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Electronic structure of disordered alloys:
Korringa-Kohn-Rostoker cluster coherent-potential approximation
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A self-consistent cluster theory, the Korringa-Kohn-Rostoker cluster coherent-potential approxi-
mation (KKR-CCPA), is presented to study the electronic structure of the random, substitutionally
disordered metallic alloys. This theory combines the augmented-space formalism and conventional
Korringa-Kohn-Rostoker methods to determine the effective medium self-consistently. One advan-
tage of this method is that it preserves Herglotz properties of the configuration-averaged Green's
function needed to calculate various electronic properties, such as charge densities, essential for full
charge self-consistency. Unlike the single-site approximations, the KKR-CCPA introduces diago-
nal as well as off-diagonal corrections in the scattering matrices. The formulation has been applied
to a model one-dimensional alloy. We find that the density of states in the KKR-CCPA is some-
what structured, due to correlated scattering from clusters of atoms.

I. INTRODUCTION

Most of the current studies on electronic properties of
random substitutionally disordered metallic alloys are
done within single-site approximations, in which the real
disordered system is replaced by a translationally sym-
metric effective medium with an effective scatterer on
each site. The effective scatterer is then determined by
averaging over all the possible configurations of a single
real atom embedded in the effective medium. The two
most commonly used single-site approximations are the
average —t-matrix approximation and the coherent-
potential approximation (CPA). ' In the average —t
matrix approximation, the effective scattering matrix is
the average of those of the alloy constituents. In the
CPA, the effective medium is determined by a self-
consistency condition, which requires that the average
scattering from a single real atom embedded in the
effective medium be zero. It is generally agreed that the
CPA is the best single-site approximation. However, it
might fail whenever a single-site effective-medium
description becomes inadequate, e.g., in the presence of
strong local environmental effects, such as short-range
order and clustering tendencies. These local environmen-
tal effects can be investigated, accurately and convincing-
ly, only through a cluster or multisite approximation.
Recent experimental works on CuPd (Refs. 4 and 5) and
CuPt (Refs. 5 and 6) systems show that the CPA is not
adequate for these systems.

With the realization of the need to go beyond the CPA,
several attempts have been reported. These attempts
can be broadly classified into two categories: non-self-
consistent cluster approaches" ' and self-consistent
cluster approaches. ' ' In the non-self-consistent
approach, there has been a considerable amount of work
within the tight-binding framework. But, to our
knowledge, only the work of Gonis et al. ' ' is within
the conventional Korringa-Kohn-Rostoker (KKR)

framework. In this work, a cluster consisting of a central
site and its shell of nearest neighbors was embedded in an
effective medium determined within the KKR-CPA
method. The density of states (DOS) was then obtained
from the site-diagonal element of the Green's function at
the center of the cluster. The effective medium, however,
was not determined self-consistently with respect to the
cluster. It was expected that the effects of the cluster
self-consistency would be small. However, the work of
Stefanou et al. on CuPd systems shows that these
effects may be significant.

In the self-consistent cluster approach also, a great
deal of work has been done, mostly on the tight-binding
models, ' '6 "though a few papers have appeared on
muffin-tin models " also. Some of these approaches
are either too difficult to implement computationally,
such as the molecular CPA, or they lack proper physical
behavior. ' ' Traveling cluster approximation' and
augmented-space formalism ' (ASF) are the only ap-
proaches which have been proved to be analytic, while
preserving the conservation laws and sum rules. ' '

The ASF, originally developed in the tight-binding
framework, provides a self-consistent cluster coherent-
potential approximation (CCPA) in which one can go
beyond the CPA in a systematic way. ' In this method,
the effective medium is determined by the self-
consistency condition that the average scattering from all
the possible configurations of a real cluster embedded in
the effective medium be zero. Unlike the molecular CPA,
the CCPA gives a translationally invariant effective medi-
um. There is a vast literature on the ASF (Refs. 18—21
and 26 —28) and it has been used extensively for electronic
structure calculations in the tight-binding framework

The ideas of ASF are rather general and can be incor-
porated within the conventional KKR method as well.
Although a formula for averaged DOS using Lloyd's for-
mula ' has already been developed, it does not allow
the calculation of charge densities and, therefore, the
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prospect of doing charge self-consistency is ruled out.
Furthermore, it is now generally agreed that the electron-
ic properties of an alloy should be calculated by the
Green's-function method, as the formulas based on
Lloyd's formula may give unphysical results, ' ' such as
negative DOS and negative spectral density. Our formu-
lation is based on the Green's function and therefore
overcomes these difficulties: using it one can calculate
charge density and therefore can achieve charge self-
consistency within the local-density approximation of the
density-functional theory.

This theory can also treat a random ternary alloy.
Work within the tight-binding framework has already
been reported. An extension of the theory to deal with
nonrandom effects like short-range order has also been
reported in the tight-binding framework. We have ex-
tended it using the KKR framework and our calculations
are in progress. Therefore we plan to discuss the nonran-
dom effects in a separate paper.

