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Electronic structure of the Jahn-Teller-distorted group-V-impurity —vacancy pairs in silicon
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An attempt is made to combine tight-binding band-structure theory with the defect theory of
Hjalmarson et al. [Phys. Rev. Lett. 44, 810 (1980)] to calculate wave functions of the electron local-
ized near the Jahn-Teller-distorted group-V-impurity —vacancy pair in Si. The effect of the defect
potential is extended to the nearest-neighbor sites, including both diagonal and off-diagonal matrix
elements of the defect potential. From the calculated wave function, the hyperfine interactions of
an electron with Si or impurity (P,As, Sb) nuclei near the vacancy are obtained to compare with

those determined experimentally by electron paramagnetic resonance and electron-nuclear double
resonance. Good agreement is obtained for nearest-neighbor atoms of P V, As V, and Sb V, for which
similarities are exhibited among these defects. We also predict the hyperfine interaction for Bi V.

The use of the defect-pair "molecule" model of Sankey and Dow [Phys. Rev. B 26, 3243 (1982)]
leads to an estimate of -0.1 eV for the magnitude of the Jahn-Teller distortion.

I. INTRODUCTION

In the past, much experimental information has been
gathered about vacancy-related defects in monocrystal-
line silicon, ' among which are vacancy clusters, such ps
divacancies, trivacancies, tetravacancies, and even penta-
vacancies, as well as vacancies paired with impurity
atoms. An important class of vacancy-related defects is
the complex of vacancies with group-III, -IV, and -V sub-
stitutional impurities. The most important feature of the
various substitutional-impurity —vacancy pairs has been
identified with the use of electron paramagnetic reso-
nance (EPR) or electron-nuclear double-resonance (EN-
DOR) techniques. Striking diFerences exist between
these centers. In fact, the similarities in features are ex-
hibited only among the phosphorus-, arsenic-, and
antimony-, or bismuth-vacancy pairs. The energy levels,
in analogy with E, —0.4 eV, have been determined for
these defects, ' and their EPR and ENDOR spectra also
show a high degree of formal similarity to one another. '

The pair "molecu1e" model by Sankey and Dow has
given a qualitative account of these common features.
The impurity-vacancy pair cannot alter the deep vacancy
level very much, because it is derived from the T2 level;
however, none of the papers published, to our knowledge,
presents calculations of the hyperfine interactions of dis-
torted group-V-impurity —vacancy pair in silicon which
may allow direct comparison with EPR or ENDOR ex-
perimental results. The hyperfine interaction for mono-
vacancies, divacancies, trivacancies, and tetravacan-
cies' has been calculated by us in the central-cell-
potential approximation or in the extended-potential ap-
proxirnation, and the results are in good agreement with
experiment. The present paper represents a natural ex-
tension of our previous work to include that of the
group-V-impurity —vacancy pairs.

In following the established custom" for theories of
deep defect levels, the long-range Coulomb potential is

neglected, and only the short-range potential is con-
sidered. The potential introduced by the vacancy is
adopted in the orbital-removal approximation and the
potential of the impurity atom is constructed by the rules
of Hjalmarson et al. " In the site representation, we con-
struct the symmetric basis function of the point group be-
longing to these defects, and the zeroth-order symmetric
wave function of the defect under the Jahn-Teller distor-
tion is obtained with use of a tight-binding Green s-

function method. The hyperfine interaction constants
and g tensor shift are calculated. These calculated results
are all found to be comparable to experiment. This
means that the method mentioned above is successful in
describing the similarity of the spectra for group-V-
impurity —vacancy pairs in silicon.

II. ATOMIC STRUCTURE OF THE DEFECT
AND SYMMETRIC BASIS FUNCTION

From the EPR and ENDOR spectra of the group-V
impurities, the atomic structure of the defects has been
given by Watkins and Corbett and Elkin and Watkins,
as shown in Fig. 1. The choice of the x,y, z coordinate
system is along the crystal principal axes. The vacancy
atom is at the origin (0,0,0). The impurity atom is at the
lattice point (1, —1, 1) next to the vacancy, and the
remaining three nearest-neighbor atoms are at the lattice
points (

—1, 1, 1) (1, 1, —1), and (
—1, —1, —1).

