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The experimentally observed strong anisotropy of reAected second-harmonic (SH) generation at
the copper crystal surface has previously been explained as the result of interband electron transi-
tions. In the present paper the first calculation of the quadrupole-allowed second-order nonlinear
polarizability of an anisotropic electron plasma has been produced using the kinetic equation
without taking into account interband transitions. The previously neglected anisotropy of the non-
linear response of noble-metal electrons near the Fermi surface has been found to be essential. The
strong SH anisotropy experimentally observed by some authors at the silver and gold crystal sur-
faces might prove the principal role of the anisotropy source considered here.

Second-harmonic generation (SHG) is extensively used
for the investigation of centrosymmetric media surfaces
(see Ref. 1 and references therein). SHG has been found
to be a sensitive probe of adsorbate-induced changes in
the electronic properties of surfaces, microroughness,
and other parameters of metal and semiconductor sur-
faces. Recently, the high rotational anisotropy of the
second-order nonlinear response at cubic m 3m crystals
has been experimentally observed. This allows the use
of SHG for the study of structural symmetry changes of
the silicon surface during its reconstruction. ' For the
first time, strong rotational anisotropy has been found at
a semiconductor surface. ' Later the same dependence
was obtained at noble-metal crystals: Cu(111),
Ag(111), ' and Au(111). The strong SH anisotropy has
been observed also at the aluminum crystal surface. De-
tailed phenomenological analysis of SH anisotropy for
m 3m crystals has been performed, "' but the source of
the strong anisotropy of a metal nonlinear polarizability
has not been investigated seriously. Knowledge about
these sources could help us to understand what kind of
information on the metal surface might be obtained from
the experimental study of SH anisotropy. Tom and Au-
miller made an assumption that "in metals we would ex-
pect electrons to be nearly free, and we would thus expect
the nonlinear polarizability of the surface to be isotro-
pic." Observed strong SH anisotropy has been explained
by these authors as a contribution of interband transi-
tions. In the present work, the nonlinear response of
electrons of noble metals (Cu, Ag, Au) is analyzed without
taking into account interband transitions. Nevertheless,
it is shown here that an essential anisotropy of the non-
linear polarizability of electrons near the Fermi surface
does take place in these metals.

SHG at a metal surface is known to originate from two
types of sources: (i) quadrupole-allowed nonlinear
current in a uniform electron plasma (bulk sources), and
(ii) dipole-allowed nonlinear response of a thin nonuni-
form layer at a metal surface with a thickness of about
the Thomas-Fermi screening length kTF (surface

sources). ' Both bulk and surface sources may lead to SH
anisotropy. "' In the case of the Si(111)/SiOz interface,
the anisotropy in SHG arising from the bulk is the same
order of magnitude as that arising from the interface.
The analogous relation for metals is not established. In
the present work an anisotropy of nonlinear response of
noble-metal electrons is analyzed for bulk sources excited
in uniform plasma.

Below we will use the kinetic equation for distribution
function f(p, r, t) of a metal electron plasma with disper-
sion law E=E( p ) placed in an electromagnetic wave
with frequency co:
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where f' '(p) is the equilibrium distribution function of
electrons, and f("(p,r) and f' '(p, r) are amplitudes of
linear and second-order corrections to f' '(p). They may
be found from the relation
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where n=1,2. The inverse operator may be written in
the form

where p, r, and —e are quasimomentum, coordinate, and
charge of electrons; E and B are amplitudes of electric
and magnetic pump fields. The collision term in the ki-
netic equation (1) was assumed to be equal to zero so that
both scattering and interband transitions of electrons
would be neglected. The solution of (1) will be taken in
the form

f(p, r, t) =f' '(p)+ f"'(p, r)e
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The nonlinear current amplitude at double frequency is
equal to

(2)
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because of a small nonlocality parameter in SHG experi-
ments g=vF/l, cv —10 ', where vF is the electron speed
at Fermi level and l, is spatial scale of pump-field varia-

tion (skin-layer thickness). In the first order in g and E
the correction to distribution function is equal to

f(])( )
/e Bf g + e BE Bf J

cv Bp,
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where (, is the component of E. Here it has been taken
into account that f ' '(p) depends only on kinetic electron
energy: f '(p)=f' '{E(p)), hence (BE/BpXB)af' '/
Bp=O. In the same way, using the relation between B
and E in the form B=(c/icv)rotE, the amplitude of
second order in E and first order in g corrections to dis-
tribution function may be obtained:
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where integration is over the first Brillouin zone. For
centrosymmetric dispersion law E(p) =E( —p), a contri-
bution to j' ' from the first term of (2) is equal to zero.
The second term of (2) describes quadrupole-allowed non-
linear current. Since the equilibrium distribution func-
tion is a Fermi function,

(0) 2 E(p) EFf(0)(p)—
(2M)2 kTexp + 1

the main contribution to the nonlinear current is made by
the electrons with energies E(p) that are close to the Fer-
mi level EF. For low temperatures kT «EF the integral
over E can be taken. As a result the integral over quasi-
momentum space transforms into one over the Fermi sur-
face. For quadrupole-allowed second-order nonlinear po-
larizability defined by the expression j,' '=y;,k/(, (B/
Br )6k, we obtain
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where n=(BE/Bp)~BE/Bp~ '=(BE/Bp)(BE/Bp„) ' is
the unit vector of a normal to the Fermi surface,
p„=(p n) and AzE=g, BE/Bp, . For a. free-electron
gas with dispersion law E(p) =p /m, Eq. {3)leads to