The outline of the paper is as follows. We present our
formulation in Sec. II. In Sec. II A we briefly discuss the
main ideas of the ASF. In Sec. II B we combine the ASF
and the conventional KKR method to formulate the
KKR-CCPA formalism. It is found that the KKR-
CCPA introduces diagonal as well as off-diagonal correc-
tions in the scattering matrices of the effective medium.
In Appendix A we present simplification of the KKR-
CCPA equations for clusters of one atom and two atoms.
We also show that, for a one-atom cluster, the KKR-
CCPA equations reduce to the familiar KKR-CPA equa-
tion, which is the correct limit. In Sec. II C we give the
expressions for the configuration-averaged Green's func-
tion and various quantities which can be obtained from
it, such as DOS and charge densities. The problem of im-
purities embedded in the effective medium has also been
discussed in this section. As a first attempt to implement
KKR-CCPA, we have applied it to a one-dimensional
model alloy as presented in Appendix B. This model is
chosen because it has analytical expressions for various
quantities and thus is computationally simpler. In Sec.
III we present the results of our calculations of DOS
within KKR-CPA and KKR-CCPA. We also present lo-
cal DOS on impurities for a cluster of two real impurities
embedded in the KKR-CPA medium. We compare the
KKR-CCPA DOS with these local DOS's on the impuri-
ties and show that their features are correlated. This sug-
gests that the structures in the KKR-CCPA DOS are due
to correlated scattering from the clusters of atoms. We
also present the averaged DOS on the central site of a
cluster of atoms embedded in the KKR-CPA rnediurn,
for clusters of two, three, and five atoms. These calcula-
tions are similar to the embedded cluster calculations of
Gonis et al. ' We find that this averaged DOS repro-
duces some of the structures of the KKR-CCPA DOS,
which become prominent as we increase the cluster size.

which is a function of a set of random variables I n,. j, pro-
vided the probability distribution p(In, j.) is known ex-
plicitly. The configuration average of a function A ( [n, j.)
is the integral

(&&=JA(In, j)p(jn, j)gdn, . (2.1)

For a random substitutional alloy with no short-range
order, the composite probability distribution p ( I n; j ) can
be written as a product of the individual single-site prob-
ability distributions p;(n; ), i.e.,

p( rn, j)= gp, (n, ) . (2.2)

If we assuine that p, (n, ) has finite moments to all orders,
then it is always possible to write p;(n; ) as the matrix ele-
ment

p, (n, )= ——Im(fo'I(n, I—M") 'Ifo'&, (2.3)

1 for i =A
n, =.

0 fori=B .
(2.4)

It immediately follows from Eq. (2.4) that p;(n, ) satisfies
the required conditions, namely,

fp; (n, )n dn; finite for l =0, 1,2, . . .

and

p, (n, ) &0 . (2.5)

For p; (n; ) as defined in Eq. (2.4), M" is a tridiagonal
matrix in the space P, of rank 2 spanned by fo" & and
If", & with a representation

x &xy
(2.6)

xy y

It is easily seen that

and

where M "is an operator in the configuration space P; of
rank m, spanned by I I f,"& j, j =0, 1,2, . . . , m —1, with
m being the number of components of the alloy. The
configuration space P; contains all the possible
configurations for the site i and

Ifo" & is referred to as the
ground state in P;. The basis t I f~" & j can be defined if
p;(n; ) is known explicitly. For a random binary alloy
A„B,p;(n; ) can be written as

p;(n;) =x5(n; —1)+y5(n; ),
where

II. FORMULATION

A. The augmented-space formalism

The ASF (Refs. 26 and 27) is an efficient and con-
venient method for configuration averaging a quantity,

The bases I f0" & and If'i' &, referred to as the ground
state and the excited state in the configuration space, re-
spectively, are given by

If,"& =&x IA &, +&y IX&,
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and

(2.7)

The bases IA); and IX),. indicate the occupancy of
the ith site. By the augmented-space theorem we get

(2.8)

where IF) = ff;Ifu" ) and represents a state in the
configuration space 4= g;P;. The remaining bases in
the configuration space are those for which there are ex-
cited states lf", ) on one or more sites. These are con-
ventionally written as IF, ), where s is a composite index
of one or more sites on which we have

I

f'i" ), while on
the rest of the sites we have

I f0" ). For example, a state
IF I, i ) is given by

0 for i', k, . . . , I

1 fori=j, k, . . . , I .

(2.9)

A(tM"]) is an operator in the augmented space
f=&@, where & is the Hilbert space spanned by

[ li ) ). The augmented space is spanned by [ li, F, ) ] and
its rank is XX2, where X is the total number of atoms
in the solid. The operator function A ( t

M" ] ) is the
same function of t

M" ] as A ( I n; I ) is of I n; I. Note
that Eq. (2.8) is exact, but cannot be used for computa-
tional purposes. Therefore we look for some approxima-
tion which will reduce the rank of the augmented space.
The simplest approximation is the CCPA, in which a
small cluster C is chosen out of Ii I and the complement
of the cluster is taken as an effective medium. The ran-
domness comes only within C and so the configuration
averaging is done over all the possible configurations of
the cluster. We get the self-consistent CCPA equations
from the condition that the configuration-averaged
Green's function obtained by this technique is equal to
the Green's function of the effective medium. Depending
upon the size of the cluster we can generate various kinds
of effective medium. For example, if we take a one-atom
cluster we will get the CPA condition. Thus our formu-
lation offers a convenient and systematic way of going
beyond the CPA.