For ease of representation, following Watkins and Cor-
bett, we first visualize the construction of the defect quali-
tatively. Initially an isolated lattice vacancy has four
broken bonds associated with the four neighboring silicon
atoms, the system has the symmetry of the Td point
group, and gives four degenerate one-electron orbitals.
With replacement of an atom next to a vacancy by a
group-V-impurity atom, the system is lowered to C3,
symmetry and an extra positive charge is added at this
site. The defect is in the neutral charge state, and five
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I
A'ol &=(v, + v, )W'2,

IA'o2&=v, , (2)

For impurity atom,

I
A'o4&=(I, +I, )yv'z,

I

A'os& =I, ,

IA o6)=I, .

(3)

In the shell R =1, the basis function for A' representa-
tion formed by the dangling bond of atoms a, d belonging
to the 6 class is

the above appointment, the vacancy and the impurity
atoms form the shell R =0, each belonging to the M
class; so their hybrid orbitals form the basis function, re-

spectively.
For the vacancy atom,

+ ( A 'Rm
I GI A 'l l )C7, (10)

where the coefficients are

c, = v„( A 'o 1 q) + v„& A 'l l li ), c,= v„& A '02I 1( &,

As may be imagined, the electronic structure for the
substitutional-impurity —vacancy pair is mainly deter-
rnined by the vacancy and its neighbors, so that the de-
fect potential V may be only expanded on the atoms next
to the vacancy. Due to the Jahn-Teller distortion, the
atoms a and d are near the vacancy; the atom b is away
from the vacancy. In a rough approximation, the V
is expanded on the atoms a, d for the shell R = 1.
The potential parameters that are introduced
are then V = ( A 'Om

I
Vl A 'Om ) (m = 1,2, , 6),

v„=& A'ollvlA'll) =v7, , and v7, =(A'll vlA'll &.

Substituting (8) and (9) in (6), we have

&A Rmlq)= y &A RmIGIA on&c„
n=]

I

A'll) =(Ai+D4)/&2,

which by the dangling bond of atom b, is

c,=v„(A'o3I1(), c,=v„(A'o4lq&,
(4)

c,= v„( A 'oslq), c,= v„& A'06lli ),
I
A'12) =Bz . (s)

In this way, all of IlRm ) are represented by the atomic
hybrid orbitals.

EPR and ENDOR experiments show that in each de-
fect -60% of the total wave function is localized on the
dangling bond of atom b. However, the B2 dangling
bond only takes part in the symmetric combination for
the irreducible representation A ', but does not appear in
the symmetric combination for the irreducible represen-
tation 3". From these analyses, it is concluded that the
defect lies only in an A

'
symmetry state.

III. ELECTRONIC WAVE FUNCTION OF THE DEFECT

Adopting the Koster-Slater Green's-function method,
the electron state Ig) bound by the short-range potential
V satisfies the following equation:

ll() =G(E)v P) .

With Green's function G(E)—1/(E —Ho), Ho is the
one-electron Hamiltonian for the host crystal, its eigen-
values E„„and the eigenvectors In@ ) are given by the
equation

Holni~) =E„„In~) .

We now expand I1ij) in terms of the basis function
I

A 'Rm ), i.e., in the lattice representation

v„=( A o4I vl A 'o4) = v, ,

v„=& A'osl vl A 'os
&
= v, = v„. (12)

Where V, and V are the potential components of the s
and p symmetry in the impurity atom, respectively. The
value of V, and V can be determined from the empirical
approximate formula'

V, =P, [co(s, i) —co(s, h)],
V =P~[cu(p, i) co(p, h)], — (13)

where [cu( i)see(s, h)],—[co(p,i) —m(p, h)] are the energy
differences of the s,p orbital between the impurity atom
and the host silicon atom; the parameters p, =0.8 and

p =0.6. The values of V, and V~ for relevant impurity
atoms are listed in Table I. For the case of known V, and
V, the three linear homogeneous equations of the others
may be obtained.

c,=v„(A'ill/&+v„(A'oil/& .

