can
be expressed in terms of S;,Sg and the total spin quan-
tum number, ST=S; +Sk:

SL‘SR=;‘(S%—SE—S%). (3)

In Table I, values of x are calculated for S =1, and also
S=17% for completeness. The quantities x,(x,) and
8x;(x;) were obtained previously.'> The effective ex-
ponents x;; and x,; were not calculated in Ref. 13, but
have been estimated using formula (2) and taking for
A(20) the average of that estimated from &x, and &x;.
(This is simply a guess and given the spread in the esti-
mates of A we might estimate an uncertainty in x;; and
x;1 of about *+10%.) We make the following observa-
tions from Table I. Note that 8x; (for the k =2 model) is
considerably larger than the values 6x, = —0.037 and
6x; =0.199 obtained for lower values of S;,Sg. In gen-
eral the dimension shifts increase with S;,Sg, with corre-
spondingly larger deviations of effective exponents from
their limiting values.

Field theory predicts that numerical values for the con-
formal anomaly ¢ should show relatively smaller devia-
tions from the limiting values than the critical exponents,
i.e., should differ by O(A3) rather than O(1). Specifically
the formula is'?

cer=c(k)+[2m(L)*1/\3k , 4)

where ¢(k) =3k/(2+k). If this prediction is verified, the
implication is that numerical values for ¢ are easier to use
for determining the critical behavior of a particular model
than values for exponents, since ¢ values are much less
sensitive to the effects of marginal operators.

Exact, effective, and numerical critical parameters, ex-
ponents and ¢ values from Refs. 16-18, and also Ref. 22,
are given in Table II. We observe, in the case of ¢, that
both effective and numerical exponents differ from the ex-
act values only by 1-2%, in agreement with predictions.?*
In the case of the exponents, the agreement is very good in
all cases once logarithmic corrections are included; how-
ever, the correction varies from about 12% to as much as
70%, in contrast to the much smaller correction in the
case of c¢. I[Since x& is quite close- to two and
vs=(2—x,1) "', our estimate of v, would change by a
large amount if we took a different estimate of x&T based
on a different guess at the value of 2(20).]

Let us note some specific features of interest in connec-
tion with particular exponents. First of all, our numerical
value of 7 for S =1 was obtained using spectral gap ratios.
However, the theory discussed here uses the values of x,
and x, obtained from the finite chain triplet and singlet
gaps as input. Hence the numerical value of n in Table II
agrees with the effective value by definition, since it was
calculated as 2x,, i.e., the S =1 exponent of Table II is not

TABLE 1. Parameters required for calculating the anomalous dimension shifts 6x. governing the

effective exponents for s = 3 and 1.

k(Q2s) Operator Si. =Sk Sy 1(20) a x 8x xe<r Exponent
1 trgo ¥ 1 0.032 t 0.5 —0.058 0.42 n
1 trg 5 0 0.038 s 0.5 0.21 0.71 Va
2 trgo 5 1 0.041 t 0.375  —0.037  0.34 n
2 trg 5 0 0.073 s 0.375 0.199 0.57 Va
2 (trg)? 1 0 0.057 5 1 0.41 1.41 Vb
2 trg’c 1 1 0.057 1 1 0.21 1.21 V-
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TABLE II. Exact and effective exponents compared with nu-
merical exponents from Refs. 1 and 16-18.

Effective
S Parameter Exact (L =20) Numerical
1 c 1 1.01 0.98
1 0.84 0.85
Va 2 =067 0.78 0.75-0.76
1 c 1.5 1.52 1.47
0.75 0.68 0.65
Va & =0.614 0.70 0.67
Vi ] 1.7 1.8
1 V. 1 1.26 1.11

a real test of the theory. However, other numerical calcu-
lations have been performed which allow an independent
test. Recently, Uchinami, using a Monte Carlo approach,
found a value 7=0.64.2* In fact, two early approaches
have examined values of 7 at a special multicritical point
in the phase diagram of the S =1 XXZ chain with single-
ion anisotropy. Glaus and Schneider, usin; a finite-size
scaling method, obtained a value n=0.64, > and Schulz
and Ziman, the first to use the spectral gap approach for
calculating n, found a value n=0.67 (Ref. 26) for this
special point. If we make the assumption that this special
multicritical point lies in the same universality class as the
S =1 WZW point, we find very good agreement with our
value n=0.65 using the spectral gap method and, of
course, very good agreement with theory. '?

In the case of S =1, our numerical exponent, n=0.85
was also obtained by the spectral gap method, as was the
value 7=0.87 obtained by Schulz and Ziman.?*?’ An in-
dependent approach was taken by Moreo® who evaluated
n(S=1%), as a function of anisotropy, directly from the
spin-spin correlation functions. Moreo observes that the
direct evaluation of n seems to avoid logarithmic correc-
tion difficulties. Certainly, her value for n at the isotropic
point is very close to unity. However, this agreement with
the exact value may be fortuitous, since n values over the
range of anisotropy are in only fair agreement with exact
analytic results.