B. The KKR-CCPA

In this section we discuss the application of the
augmented-space technique to the KKR Green's-
function' ' method of calculating electronic structure
for a system of muffin-tin potentials. The Hamiltonian
for such a system can be written (in atomic units) as

—5;, gZ L(r;)J L(r,'),
L

(2.11)

where r and r' lie on ith and jth cells, respectively. The
wave functions Z I (r, ) and J I (r,. ) are, respectively, the
regular and irregular solutions of the differential equa-
tion,

[ —V +u;(r, ) E]Z—I(r;)=0, (2.12)

and T )L are on-the-shell matrix elements of path opera-
tors given by

where

(2.13)

and C LL. is the inverse of the on-the-shell single scatterer
t matrix. Suppressing the angular momentum indices we
can write

T 'J = [(C 'I —8 ) ']'J (2.14)

sc=c "—c' (2.15)

From Eq. (2.13), the matrix A can be written as

A=pc li&&i — y a ~li&&jl
i,j(i@j)

=c'g li &&il+&C g li &&iln; — g I "li &&j
i,j(i' )

(2.16)

Our aim is to find configuration-averaged T'~, which
by the augmented-space theorem, is given by

(2.17)

where

where 8 is the matrix with elements 8 '~ which depend
only on the lattice structure and do not contain any ran-
domness, while C ' carry the information about random-
ness. The nonrandomness of the off-diagonal terms 8 'J,

in the KKR framework, in contrast to the tight-binding
framework, where randomness comes both in the diago-
nal as well as off-diagonal terms, makes the application of
the ASF to the KKR framework theoretically much
simpler. The first step towards implementing the ASF to
the present problem is to write C ' in terms of the random
variable n, , i.e.,

C '=C +5Cn;,

where

H= —V' + g u;(r —R;), (2.10) A =c'y Ii)&ilal+scy Ii &&ilsM"

y a "li&&jlL (2.18)

where U; are the muffin-tin potentials centered at the posi-
tion of the sites, R;. The Green*s function for this system
is given by

In Eq. (2 18) I and M" are operators in the
configuration space N. Now we partition the augmented
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space P into subspaces labeled by I and II; the subspace I
is spanned by I li, F, ) I, i EC, where C is the chosen clus-
ter and I IF, ) ] span the configuration space of the clus-
ter. For a cluster of size m, the subspace I is of rank
m X2 . The crucial mean-field approximation now in-
volves replacing the conjugate space II by an effective
medium. Thus the subspace II has only one
configuration, namely, the ground state IF), and hence,
is spanned by [ jl,F ) ], jE C ', where C

' is the comple-
ment of the cluster C and is of rank N —m.

Since we need the &i,Fl. . .jl,F) element (i,j EC ) of
A ' in Eq. (2.17), we partition A as follows:

—IA A'
A= (2.19)—»

kl g kl+b kl—eff

Thus Eqs. (2.22) and (2.23}can now be written as

c„y Ik&&kl — y a"„'Ik&&il
kit ' k, l CC'

(k%1)

IF &&F

and

(2.24)

(2.25)

to the old Tsukada scheme, which is not the same as our
CCPA. In general, b "' will not be zero in KKR-CCPA.
However, for a one-atom cluster, these terms vanish, thus
reducing to the correct KKR-CPA limit. For conveni-
ence, we add b "' to 8 "' (which are also off-diagonal in
site indices) and define 8 ",s as

where A, is in the subspace I and A» is in the subspace
II. By partition theorem, we get the inverse of A in sub-
space I as

iEC k&C' F, e4
g & ',",li & & k

I
s g IF, & &F I

. (2.26)

[A ']t=(A t
—A 'A (, 'A '

) '=A

—g 3L"Ii)&j I g IF, &&F, I,
i,j E. C
(i&j)

F, e+

C, g lk)&kl — g b"'Ik)&il
keC' k, l e C'

(kxl )

g 3L"'lk &&il IF &&F1,
k, 1E:C"
(kW I)

The four constituent matrices of A are given by

A, =C g li &&ile g F, )&F, I

F, 64

+ac y. Ii&&ilM'"

(2.20)

(2.21)

(2.22)

The elements of A in Eq. (2.20) can be found if we can
evaluate the triple product (A 'A tt'A ' ). Since A n is
the matrix in the effective medium with the cluster C re-
moved, we have

A -'=T"'.—» —eff (2.27)

The superscript C inside the parentheses indicates that
T ff is the path operator matrix of the effective medium
with the cluster removed from the medium. Though it is
not possible to calculate this quantity, we show in Appen-
dix A that it can be eliminated completely from the com-
putational procedure. From Eqs. (2.25), (2.26), and (2.27)
we get

z i" T ~ ~ ~"'p 'J
I i ) & J I

i,j &C k, IEC'

s g IF, &&F, I

F, eC

= y g'jli)&jl y IF, &&F, I,
g b '"I~ &&kl+ g

i EC kEC' i&0 k&C'