For a lattice vacancy, in the orbital-removal approxi-
mation, there should be V», V22 V33 ~
( A'Oil/), ( A'02lg), ( A'03lf)~0, so that C„cz,c,
are the finite amount. From Eq. (10), we obtain three of
the linear homogeneous equations of the c coefficients.
After the unitary transformation, the basis function
I
A '04 ), I

A 'OS ), I
A '06 ) formed by the hybrid orbitals of

the impurity atom may be represented in terms of its s
and p orbital, and it is proved that

lq&=y IA Rm && A Rmly&
Rm

and decompose the defect potential as

V= g g I

A'Rm )( A'Rm
I VI A'R'm')( A'R'm'I.

(8)

Symmetric potential As Sb

TABLE I. The potential due to the impurity atom.

R, m R', m' V,

V„

—3.4068 —3.1282 —0.9134 —0.2569
—1.5438 —1.1810 —0.6131 —0.3735
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In summary, the six linear homogeneous equations of c
coeScients are

li)'&= g(c,, ljs &+c,„ljx &+c,, ljy &+c,, lJz) ), (17)

661C1+G62C2+ 663C3+G64C4+ G65Cs

+(66s —I /Vq )Cs+667C7 0 .

(14)

Here, 6 „=( A '0 rlnG I
A 'On ), 6 7

= ( A 'Om
I G I A

' l l )
(m, n = 1,2, . . . , 6). From the normalization condition
(QIP) —(QI VG VI/) =1, another equation of c
coefFicients is given by

dG „
C C„=l .

m =1n=1
(15)

The matrix element of the Green's function in Eqs. (14)
and (15) can be calculated by

(A,R IGIA,(),) ~ &A'R~l«)&«IA'IOn '&

E —E

(16)

In calculating Eq. (16), an empirical tight-binding
Hamiltonian' Ho is used to describe the band structure
of the host crystal, the summation on wave vector ~ in
the Brillouin zone is performed with use of the special a-
point method of Chadi and Cohen. ' The values of the
V„V and the matrix elements of the Green's function
are substituted in Eq. (14); all the c coefficients can be
solved from Eqs. (14) and (15), but they are the function
of the defect energy E.

The above-calculated wave function of the unpaired
electron localized near the defect will be used to obtain
hyperfine interaction constants and to evaluate the g-
tensor shift in Sec. IV.

IV. HYPERFINE INTERACTION AND THE g TENSOR

In order to use the symmetric wave function
(A'Rrnll() to calculate the hyperfine interaction con-
stants, we now expand the electronic state Ig) in terms of
the atomic orbitals at the lattice site around the defect

G1, C1+6,2C2+ G13C3+G 14C4

+61sCs+ 616C6+617C7 =0,
621 C1 +622 C2 +623 C3 +G24 C4

+62s Cs+ 626C6+ 627C7 =o

G31C1+632C2+ G33C3+ G34C4

+635Cs +636C6+ 637C7 =0,
64, C, +64~C2+643C3+(644 —1/V, )

C4+ 64s Cs+ G46C6+ 647 C7 =0,
Gs1C1+Gs2C2+ G53C3+ G54C4

+(6» —I/V~)cs+Gs6C6+657C7 0,

where jIs ), jIx ), Ijy ), and jIz ) are the ns and np atomic
orbitals of the host or substitutional-impurity at the jth
set; C,, =(jslg), C, =(jp ll(j), C, =(jp lp), and

C, = (jp, I g) are obtained using the calculated
( A 'Rm I g) for each shell.

As usual, the probability of the unpaired electron on
the jth atom is represented by

+ CJ~ +C~~ +C

and the percentage s and p character of the wave function
by

a=C/
pj = ( C „+Ciy + CJ, ) /r)~,

a.+P =1 .J J

It has been found in EPR and ENDOR ' experiments
that the hyperfine tensor for the substitutional-
impurity-vacancy pair in silicon is nearly an axial sym-
metric one along the p orbital axis. In this approxima-
tion, principal values can then be par ametrized
( A

i )~
=aj + 2b, , ( A, )~

=
a~ b. T—he relationships be-

tween the constants a/, bj and aj,p~, ri~ are

a = ( 16m /3 )(p~ /I~ )pea~ r)~ I Q„,(0)
I J ~

(20)
b, =', (I, /1, )&,p,'~,'& r„

where the isotropic part a is the Fermi constant interac-
tion that is proportional to the probability density
ll(„,(0)l of the unpaired electron at the site of the mag-
netic nucleus. The anisotropic part of the hyperfine in-
teraction b, is proportional to the expectation value

(r„z ) over the relevant atomic p orbital. In our calcu-
lation, the values of If„,(0)

I J, (r„), are taken to be the
same as those used in Refs. 4 and 5.

