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Cohesive properties of crystalline solids by the generalized gradient approximation
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The cohesive properties of Al, C, and Si are calculated using the generalized gradient approxima-
tion (GGA) of Perdew and co-workers. Results of numerical tests of atomic total energies and ion-
ization energies are also presented. Cohesive energies calculated with the GGA agree much better
with experimental values than results calculated with the local-density approximation, which usual-

ly overbinds. The improvement is mainly due to the better error-cancellation property of GGA.

I. INTRODUCTION

Hohenberg and Kohn' showed that the ground-state
properties of a system of interacting electrons are deter-
mined by the charge density. Since the exact density
functional for the total energy is not known, calculations
are usually carried out with the local-density approxima-
tion (LDA), ' which approximates the exchange-
correlation energy of the electrons by

E„,=f drn(r)E„, (n(r)),

where n (r) is the electron density at point r, and e„,(n) is
the exchange-correlation energy per particle of a homo-
geneous electron gas with charge density n. There are
quite a few approximations proposed for c.„,(n),~ which
all give more or less the same results. Computationally,
solving the LDA self-consistent equations is not more
complicated than solving the Hartree equation. When it
is originally formulated, the LDA is intended for systems
of slowly varying charge density, but in practice, many
calculations in the past decade have demonstrated that
the LDA is good for ground-state properties of realistic
systems, giving quite decent results and even predictions
for atomic, molecular, and crystalline systems. It is par-
ticularly good for structural properties, prediction of
ground-state crystal structures, lattice constants, bulk
moduli, phonon frequencies, surface relaxation, and
reconstruction. There are, however, a few well-
documented systematic errors within the local-density
approximation. The one that we are most concerned
with is the systematic overestimate of binding energies in
molecules and crystals. There are attempts to improve
LDA by adding in the lowest-order (second-order)
corrections in the electron density gradient to the LDA
exchange-correlation functional. This approach, com-
monly called the gradient expansion approximation
(GEA), has not been successful in application to realistic
problems. It was then realized' that the LDA, which is
the zeroth-order term in the gradient series, satisfies the
important sum rules that the "exchange hole" is every-
where negative and integrates to (minus) one electron.
However, the GEA violates the sum rule. Langreth and
Mehl" (LM) analyzed the exchange-correlation energy in
Fourier space and proposed a non-local-density function-

al for exchange-correlation in the form of a gradient ex-
pansion, later extended to spin-polarized systems by Hu
and Langreth. ' Perdew' analyzed the exchange hole of
the GEA in real space and imposed a real-space cutoff so
that the exchange-hole sum rules are satisfied. The re-
sulting exchange functional was then cast in simple ana-
lytic form by Perdew and Wang. ' Perdew' also im-
proved the correlation functional of LM by choosing a
different separation of exchange and correlation (so that
they go to GEA results in the slowly varying limit) and
beyond-random-phase-approximation effects are also in-
cluded. Following Perdew and co-workers, we will call
their formulation of exchange and correlation the "gen-
eralized gradient approximation" (GGA). The LM and
GGA functionals have been applied with considerable
success to total energies of atoms' and the dissociation
energies of a number of diatomic molecules. ' The LM
functional has also been applied to study the cohesive
properties of Si (Ref. 18) and Be, ' and the cohesive ener-
gies agree much better with experiments than LDA re-
sults. Very recently, cohesive properties of a few transi-
tion elements were also considered. The main purpose
of the present paper is to apply the GGA, which seems to
have received slightly less attention than LM in realistic
computations, to study the cohesive properties of a few
elements in their crystalline state. We will not duplicate
in this paper the formulas for the exchange-correlation
energy and potential functional in the GGA. Interested
readers may refer to Refs. 14 and 15 for the formulas.
We will show that the GGA gives much better cohesive
energies of the elements considered than LDA. The
remaining part of the paper will be organized as follows.
Numerical tests on atomic systems will be given in Sec.
II. Cohesive properties of a few elements will be de-
scribed in Sec. III. Section IV is the discussion.