F, e4
(2.23)

where

gjig haik
TIc)klIJ I) for

k, le C'

F, 64

(2.28)

and A
'

is the transpose of A '. In Eqs. (2.22) and (2.23),
b ' are the off-diagonal corrections in C, the diagonal
corrections already contained in C,ff. Note that A 1 does
not contain b 'j, because subspace I contains the real
atoms and their configurations, while A» has these off-

diagonal corrections, because subspace II contains only
effective atoms. This partitioning of the augmented space
into subspaces I and II is difterent from the physical par-
tition of the lattice into nonoverlapping clusters of the
Tsukada scheme. In the present scheme, the subspaces I
and II are interacting and, therefore, the operator A',
which connects the subspaces I and II, must contain the
off-diagonal corrections b ', in order to include correlat-
ed scattering between a site inside the cluster and site
outside the cluster. ' This ensures that the CCPA
preserves the translational invariance of the effective
medium. Removing b ' from A

' in Eq. (2.23) will lead

It is clear from Eq. (2.28) that the matrix
(A 'A, , 'A '

) is diagonal in the configuration space 4.
The off-diagonal parts in A thus come from A, only.
From Eqs. (2.20), (2.21), and (2.28}we get

y (C' —g'r'.-)Ii &&il —y (8 "+g'j)li&& jl
ieC i,jEC(i' )

e g IF, &&F, I+fic g Ii&&ileMI'I . (2.29)
F, e+ i EC'

We now partition A as follows:

—1 —12A
A= —21 —2

(2.30)

where A, is in the subspace 1 spanned by li, F), i&C
and is of rank m. The subspace 2 is the complement of
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subspace 1 and has rank m X(2 —1). The inverse of A

in subspace 1 is then given by

where B,ff(k, E) is the Fourier transform of B ",ff, i.e.,

B,ff(k, E)=Q B,ff exp( ik Ro„)
[— ]1 —1 —12—2 —21A -'] =(A —A A -'A )-'. (2.31)

Since the ranks of thematrices A „A,2, 3 2, , and A 2

are small, it is not difficult to find the matrix elements in
Eq. (2.31}. In Appendix A we show that these can be
found analytically for small clusters.

The matrix A, can be obtained from Eq. (2.29) as

Note that

b Jj—(b !J)T

=B(k,E)+ g b 'exp(ik-Ro;) .
iEC

(2.39)

A, = y (c—g&)li&(1 —g (B "+(II)li&&j
iEC i,j EC'(i' )

(2.32)

A, ff
=c,ff g I1 & &1 I

—g B 'Jffl1 & &j I
. (2.34)

We get the effective path operators, for the sites inside
the cluster, from Eq. (2.34) by the partitioning technique
as

where

C=xC "+yC

From Eq. (2.17) we get

( T 'J
&
= (i

I ( A 1
—A 12 A 2

' A 2, )
'

Ij & for i jE c .

(2.33)

For the translationally invariant effective medium, Eq.
(2.16) can be rewritten as

and therefore we need to solve Eq. (2.37b) for j)i only.
This reduces the number of self-consistent coupled equa-
tions in Eqs. (2.37a) and (2.37b) to m (m —1)l2+1. This
number can be further reduced by exploiting the symme-
try of the cluster. Note that all these equations involve
matrices of rank (I +1), where 1 is the maximum num-
ber of angular momentum states used in evaluating the
phase shifts. Therefore, with modern computing facili-
ties, solving KKR-CCPA equations for a five-site cluster
(for which there are 11 coupled equations} will not be
difficult at all.

A cluster consisting of a central site and its shell of
nearest neighbors should be the ideal choice but it will be
computationally demanding and so we propose an alter-
native, though approximate method. One can take a
two-atom cluster consisting of the central site (site 0) and
one of its nearest neighbors (say, site 1). The KKR-
CCPA equations for a two-atom cluster are given in Ap-
pendix A. By solving equations, one can obtain C,ff and
b '. Then b, for the rest of the nearest neighbors, can
be found by rotational symmetry, since b 'J will transform
like B 'J. These b ' can then be used in Eq. (2.39).

T'ff= i C ff
—

P k k
keC

x (LJ'.fI+tp~'tlk&1II j) .
k, le C
(kWl )

(2.35)

C. The configuration-averaged Green's function

The configuration-averaged Green's functions for site-
diagonal (SD) and non-site-diagonal (NSD) cases can be
written from Eq. (2.11) as

(6 sD(r, r', E) & =Tr(F'(r;, r,')T "&

The self-consistency condition ( T 'J
&
= T',Jff implies that

A 1 A 12A 2 A 21 g (Ceff g(Q)Ii &(i
iEC

and

—g (Z' (r;)J' (r,') &

L

—y (B 'J,+g g) Ii & & J I
. (2.36}

( G NsD(r, r';E) &
=Tr(F "(r;,r'. )T 'J &, (2.40)

c ff=c —&1I A»A 2 A»11 (2.37a)

The KKR-CCPA equations follow directly from Eq.
(2.36}as where the trace is over the angular momentum indices

only and

b =(ilA 2A 2 A 2 Ij& for ij(iAj)HC . (237b)

The path operator matrices can be calculated by the
usual k-space integration over the first Brillouin zone as