The hyperfine tensor calculated from Eq. (20) is purely
axial symmetric and its axial direction is determined by
the direction cosine which is proportional to C, C,
and C „respectively. The distorted substitutional-
impurity —vacancy pair in silicon has a (011) mirror plane
in which two of the

I CJ„ I, IC~~ I, and ICJ, I
for the atoms

located in the plane would be equal to each other, such as
I CJ.„I & I C~~ I

= CJ, I; thus the axial direction of the
hyperfine tensor arising from the atom for the M class is
presented by the angle 0 between the axial direction and
the (011)direction,

e=tan ' (21)

We also want to calculate the g tensor pertinent to the
dangling bond from the calculated wave function, but
here the semiernpirical theory is used. Because the full

theoretical analysis of the g tensor should include the
wave function lg„) and the energy levels E„ofexcited
states in the calculation, this is a cumbersome problem.
In the following, we present the formula by Watkins and
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(22)

where Eb and E, are the average excitation energies from
the bound-electron state to the valence- and conduction-

Corbett, and Phillips, ' for calculating the g tensor to be
used.

Generally, for the g tensor of the vacancy-type defect'
with a dangling bond the axial symmetry approximation
is adopted. Therefore a g tensor can be expressed by two
principal values,

g~~
and g~, with the g~I corresponding to

the value along the axial direction. For many of
vacancy-type defects, their g tensors are not always exact-
ly axially symmetric. Thus the value g~ is chosen as the
average of the two principal values which are closest; the
third one is then taken as g~~. Again the deviation of

g~~

and gt from the free-electron g, value (g, =2.0023), i.e.,
5gl =gl —g„5g~ =g, —g„ is actually used in the calcula-
tion.

Starting with the Hamiltonian which includes the
spin-orbital interaction for a bound electron in a magnet-
ic field, Watkins and Corbett first gave the expression for
the gj shift, as 5g~. However, in the expression derived
by them, the single electron is fully localized on one dan-
gling bond nearest to the vacancy, and the symmetry
reason requires that 5g~~ =0, where the parallel direction
runs along the dangling bond. Considering that the
bound electron is not fully localized on the dangling
bond, Phillips' modified the expression for their g~ shift,
and gave a more accurate formula

5g~=p ri
1+v

b

band states, respectively. A, & is the valence-band spin-
orbital interaction parameter, A,, is the conduction one,
and the parameter v is a small correction due to the ad-
mixture of p-core states. Following Watkins and Cor-
bett, and Phillips, ' we take v=0. 17, A. t, =0.029 eV,
A,, =0.015 eV, E&=1.5 eV, and E, =2.5 eV; the p and

on the dangling bond will be obtained from Eqs. (18)
and (19).

V..RESULTS AND DISCUSSION

Since the wave function ( A'Rm ~g) calculated from
Eq. (10) is the function of the defect energy E, so the

rl, , aj,p, calculated from Eqs. (18) and (19), the a, , b,
from (20), 8 from (21), and 5gt from (22) are the functions
of the defect energy E. In order to obtain the optimum
theoretical values describing the EPR and ENDOR of
phosphorus-, arsenic-, and antimony-vacancy pairs, the
energy F is scanned across the energy gap, from which
the best results of our theory are selected. They are listed
in Table II. There are no EPR or ENDOR experimental
data for the bismuth-vacancy pair; we pick out of the
maximum of g on the atom b (in Fig. 1) when the energy
E of the defect scans the energy gap. In such a way, we
calculate the a,b, and ri, a,p as the theoretical pre-
dictions for this defect.