II. ATOMIC CALCULATIONS

The calculations for isolated atoms are done with a
Herman-Skillman-type ' code (assuming spherical sym-
metry and nonrelativistic). The LDA results are calculat-
ed, unless otherwise noted, using the Ceperley-Alder lo-
cal exchange-correlation potential as parametrized by
Perdew and Zunger. As a test, we have calculated the
exchange and correlation energy of some atoms and ions
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Atom

H
He
Li
Be
Ne
A
Zn
Kr
Xe

Ref. 14

—0.311
—1.033
—1.789
—2.68

—12.22
—30.29
—69.93
—93.8

—178.6

Present

—0.299
—1.009
—1.763
—2.66

—12.15
—30.23
—69.78
—93.75

—178.5

Exact

—0.3125
—1.026
—1.781
—2.67

—12.11
—30.18
—69.7
—93.9

—179.1

(b)

TABLE I. (a) Exchange energies (in hartrees) of neutral
atoms. Reference 14 uses nonrelativistic Hartree-Fock densities
and the present work uses LDA charge densities. The "exact"
values are quoted from Ref. 14. (b) Correlation energies of
atoms and ions (in hartrees). Reference 15 uses Hartree-Fock
densities and the present work uses LDA charge densities. The
experimental values are quoted from Ref. 15.
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FIG. 1. Differences between theoretical and experimental
[E(theory) —E(expt)] atomic total energies calculated using the
LDA (open circles) and the GGA (solid circles). Experimental
data are from Ref. 35. The lines serve as guides to the eye.

Atom

H
He+
Li2+

He
Li+
B 2+

Be
Ne+
Ne
Ar
Kr
Xe

Ref. 15

—0.003
0.002
0.004

—0.044
—0.045
—0.049
—0.094
—0.136
—0.39
—0.80
—2.01
—3.31

Present

—0.003
0.002
0.004

—0.043
—0.045
—0.048
—0.093
—0.135
—0.38
—0.80
—2.00
—3.31

Experiment

0
0
0

—0.042
—0.044
—0.044
—0.094
—0.18
—0.39
—0.79

0
0

and compare with the corresponding values quoted in
Refs. 14 and 15. Results are shown in Table I. The re-
sults of Perdew and Wang and of Perdew are basically
reproduced. The small discrepancy is due to the fact that
we have used the self-consistent LDA charge density to
evaluate the GGA exchange and correlation functional,
whereas Perdew and Wang and Perdew used Hartree-
Fock densities. The atomic total energies are calculated
for elements up to Ca. We have restricted ourselves to
lighter elements, where relativistic effects should be small
and hence appropriate as test cases for GGA which is a
nonrelativistic formulation. Results are listed in Table II.
The calculated results are compared with "experimental"
values (sum of ionization energies) in Fig. l. We first

TABLE II. Atomic total energies (in Ry) as calculated by the LDA (with Ceperley-Alder correla-
tion) and GGA. The GGA (NSC) values are calculated by putting the LDA charges in the GGA
exchange-correlation functional.

Element

H
He
Li
Be
B
C
N
0
F
Ne
Na
Mg
A1
Si
p
S
C1
Ar
K
Ca

Configuration

1s'
1s
1s'2s'
1s ~2s2

s22s'p'
.s 2sp
1s'2s'p'
s22s'p4

1s 2s p
1s 2s p
[Ne]3s '

[Ne]3s ~

[Ne]3s'p '

[Ne]3s 'p '
[Ne]3s 'p '
[Ne]3s'p
[Ne]3s'P '
[Ne]3s'p'
[Ar]4s '

[Ar]4s'

LDA

0.958
5.669

14.685
28.892
48.704
74.931

108.258
149.042
198.217
256.455
322.881
398.265
482.628
576.429
679.991
793.471
917.327

1051.876
1196.393
1351.466

GGA (NSC)

0.963
5.827

14.988
29.364
49.357
75.773

109.291
150.284
199.667
258.115
324.773
400.399
485.002
579.047
682.855
796.574
920.671