F LL (r, , r,')=Z
L, (r, )Z I, (r,'),

F IL (r;, r,')=Z L(rj )Z I, (r;) .
(2.41)

T ff 3
C ff B, kF. 'exp —ikR„dk,

8~ BZ

(2.38)

To find the joint averages in Eq. (2.40) we adopt the
method of Ref. 30. In this method, a single atom is treat-
ed exactly, while the rest is effective medium. Equation
(2.40) can now be written as
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( G so(r, r';E) ) =Tr[xF "(r, , r,'. ) ( T ")„+yF (r, , r,
'

) ( T ")z ]—g [xZ I (r; )J L (r,
' )+yZ z (r; )J L (r'; )]

L

and

(G Nso(r, r', E))=TrIx2F""(r, , r'. )(T'J) z„+y F (r, ,r')(T'J)zs

+xy[F" (r;, r,'. )(T'~) „~+F "(r, ,r')(T' j) s„]], (2.42)

( T i!) D aTii (2.43a)

and

( T '~) p=D T'~/I (C ~—C—,a)D~T~'fi(C —C,s)

(2.43b)

where

where (T") and (T'~) &(a,P=A or 8) are the restrict-
ed averages. To find these restricted averages, we embed
a single impurity in the effective medium. Now we recall
that, in the determination of the effective medium, the
off-diagonal term between real and effective atoms is tak-
en as 8 ',z. Therefore, to be consistent in the prescription
of these off-diagonal terms, in the present case also, we
take them to be B',ff. In Appendix C, we discuss the
effect of change in the off-diagonal terms between real
and effective atoms on the DOS. In the present prescrip-
tion, the restricted averages can be found by a simple par-
titioning technique, similar to Ref. 30, to give

and

nP'(E)= ——TrIm[F~(T~J); ] .
1

(2.50)

Hence we need only to find the path operator matrices
( T ");J and ( T J~ );J. It is straightforward to obtain these
matrices by the partitioning technique. The real space is
divided into two subspaces; one for the impurity sites and
the other for the rest effective medium. Then by simple
matrix algebra one easily gets

and

+(Cn C )I
—1

Eq. (2.46). If we embed two impurities of type a and P on
the sites i and j, respectively, the local DOS on the
respective sites will be given by

n~ '(E)= ——TrIm[F (T'~); ]
1

D =[I+(C —C )T ] (2.44)
(T ); =) [T, T,'s(C ——C, )D T', )

The total and component DOS's per atom are obtained
by integrating the SD Green's function over the unit cell, +(ci'—c„)}-' (2.51)

n(E)= ——TrIm(xF "D "+yF D )T,z,
1

(2.45)

(2.46)

Equations (2.46)—(2.51) are rather general and can be
used to calculate local DOS and charge densities for a
single impurity or two impurities of foreign kind in the
effective medium.

where

F = f F (r„,r„)dr„.
0

(2.47)

For the charge self-consistency within the local-density
approximation of the density-functional theory, one
needs the component charge densities. To find the com-
ponent charge densities we embed a single atom in the
effective medium. The average charge density p(r) and
component charge density p' '(r) (a= A, B) are given by

1
E

p(r)= ——Tr Im f [xF "(r,r)D "+yF (r, r)D ]

X T,gE, (2.48)

()p' '(r)= ——TrIrn F (r, r)D T,zdE . (2.49)

One can construct the potentials u' '(r) from p' '(r) in
the local-density approximation and thus can achieve
charge self-consistency.

For a single impurity of type a in the effective medium,
the local DOS on the impurity site can be obtained from

III. RESULTS AND DISCUSSION

In this section we present the results of our calcula-
tions of DOS for a one-dimensional muffin-tin alloy. All
the relevant equations for this model are given in Appen-
dix B. The lattice parameters (a =6.00 a.u. ) and the
muffin-tin radii (r =2.25 a.u. ) of the two components of
the alloy are identical. The depths of the two constituent
potentials are Vz = —0.3 Ry and Vz= —0.5 Ry. The
DOS for the two pure systems is shown in Fig. 1, which
shows peaks at band edges, characteristics of the one-
dirnensional model. For the KKR-CCPA calculations we
have taken a two-atom cluster. In Fig. 2 we show the re-
sults of our calculations in the 1ow concentration
(x =0.1) limit. Figure 2(a) shows the KKR-CPA and
KKR-CCPA DOS's. %'e note that, in the first majority
band, there is no apparent difference in the KKR-CPA
and KKR-CCPA results. However, in the impurity band
we observe a shoulder in the KKR-CCPA DOS around
E = —0. 16 Ry and a peak at E = —0. 12 Ry, in contrast
to a smooth KKR-CPA impurity band centered around
E = —0. 14 Ry. The extra structures in the KKR-CCPA
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FIG. 1. DOS for the one-dimensional systems of potential
depths (a) V„=0.3 Ry and (b) V& =0.5 Ry.