Comparing the theoretical values with the experimen-
tal values in Table II, the following can be determined.

(i) For each of the centers, the theoretical values of the
probability g and the percentage s and p character

TABLE II. Calculated hyperfine interaction constants a„b, , direction t9, the corresponding wave
function g~, aj2, P, , the energy level E, and g tensor shift 5g~ of the group-V-impurity vacancy. The
number in the round brackets is the experimental value from Refs. 4 and 5. Ellipses denote none of the
corresponding values.

Defect
center

Atom
site

a, b,
(10 cm ') (10 cm ')

Q2
J

(%)
p2

(%)
7l

(%) (%)
6

(deg)

E
(eV)

PV

As V

SbV

Si(1)

Si(2),Si(3)

Si(1)

Si(2),Si(3)

As

Si(1)

Si(2),Si(3}

137.9
(115.7)

13.14
(12.4)

9.32
(9.32)

137.60
(115.8)

12.28
( ~ ~ ~ )

15.2
(14.4)

136.80
(115.5)

5.9
(4.6)

117.9
(122.7)

12.80
(17.2)

0.86
( ~ ~ ~ )

0.46
(0.63)

12.66
{16.9}

0.85
( )

0.77
{0.8)

12.33
(16.2)

0.38
( ~ ~ ~ )

8.77
(5.1)

21
(14)
26

(30}
36

(29)

21
(14)
26

( ~ ~ ~ }
35

(32)

21
(15)
28

(30)
26

(39)

79
(86)
74

{70)
64

(71)

79
(86)
74

( ~ ~ ~
)

65
(68)

79
(85)
72

(70}
74

(61)

47.8
(59)
3.5

(3.0)
0.7

(1.0)

47.5
(59}
3.4

( ~ ~ ~ )

1.0
(1.0)

46.4
(57)
1.5

(1.0)
5.7

{4.0)

6.7 35.5 0.67
(8.1) (35.3) {0.68)

168.7
(163.5)

6.7 35.5 0.67
(7.6) (35 ~ 3) (0.69)

167.4
(144.7)

6.5 34.8 0.69
(8.7) (35.3) (0.72)

152.6
(133.2)

Bi V Si(1)
Si(2),Si(3)

Bi

133.5
6.8

11.38
0.48

22
25
24

78
75
76

43.4
1.8
8.2

6.1 34.7

151.3

0.73
(0.77)
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a,P., localized on the respective Si(1) site remain unal-

tered, which is in agreement with experimental observa-
tion. In each case, there are the theoretical values, the
probability g -50% is localized on a single unpaired sil-
icon atom, and the s character a -20%%uo, and p character
P —80%. However, the theoretical value vP is 83% of
the experimental value. For a proper set of basis func-
tions the value g~ should add up to 100%%uo, which is
satisfied by our basis function. Sievert et al. ' always
pointed out in their divacancy experiment that the value

gj r), = 119%%uo was determined by the ENDOR spectra. If
the experimental value g g, for the P V, As V, Sb V, and
BiV were also such a case, then there would be
( gj q, ),h„,/( g, g~ ),„~,=83%. This is probably the main
reason why the theoretical value rl is smaller than the

experimental value. In addition, the theoretical value a
(P ) is larger than (smaller than} the experimental value.
The reason is that the relaxation of the silicon located on
site (1) is neglected in our theory.

(ii) The theoretical value shows that the probability g
on the impurity atom as it goes from phosphorus to an-
timony is seen to increase from -0.7% to 1.0%, and to
5.7%, and the amount of these values is near the experi-
mental value. So the theory describes well the fact
"seen" by the EPR and ENDOR ' that the probability

g on the impurity-atom site is increased with the atomic
weight of the atom occupying that site. Inspection of
Table II shows that the attractive potential introduced by
the impurity atom is decreased with the atomic weight of
the atom occupying that site. Thus we conclude that the
probability g on the impurity atomic site is increased
due to the decrease of the attractive short-range potential
on this site, which is diScult to understand.