1055.466
1200.244
1355.583

1.004
5.829

14.991
29.368
49.361
75.778

109.297
150.289
199.673
258.122
324.780
400.407
485.011
579.056
682.865
796.584
920.682

1055.477
1200.256
1355.595
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note that the LDA atomic total energies are always too
small and the absolute error increases although the per-
centage error decreases as the atomic number increases.
It is obvious from Fig. 1 that the GGA gives much better
atomic total energies. It is interesting to compare the last
two columns of Table II. The atomic energies calculated
fully self-consistently within the GGA formulation are
listed in the last column, whereas the other column
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Element Expt.
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TABLE III. (a) First ionization energies in eV. Experimental
data are from Ref. 35. (b) Removal energies of outlying shells
of electrons (in eV). The electron shells removed are indicated
below. Experimental values are sum of ionization energies
quoted in Ref. 35, except for Ne, where the data are taken from
Ref. 36.
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FIG. 2. Differences between theoretical and experimental

[E(theory) —E(expt)] first ionization energies calculated using

the LDA (open circles) and the GGA (solid circles). Experi-
mental data are from Ref. 35. The lines serve as guides to the

eye.

H
He
Li
Be
B
C
N
0
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca

Shell
removed

1s
1s
2$

2$

2$, 2p
2$, 2p
2$, 2p
2$, 2p
2$, 2p
2$, 2p
3$
3$

3$7 3p
3$, 3p
3$, 3p
3$7 3p
3$, 3p
3$, 3p
4s
4$

13.60
24.48

5.39
9.32
8.30

11.26
14.53
13.61
17.42
21.56
5.14
7.64
5.98
8.15

10.48
10.36
13.01
15.76
4.34

6.11

Expt.

13.60
78.88

5.39
27.53
71.37

147.98
266.86
432.96
658.65
953.59

5.14
22.68
53.25

103.11
176.72
276.58
408.98
577.83

4.34
17.98

(b)

13.03
24.28
5.47
9.04
8.56

11.72
14.94
13.99
18.11
22.20

5.37
7.74
5.99
8.25

10.50
10.62
13.29
15.95
4.53

6.23

LDA

13.03
77.13

5.47
27.29
71.03

147.70
266.57
432.52
658.23
952.83

5.37
23.09
53.72

103.65
177.36
277.04
408.96
577.43

4.53
18.34

13.67
24.99

5.64
9.24
8.66

11.77
14.94
14.11
18.12
22.14

5.52
7.93
6.06
8.32

10.58
10.52
13.22
15.93
4.66
6.39

13.67
79.31

5.65
27.76
71.81

148.82
268.02
434.48
660.69
955.80

5.52
23.43
54.15

104.14
177.90
277.47
409.28
577.71

4.66
18.19
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FIG. 3. Differences between theoretical and experimental
[E{theory) —E(expt)] removal energies for electrons in valence
shells calculated using the LDA (open circles) and the GGA
(solid circles). Experimental data are from Refs. 35 and 36. The
lines serve as guides to the eye.

[GGA (NSC)] contains atomic energies computed by put-
ting self-consistent LDA charge densities into the GGA
energy functional for exchange and correlation. There
differences are rather small. The calculated first ioniza-
tion energies are listed in Table III(a) and their
differences with experimental values are plotted in Fig. 2.
The ionization energies are computed as the difference
between the total energies of an atom and its positive ion
(one electron less), both in their respective lowest-energy
configurations. We note that the LDA first ionization en-
ergies are already in reasonable agreement with experi-
mental values. Unlike the total energies, the GGA is not
giving better first ionization energies than the LDA. We
note that Perdew, Harbola, and Sahni have reached the
same conclusion. We then calculate the electron removal
energies of the outer valence-electron shells by stripping
the atoms of electrons down to an inert-gas configuration.
These electrons are those that govern the structural and
cohesive properties of the elements in the crystalline
state. Results are given in Table III(b), and are compared
with experimental values in Fig. 3. Again we can see that
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the GGA does not seem to be superior to the LDA, and
in fact, it gives slightly larger discrepancies for most ele-
ments calculated. Since the total energy of an atom is ba-
sically the energy needed to remove all its electrons, the
fact that the GGA gives much better total energies while
the LDA gives slightly better (at least not worse) removal
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FIG. 4. Errors [E(theory) —E(expt)] in calculated electron re-
moval energies for (a) beryllium, (b) carbon, and (c) oxygen
atoms. The removal energy for the nth electron is calculated as
the difference between the energy of an ion with n electrons and
that with one electron less. The lines are guides for the eye
only. Experimental data are from Ref. 35. Note that the GGA
is much more accurate for core electrons.