DOS seem to arise due to correlated scattering from
two-atom clusters. This becomes clear by a close inspec-
tion of the local DOS on impurities for a two-impurity
cluster embedded in the KKR-CPA medium, as shown in
Figs. (2b) and (2c). If we look at the local DOS on the
A-type impurity of an A A-type cluster, as shown in Fig.
2(b), we observe that its impurity band is almost identical
to that of the KKR-CCPA DOS, thus explaining the
above-mentioned structure. We also observe a peak at
E = —0. 13 Ry in the local DOS on the A-type impurity
of an AB-type cluster, as shown in Fig. 2(c), which is
close to the peak at E = —0. 12 Ry in the KKR-CCPA
DOS. Also, a small but observable structure at E =0.06
Ry in the KKR-CCPA DOS is very close to the two
kinks around E =0.04 Ry in the local DOS on both A-

type and B-type impurities of an AB-type cluster, as
shown in Fig. 2(c). In Fig. 2(d) we show the local DOS
on A-type impurities in a pure B medium. We observe
that the two-impurity levels at E = —0. 19 and —0. 10 Ry
are close enough to the structures in the minority band of
the KKR-CCPA DOS. This further supports our asser-
tion that these structures arise from two-impurity scatter-
ing.

Figure 3 shows the results for a concentrated alloy
(x =0.5). As shown in Fig. 3(a), the KKR-CPA gives a
rather smooth DOS besides a peak in each band while the
KKR-CCPA, once again gives few extra structures in all
the bands. The KKR-CPA peaks at E = —0.38, —0.21,
and 0.04 Ry almost coincide with the major KKR-CCPA
peaks at E = —0.39, —0.21, and 0.04 Ry. Besides these
major peaks, we observe some more peaks at E = —0.35,
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FIG. 2. (a) KKR-CPA (dashed line) and KKR-CCPA (solid line) DOS's for the alloy with concentration x =0.1. (b) Local DOS
on the impurity site for a cluster of two impurities of A A (solid line) and BB (dashed line) type embedded in the KKR-CPA medium
for x =0.1. (c) Local DOS on the impurity site of A (solid line) and B (dashed line) type of an AB-type cluster embedded in the
KKR-CPA medium for x =0.1. (d) Local DOS on the impurity site for a single (dashed line) and two (solid line) impurities of type A

embedded in the pure B medium.



'9398 RAZEE, RAJPUT, PRASAD, AND MOOKERJEE 42

(a)
x =0.5

KKR-CCPA
4.0-

(a)
x =P.t
Averaged DOS
Cluster size = 2

0.0
8.0

C

4,0-
UJ

V)

o 00
8.0

Vl

UJ
Cl

4.0-

I IBB
,', AA

II
I I

I I I I

I

1

I

I

1

I

I

I IBA
I

I
I

I
I

I
I

I

I

I

I

(b)
x = 0.5
LDOS on impurities

On A
On B

(c)
x = 0.5
LDOS on impurities

On A
On B

0.0

4.0-

LL
C)

~ 0.0
M

hl
C)

4.0-

(b)
x=0,1

(c)
x =O.l

ged DOS
r size=3

DOS
ize =5

0.0
-0.5 -0.1 0.3

ENERGY (Ry)

line
FIG. 3. (a) KKR-CPA (dashed line) and KKR-CCPA ( lso id

ine) DOS's for the alloy with concentration x =0.5. (b) Local
OS on the impurity site for a cluster of two impurities of A A

(solid line) and BB (dashed line) type embedded in the KKR-
CPA medium for x =0.5. (c) Local DOS on the impurity site of
A (solid line) and B (dashed line) type of a cluster of AB type
embedded in the KKR-CPA medium for x =Q. 5.

—0.11, and —0.06 Ry, in the KKR-CCPA DOS. As in
the case of x =0.1, these extra structures in the KKR-
CCPA DOS are very close to the structures in the local
DOS on the impurities of a two-impurity cluster embed-
ded in the KKR-CPA medium. In Figs. 3(b) and 3(c) we

show, respectively, the local DOS's on the impurities of a
cluster of two like and unlike impurities embedded in the
KKR-CPA medium. We observe that the KKR-CCPA
peak at E = —0.35 Ry is exactly at the position of the
peak in the local DOS on a B-type impurity of an AB-
type cluster, as shown in Fig. 3(c). Thus the KKR-
CCPA peak at E = —0.35 Ry is identified as due to the
B-type atoms. The second extra peak at E = —0. 11 Ry is
close to the peak in the local DOS on an A-type impuritimpuri y
of an AB-type cluster, which is at E = —0. 14 Ry. The
third extra peak at E = —0.06 Ry can be identified as due
to the A-type atoms as it is very close to a peak in the lo-
cal DOS on an A-type impurity of an A A-type cluster at
E = —0.05 Ry as shown in Fig. 3(b).