Regarding the dimerization exponent v,, the case of
S= 1 has already received an introductory discussion.
Many different numerical calculations have yielded values
of v, ranging from 0.75 to 0.9, with values clustered to-
wards the lower end of the range, in agreement with the
effective exponent value of 0.78.2% For the case of S=1,
in addition to the finite-size scaling value v, =0.67 by
Blote and Bonner, there have recently appeared estimates
by Singh and Gelfand using series-expansion tech-
niques.'” The Singh-Gelfand estimates are consistent
with the Blote-Bonner estimates, and consequently also
give very good agreement with the effective exponent
value. '

In the case of v, we observe that agreement is good
despite the fact that the logarithmic correction amounts to
as much as 70% in this case. This large logarithmic
correction has already caused confusion. Many groups
have investigated the properties of the Hamiltonian (1)

generalized by a parameter § which varies the strength of
the biquadratic term. As noted by Bonner, Parkinson,
Oitmaa, and Bléte,?° the fact that the effective exponent is
much larger than the ideal exponent means that the gap,
implying a noncritical phase, which should ideally open up
immediately for 8> 1, appears numerically to open up
much more slowly, making it difficult to detect near the
integrable point. Furthermore, the gap and inverse corre-
lation length & ~! for the pure biquadratic model (8— o)
were recently calculated exactly using the Bethe ansatz*®
and shown to be very small (£ > 20). The =00 gap may
well be an upper bound for all 8> 1. Workers using vari-
ous methods, including finite-size scaling, composite spin
model, quantum transfer matrix, and Monte Carlo, have
concluded that a critical region of finite extent occurs
around the integrable S =1 point?®243":32 while in Ref.
33, it was conceded that if this region is not critical, &
must in any event be rather large. These results can now
be specifically attributed to the strong logarithmic correc-
tions associated with the exponent of the biquadratic mass
gap,'? together with the smallness of the gap for all > 1.
This is an example of the situation discussed earlier,
where operators occur with S;,Sg > 1, corresponding to
large dimension shifts, of the order of 100%. If this situa-
tion is common, there is obvious significant impact on the
study of critical behavior by numerical means. While
such operators do indeed exist for S = 1, most exponents
are governed by low-dimension (low S) operators. The
operators considered here which have S;,Sg=7+,1 (see
Table I), namely the field g and g? determine most of the
exponents respecting symmetry of translation by one site
(which corresponds to g— —g in the WZW model).
These estimates of the effective values of v, and v, con-
tain an additional uncertainty compared to the others be-
cause the appropriate effective values of A are not known.
These could be obtained by measuring the gaps to the
lowest excited states of wave vector 0 and spin 0 and 1, re-
spectively. We arbitrarily chose to use the average of the
two estimates of A from x, and x;. If, instead, we had
used the values of A from x, for estimating x,; and from x;
for x5; we would have obtained the effective exponents,
vp=2.11, v, =1.18. Without calculating to second order
in perturbation theory in A it is unclear which is a better
estimate.

Note that the first-order exponent shift of Eq. (2) can
be larger either because S, - Sk is large or because A(L) is
large. We should emphasize that this approach to calcu-
lating effective components is based on first-order pertur-
bation theory in the marginal coupling constant. Its suc-
cess depends on the fact that the marginal coupling is fair-
ly small at the largest length scale probed. How small it
must be depends in detail on the coefficients of the
higher-order terms in perturbation theory (which is ex-
pected to give only an asymptotic, not a convergent, ex-
pansion). Although none of these higher-order coeffi-
cients has been calculated, it was found empirically in
Ref. 13 that, for a given chain length, the higher-order
effects were larger for integrable chains of larger S. This
effect is encountered in the case of the S =3 Heisenberg
antiferromagnetic chain, where the “measured” exponent
n differs from its exact value by 50% or more, in contrast
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to the S =1 case, where the difference is only about 12%.
It has been noted by Ziman and Schulz'? that the effects
of the logarithmic corrections in this situation can be min-
imized by taking a suitable weighted combination of 7
values obtained by considering both singlet and triplet
gaps.

The fact that effective A(L) estimates depend on the
particular energy level involved should not be too great a
concern, at least for models with S=1 and 1. The
effective exponent estimates for n and v, of Table II
would change only about 5% (S =% case) or 10% (S =1
case) if just a single input (either x, or x;) from finite-size
measurement were allowed in determining A(L). More
care must be exercised in connection with higher-
dimensional exponents such as v, in Table II, and some
S = 3 exponents, since the effective exponent may vary by
considerably more. However, our main purpose in
presenting this report is to call attention to the fact that

the appropriate technology is now available. We conclude
that finite-size scaling can be a useful and quantitative
way of calculating critical exponents even in the presence
of a single marginal operator, provided that the leading-
order shifts in effective exponents are taken in account us-
ing Cardy’s technique as implemented in Ref. 13 for
quantum spin chains. The success of this approach de-
pends on the property that the effective coupling is reason-
ably small at the largest accessible length scale. It is not
too surprising that this often appears to be the case, since
the decrease of A(L) with increasing length can be quite
rapid until A gets small enough that the slow decrease pre-
dicted by the lowest-order B function takes over.
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