energies for the electrons in the outermost shells, implies
that the GGA must be vastly superior for the core elec-
trons. It is found to be indeed the case. We calculate the
energy needed to remove an element of its electrons one
by one down to the bare ion. Results are compared with
experimental values in Fig. 4 for Be, C, and O. We note
that for the outermost electrons, the LDA and GGA re-
sults are more or less the same in the energy scale con-
sidered. On the other hand, the LDA seriously underes-
timates the binding energy of the core electrons, whereas
the GGA does a much better job. Hence, we see that the
LDA gives a much larger error (in an absolute scale) for
the more tightly bound innermost core electrons, while
the density-gradient corrections in the GGA compensate
for most of the errors so that the error is of the same
magnitude for core and valence electrons.

III. SOLID CALCULATIONS

We have calculated the structural and cohesive proper-
ties of Al, Si, and C using the GGA. These elements are
chosen as prototypes for a few reasons. Firstly, this
group of elements includes a simple metal, a semiconduc-
tor, and an insulator, each has rather distinct electronic
properties. The valence-charge density varies from the
"free-electron"-like character in Al to the more tightly
bound character in C and the rather different valence-
charge density gradients in these systems should offer a
good test for the applicability of the GGA. Secondly,
these elements have been studied carefully with the LDA
before. Their calculated properties and the methods of
calculation are well known and well established, so we
can focus our attention on the comparison between the
LDA and GGA results. Norm-conserving pseudopoten-
tials are used for all the calculations. Quantities like
charge densities and total energies reported below, unless
otherwise specified, are hence "pseudo"-quantities, i.e.,
quantities calculated using pseudopotentials. We use the
pseudopotential-plane-wave method for Al and the
pseudopotential local-orbital-method ' for Si and C.
The former employs a plane-wave basis set to expand the
electronic wave functions while the latter uses a basis set
comprised of a Bloch sum of atomiclike orbitals. These
basis sets are known to be very efficient for the elements
under investigation. In both the plane-wave and the
local-orbital approach, we express the charge density in
the momentum space. This is advantageous for GGA
calculations because the density gradients can be calcu-
lated rather straightforwardly in momentum space and
transformed to real space using fast-Fourier-transform
techniques. The total energies of the systems (Al in the
fcc structure, Si and C in the diamond structure) are cal-
culated as a function of volume. The results are fitted to
universal binding curves, which give the equilibrium
lattice constants, bulk moduli, and total energies at equi-
librium. The cohesive energies are then found by sub-
tracting o6 the zero-point energies of the solids and the
reference energies of the isolated spin-polarized atoms in
their ground-state configurations. We note that the spin-
polarization energies are always deduced from all-
electron calculations. The zero-point energy of Al is es-



42 COHESIVE PROPERTIES OF CRYSTALLINE SOLIDS BY THE. . . 9361

TABLE IV. Cohesive and structural properties of Al calculated using the LDA (Ceperley-Alder)
and the GGA. The GGA (NSC) is calculated by putting LDA charge densities into the GGA
exchange-correlation function. A zero-point energy of 0.042 eV is included in the calculation of
cohesive energy. Experimental values are taken from Ref. 37.

Cohesive energy (eV)
0

Lattice constant (A)
Bulk modulus (Mbar)

Expt.

3.39
4.05
0.72

LDA

4.01
3.96
0.84

GGA

3.38
3.94
0.87

GGA (NSC)

3.36
3.95
0.88

timated within a Debye model to be 0.042 eV per atom.
For C and Si, the zero-point energies are found to be
0.195 and 0.065 eV, respectively, and are calculated from
theoretical phonon spectra deduced from a tight-binding
force model, which gives very good structural and lat-
tice vibrational properties for Si and C.