We have also compared our KKR-CCPA results with
some calculations obtained by using the embedded cluster
approach of Gonis et al. ' We have embedded clusters

Th
of two, three, and five atoms in the KKR-CPA dme ium.

e averaged DOS on the central site of the cluster is ob-
tained by calculating the local DOS on the central site for
all possible configurations of the cluster and then taking
the average. This averaged DOS produces some of the

0.0
-0.4 0.0 0.4 0.8

ENERGY(Ry)
FIG. 4. Averaged DOS on the central site of a cluster of (a)

two atoms, (b) three atoms, and (c) five atoms, embedded in the
KKR-CPA medium for x =0.1.
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FIG. 5. Same as Fig. 4 except x =0.5.
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structures of the KKR-CCPA DOS. In Figs. 4(a), 4(b),
and 4(c), we show the averaged DOS, for different cluster
size, in the low concentration limit (x =0.1). We ob-
serve that, for a two-atom cluster, the averaged DOS
does not give the structures of the KKR-CCPA DOS.
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However, as we increase the cluster size, the structures in
the averaged DOS become prominent, and show resem-
blance to the KKR-CCPA results. For the higher con-
centration (x =0.5) also, the averaged DOS, as shown in
Figs. 5(a), 5(b), and 5(c), does reproduce the structures of
the KKR-CCPA DOS in Fig. 3(a), which become more
prominent with the increase in the cluster size.

IV. CONCLUSION

T00 C ~ B oj T(0)jkB ko ' —1—eff —eff ~ —eff—eff —eff
j,k&0

—(( (00)—1

and thus

g
00—C ( T 00 }

—1

By the augmented-space theorem we have

(A5}

(A6)

We have shown that one can go beyond the CPA in the
first-principles KKR Green's-function method by
effectively combining the ASF with the conventional
KKR method. It has been put on the same rigorous foot-
ing as KKR-CPA in which one can calculate DOS, com-
ponent DOS, and charge densities, self-consistently. We
have shown that the KKR-CCPA, unlike the KKR-
CPA, introduces off-diagonal corrections to the scatter-
ing matrices. Our calculations on a model alloy show
that the structures in the KKR-CCPA DOS are due to
correlated scattering from clusters of atoms in the
effective medium.
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APPENDIX A:
KKR-CCPA FOR ONE- AND TWO-ATOM CLUSTERS

Too= (0,fo'"
I
~ 'Io,fo"' &

[C goo (C goo)
—1 ]

—1 (A7)

=C —co[C—C,s+(T s) '] 'co

which readily reduces to the familiar form

Cdr=C+(C "—C,s)T s(C —C,lr) . (A8)

For a two-atom cluster of sites 0 and 1, the
configuration space is spanned by four vectors, which are
IF &

= lfo"'fo" '
&, IF &

= Ifo'"f"'
&, I Fo &

= lf "'fo" '
&,

IF0, ) =
If I 'f I" ). The augmented space is spanned by

eight bases Ii,g, i =0, 1 and /=F, Fo, F, , and Fo, .
For this case, Eq. (2.28) reduces to

g ji
— y B ik T(0~1)klB Ij for i j=0 1

k, 1%0, 1

(A9}

It is evident that g 2 =(z'. By partitioning the effective
medium to get the path operators for the sites inside the
cluster, we get

Too T01 '

'goo gol
'

T 10 T 11 B 10 C P 10 P 11—eff —eff —eff —eff & 2 5 2

—eff —effC —B

Comparing (A5) and (A7} we get the KKR-CPA equation

C,B=C—01(C—g, ) '01

A (A 1)

For a one-atom cluster (the 0th site) the configuration
space iI}0 is spanned by lf0 ') and lfpi'). Then Eq. (2.21)
reduces to

which gives

(00 C [T 00 T oyl T00
)
—I T 10 ]

—1

(01 B 01+ [Tooy Tol )
—1T00 I 10]—1

( 10— B 10 + [T00' T 10
)
—1 T 00 T 01 ]

—1

(A10)

where

C=yC "+xC

and

( )1/2(( A ( B)

Rewriting Eqs. (2.28) and (2.29}for this case we get

(A2)

Thus with this technique it is possible to eliminate the
infinite sum in Eq. (A9} and calculate gj explicitly in
terms of the known effective medium quantities.

Partitioning A in the scheme of Eq. (2.30) we get
'( (00 Vol

—1 Vlo ( (00A

and

P oo ~ BoJ ~(0)jkB ko
5 1 ~ —eff—eff —eff

j,k&0

'(
goo

(A3) 0 0 0 0 0 co

co 0 0 0 0 0

—21 —12 ~A =A

(A4)
C —g~A

The matrices A1 and A are in a space spanned by
IO,fo ') and IO,fP'). Now for the efFective medium we
have

where

V'J=B 'i+) j for i,j =0, 1 . (A12)

Now the KKR-CCPA equations (2.37a) and (2.37b)
reduce to the following two equations:
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and

C,=C—(0~~ „a ~,~0)=C —~g ~ where C is the unit circle centered at z =0 and g (z) is a
matrix in 1 space and is given by

b"=«I» 'W li)= g" (A13)

R, =C —
g~

where

goo
—R

—1

goi R6
—i VoiR5 icoR4 i VioR3 icoR2 i VoiR

1

—1 (A14)

and

goo(z)=[z +1—2z cos(Ka)]

X(i —KC»+Kb»z)+2z sin(Ka),

g» (z) = [z + 1 —2z cos(Ka ) ]

X(i—KC 00+Kb ooz)+2z sin(Ka},

go, (z) =K(C 0, bo—,z)[z +1—2z cos(Ka)]+z —1,
g,o(z)=K(C,0

—b,oz)[z +1—2z cos(Ka)] —z +1,

(86}

Rq=C —
gq

—V 'R, 'V' and the constants appearing in the denominator of (85)
are

R, =C —
g ~

—coR i
' ai,

(oo VioR —1Voi

R 5
=C —

g ~
—coR 4

' oi,

C g
00 V01R —1 V 10

(A15)

Note that C,z may no longer be diagonal in angular
momentum space.