~ 3

j/,
'=—,[E(div,E)+—,'grad, E ],

rn cu
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where X is the equilibrium electron concentration. The
same result has been obtained earlier with the help of the
hydrodynamic model. " It should be mentioned that ex-
pression (4) is not only valid for the T~O limit but for
any temperature. Moreover, the nonlinear current in a
free-electron gas is determined by (4) for any function
f "(p)=f"'(E(p) )

Let us estimate an anisotropy of quadrupole-allowed
second-order nonlinear polarizability obtained for noble
metals within the framework of the present model. The

Fermi surface of these metals is unclosed. It may be ap-
proximately considered as spheres with centers coincid-
ing with those of Brillouin zones and connected with
each other by small necks along eight directions in quasi-
momentum space: [111], [111], . . . , [111]. At the
significant distance from the necks, Fermi electron prop-
erties are expected to be close to properties of free elec-
trons. As we approach the [111]direction, the absolute
value of Fermi velocity UF =BE /Bp„ is decreased since a
distance between isoenergetic surfaces E(p)=EF and
E(p)=EF+oE is increased, where 5E is a small incre-
ment in electron kinetic energy. There is a region in the
vicinity of the [111]direction which gives no contribution
to (3) since the Fermi surface is absent there (region in-
side necks). So for the estimation of y component magni-
tudes we will replace the real Fermi surface in the first
Brillouin zone with the sphere of radius pF assuming that
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an expression under the integral in (3) is equal to zero in a
certain region around [111]and equivalent directions. In
the remaining part of the sphere we substitute for values
of the quasimomentum derivatives of E their typical
values. Let these values be equal to those in free-electron

plasma: BE/Bp„=pF/m', 5 E=3/m', B E/Bp„
= 1/m ', B E/BpJBpk =5.k lm

', where m ' is a constant
with the mass dimension, 6jk =1 for j=k and 5-k =0 for
jAk. In this way, we obtain the following estimate for
Xij kl '

~ 3 3
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where integration is over the full solid angle 4m. , n' is the
unit vector of a normal to the sphere, and 8(r, n') =0 if
the angle between n' and [111],[111],etc. , directions is
smaller than r, and 8(r, n ') = 1 in other cases. When
taking into account the above consideration, the value of
r must be taken equal or slightly more than angle r'
determining typical radius r =(&3m/a)tanr' of the cir-
cle, which is cut by the Fermi surface at the Brillouin-
zone boundary, where a is the lattice parameter. Tensor
X determined by (5) (and, hence, X) meets the require-
ments of face-centered-cubic crystal symmetry (m3m
symmetry): nonzero components of X' in coordinate sys-
tems with axes along fourfold crystallographic systems
have an even number of each of the Cartesian indices,
which are included in Eq. (5) symmetrically due to
8(r, n') function properties:

f8(r, n ')n n 'd fI =5; f8( r, n ')( n ) d 0 .

The amplitude of p-polarized SH light excited by a p-
polarized plane wave (p,p second harmonic geometry) at
the (111) m3m crystal face may be expressed in the fol-
lowing form

6'pp(2') =app+bppcos(3$),

where P is the angle between the plane of incidence and
the (011) crystallographic plane, and a and bpp are iso-
tropic and anisotropic SH components. For noble metals
the dielectric constant at a pump frequency ~e(co)~ &&1,
so in the case of bulk nonlinear current excitation their
relation is approximately equal to

bpp +2 v E(2cil ) Xan'
app Sln~ gxyxy +

3 ga

where 0 is the angle of incidence and

+xxyy +xyxy +xyyx '

In SHG experiments, YAG:Nd laser beam with
wavelength 1.06 pm has been used as a pump radiation
(where YAG denotes yttrium aluminum garnet). The
dielectric constant of noble metals e(2') at the double
frequency is of order 10, so for 0=~/4 the anisotropy of
p,p-SH light will be essential (bpp=a ) if X,„=X„
The values of X,„and X„„determined by expression (5)
are shown in Fig. 1 versus ~. For copper, silver, and gold
the angle r'=10 —11 (Ref. 14), and for realistic values of

an I +xyxy pan ~gxyxy 0 5—1. For more ex-

X,Xan' xyxy ) 5

l.O
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FIG. 1. The values of X,„(solid line) and X y (dashed line)
determined by (5} vs v.. The range of ~ values used for the esti-
mate of X,„and X y y in noble metals is marked by vertical
lines.

act calculation of y components the real topography of
the Fermi surface should be considered. Nevertheless, es-
timations presented here show the strong anisotropy of
second-order quadrupole-allowed polarizability of noble-
metal electrons without taking into account the interband
transitions. Also it should be noted that for these values
of r the total square of the regions where 8(h ') =0 makes
up 6—14% of the full sphere square 4rrpp.

In conclusion, in the present paper a strong anisotropy
of quadrupole-allowed second-order nonlinear polariza-
bility of noble-metal electrons near the Fermi surface has
been found. We did not analyze here the contribution of
interband transitions to SH anisotropy. It should be not-
ed however, that in noble metals their contribution to
electronic response would be expected to be considerably
different. For example, in copper the contribution of in-
terband transitions to linear response at the double fre-
quency (A,2„=532 nm) is significant: ec„(2'�)= —5.6
+i5.4. In silver the electron transition at the same wave-
length from the d zone over the Fermi level is minor:
e~s(2')= —11.8+i0.37. On the other hand, the Fermi-
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surface topography is very close for all metals considered.
Therefore, experimentally observed strong SH anisotropy
for Cu, Ag, and Au may be considered as indirect proof
of the principal role of conduction electrons near the Fer-
mi level in second-order response anisotropy. The Fermi
surface of metals such as aluminium is significantly more
complex than that of noble metals. Therefore we would

expect the SH response of these metals to be strongly an-
isotropic too.
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