(iii) Another theoretical result consistent with the ex-
periments is that accompanying the increase in the prob-
ability g on the impurity atom site is a corresponding
decrease in the g on the sites of the two paired silicon
atoms [Si(2) and Si(3)]. As an example, for PV, there is
-0.7% g on the impurity atom, while there is —7.0%

on the Si(2) and Si(3}sites; for Sb V, there is -5.7% of
on the impurity atom, and only —1.5% of g~ on the

Si(2) and Si(3) sites.
(iv) The sum of the g on the four nearest neighbors

surrounding the vacancy is -55% (in Table II}, which
also remains unaltered for each of the centers. Our cal-
culation still shows that the sum gjgj on the atoms of
the seven shells is -87%, which is similar to the case of
a single vacancy in silicon.

(v) The calculated a and b on the Si(1) site for each of
the centers are nearly the same, which is in agreement
with the observation by ENDOR. But the amount of
these values deviates from the experimental values by
—+20% due to neglecting the relaxation of the atom on
the Si(1) site. The calculated 8 and 5g~ on this silicon
atom are also in agreement with the experiments. The
calculated a or b on the remaining three atoms in Table
II, agree well with the experiments.

(iv} The experimental values of aj and b, for the Si(2).
and Si(3) sites of the P V and Sb V are estimated by Wat-
kins and Corbett, and Elkin and Watkins, from their
EPR and ENDOR spectra, not directly measured. The

experimental values of a and P were assumed by them
in order to calculate g for these sites. The correspond-
ing calculated values coincide with their values, so their
estimated and assumed values are confirmed. There are
no experiment values for the Si(2) and Si(3) of the AsV,
but we believe these theoretical values to be reasonable.

(vii) For each of the centers, the energy levels deter-
mined by the theory with the data of the EPR and EN-
DOR spectra, are very nearly the energy levels from the
existing experiments. The theory and experiments all in-
dicate that the A' energy levels for these defects are in-
sensitive to the change in the impurity potential, and near
the energy of -0.7 eV. In previous work, we showed
that energy level of an isolated single ideal vacancy (Td
symmetry) in silicon is equal to -0.76 eV. As in the
analysis of Sankey and Dow, by the defect pairs "mole-
cule" model, the substitutional-impurity —vacancy pair
senses the C3„symmetry and produces one twofold-
degenerate E-symmetry molecule level in the gap which
should be essentially the same energy as the isolated va-
cancy T2 energy level. Hence the Jahn-Teller distortion
is included, and the E-symmetry level is split into both
state 2'(C, z) and state 3 "(C&h). The antibonding state
A" may be driven upward in the conduction band or
near the band edge; the bonding state A' remains in the
gap and its energy is shifted down. Obviously, the mag-
nitude of the distorted energy should be roughly equal to
the energy difference between the single vacancy and the
impurity vacancy, namely, the change in energy due to
the Jahn-Teller distortion is 0.1 eV. This order of rnagni-
tude is contrary to the results of earlier calculations.

(viii) The theoretical values of the wave function (a
and P, g ) and hyperfine interaction (a, b) for BiVappear
reasonable from the point of view of a similar
configuration in the above three centers. This means that
these theoretical values could serve as a useful guide for
experiments.

VI. CONCLUSION

From a consideration of the symmetry, the electronic
state of the PV, As V, SbV, and BiV, are entirely A'(C, h)
symmetric. The wave function is obtained using the
Green's-function method in the extended-potential ap-
proximation, and the combination of the tight-binding
theory of band structures with the theory of defects of
Hjalmarson et al. has been very successful in describing
the similarity among the spectra of the group-V-

impurity —vacancy pairs. Our theoretical results confirm
the estimate and assumptions of Watkins et al. about the
Si(2) and Si(3) for P V and Sb V and eke out, empty of the
atomic spectra of Si(2) and Si(3), sets for the AsV. We
predict the hyperfine interaction for the BiV, and we have
reason to believe that these theoretical values are more
reasonable. It appears to us that there are few dissimilar-
ities among these defects and their only difference is due
to different magnitudes of the potential introduced by im-
purities, besides the relaxation of the unpaired silicon
atom. Adopting the defect-pair "molecule" of Sankey
and Dow„ the change in the energy level due to the
Jahn-Teller distortion is estimated and the other of the
magnitude -0.1 eV is given.
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