APPENDIX B:
ONE-DIMENSIONAL ALLOY MODEL

We consider a one-dimensional alloy of nonoverlap-
ping muffin-tin (MT) potentials described by the Hamil-
tonian

71,=E(b ~b ii b oib io)

6 =ri K(b 0—, b, o)——2A, cos(Ka),

a =A. +y+ 2K ( C 0,
—C,o) —2ri cos(Ka ),

P=2 cos(Ka)[2 —y K(C 0,
——C,o)]

+2 sin(Ka)[2i —K(C 00+ C» )]

+v)+K(b 01 b 111)

y =E ( C ooC» C 01K io }

iK(C—00+ C 11) K(C 01
——C 10),

ri=iK(b 00+b „)

(87)

H= — +g u„(x na) —.
dx

(81) E(—00—"11+C ii —"oo C oib io C iob oi)

In close analogy with the MT model in three dimensions
we assume that u„(x) is symmetric in x and vanishes for
~x~ ~ r (the MT radius), r ~a/2 (a is the lattice con-
stant). This one-dimensional model retains many of the
features of the three-dimensional MT system. But, in
this case, we have only two components of angular
momentum (i =0 and 1). The SD Green's function for
this system is given by

12.G

10.0-

rr

2.0-
J3

0.0

~ 10.0-

8.0-

0
2.0-

0.0
UJ
CI

ImG(x, x')= g Z, (x)Im(T „)Z,.(x'), (82)

where Z 1(x} are the solutions of the Schrodinger equa-
tion. The on-the-shell matrix elements of the path opera-
tors are given by the integral

(83}

T ',fr= f dk [C,&
—B,s(k, E)] 'exp[ik ( i j)a], —

2' —m. /a

op= 0.0

ot'=0, 5

8.0

(b) ot' = 0.0

40-

M =1.0

„~ll
w'= 0.5

where 8, (k,sE}are given by Eq. (2.39}as

B,s(k, E)=B(k,E)+b ' exp(ika ) . (84)

8.0-

2.0-

B(k,E) are the KKR structure functions in one dimen-
sion and have explicit expressions. " Equation (83) can
be transformed into a contour integration by putting
z =exp(ika):

T ~'g f d g
—i 1 g— (85)

Az +5z +az +Pz+y

0.0'
-04

ENERGY (Ry )

0.0

FIG. 6. Local DOS on a single impurity of potential depth (a)
0.3 Ry (type A), and (b) 0.2 Ry, embedded in the KKR-CCPA
medium for x =0.1, using Eq. (C1). Vertical lines in (b) at —0.2
and —0.1 Ry denote the impurity levels.
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In Eqs. (86) and (87) K =v'F. and C:—C,s and
b =—b '. Now consider a one-dimensional MT potential,

U„(x)= —V"' 'e(r

The phase shifts are given by

where

k, =(E+ V, )'"
The wave functions Z &(x), both inside and outside the

MT cell, can also be found analytically and thus the in-
tegral

0I = —Kr + tan tan(k, r )

F « =1 Z, (x)Z, .(x)dx
0

can be evaluated to give

&(I

2Esin e,
cos (Kr +ei —lm/2)

cos (k~r —l7r/2)

sin(2k
~
r —17r)

r +
2

sin(Ka +28I )
—sin(2Kr +26I )+— r+( ——1)'

2 2K
(89)

APPENDIX C: OFF-DIAGONAL TERMS
BETWEEN REAL AND EFFECTIVE ATOMS

Let us embed a single atom in the KKR-CCPA medi-
um. We assume the off-diagonal term between real and
effective atoms to be of the form

B „",„=B"+a(B Jft
—B "), 0~a~ 1 . (Cl)

The case a = 1, represents the one which we have
adopted in Sec. II C. We have calculated local DOS on
this impurity embedded in the KKR-CCPA medium us-
ing Eq. (Cl) for various impurity potentials with different

The off-diagonal elements of I' vanish due to opposite
parity of the I =0 and 1 wave functions.

values of a. In Fig. 6(a), we show the local DOS on A-
type impurity (potential depth =0.3 Ry) for x =0. 1 and
a =0.0, 0.5, and 1.0. We observe that there is some vari-
ation in the height of the peaks in the local DOS with a,
although there is little qualitative change in the DOS.
The variation in the height of the peaks for a=0.0 and
I.O is less than 10%. A similar trend is observed in the
case of x =0.5. Also, for an impurity of foreign kind, the
same conclusion can be drawn from Fig. 6(b), which
shows local DOS on the impurity of potential depth 0.2
Ry. Although the basic structure of the local DOS does
not change with different choices of the off-diagonal
terms between real and effective atoms, we feel that fur-
ther work is needed to clarify the problem of embedding
in the KKR-CCPA medium.
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