For Al, the LDA calculations using the pseudo-
potential-plane-wave method have given excellent results
for structural properties, phonon frequencies, surface re-
laxations, and surface vibrational properties. Cohesive
energy overbinds by over 0.5 eV within the LDA. We
will see how the GGA affects the structural and cohesive
properties. Following previous calculations, we use the
pseudopotential-plane-wave approach. The electronic
wave functions are expanded in a plane-wave basis with
kinetic energy up to 8.5 Ry, and plane waves up to 16 RY
are included via Lowdin perturbation. ' We used 60 k
points in the irreducible wedge of the Brillouin zone to
determine the charge density and a Gaussian weighting
scheme is used to determine the occupancy of the elec-
tron states near the Fermi level. Results for the cohesive
energy, lattice constant, and bulk modulus of Al in the
fcc structure calculated self-consistently with the LDA
(Ceperley-Alder) are shown in the second column in
Table IV. Our tests show that the LDA results are actu-
ally slightly better when computed with the Wigner
form of correlation but since the GGA improves upon
the Ceperley-Alder form, we show the LDA results corn-
puted with the Ceperley-Alder form for a more meaning-
ful comparison with the GGA results. Results calculated
self-consistently with the GGA are shown in the third
column. We see that the changes in lattice constant and
bulk modulus are very small, preserving the good agree-
ment with experimental results. The cohesive energy cal-
culated with GGA is in excellent agreement with experi-
ment, correcting for the overbinding of the LDA
cohesive energy. We found that most of the change in
the cohesive energy originates from the change in the en-
ergy of the isolated atom. The (pseudo)atom energies cal-

culated with the GGA are lower than those calculated
using the LDA by 0.684 eV, while the GGA only lowers
the energy of the solid by 0.053 eV. In fact, the GGA
changes the energy of the solid by such a small amount
that the changes in structural properties are negligible.
This is understandable because the valence electrons in
the Al crystal, more or less free-electron-like, have very
smooth pseudocharge density and hence the gradient
correction in the exchange and correlation energy is very
small. Results calculated by putting the self-consistent
LDA charge densities into the GGA functionals for the
evaluation of exchange and correlation energies are listed
in the last column of Table IV. They are very close to
those obtained self-consistently within the GGA formula-
tion. This means that the GGA correction does not
change the charge density to a large extent. In fact, when
we examine the charge density contour plots, we find that
the self-consistent GGA and LDA charge densities are
almost visually indistinguishable. The variational proper-
ty of the total energy also guarantees that the error in the
charge density only contributes to error in the total ener-

gy in the second order. Hence, self-consistency in the
GGA formulation seems relatively unimportant in this
case.

For C and Si, we use a local-orbital pseudopotential
method. ' The method has been described in detail
previously and has been rather successful with semicon-
ductors, insulators, and transition-metal systems. The
basis consisted of Bloch sums of atomiclike orbitals,
which has the form

P„~,~(k, r)= pe "f~i~(r—R —r„), (2)0 R

where 0 is the volume of the crystal, R is a lattice vector,
v„ is a basis vector, and f (r) are atomiclike functions of

—ar Ithe following form: f(r)= Ae "r'KI~(8, $), where A

is a normalization constant. The coefficients a in the
Gaussian radial functions are chosen to minimize the to-

TABLE V. Cohesive and structural properties of C calculated using the LDA (Ceperley-Alder) and
the GGA. The GGA (NSC) is calculated by putting LDA charge densities into the GGA exchange-
correlation functional. A zero-point energy of 0.195 eV is included in the calculation of cohesive ener-

gy. Experimental values are taken from Ref. 37.

Cohesive energy {eV)
0

Lattice constant (A)
Bulk modulus (Mbar)

Expt.

7.37
3.567
4.42

CA

8.21
3.55
4.49

7.35
3.58
4.13

GGA (NSC)

7.32
3.59
4.11
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TABLE VI. Cohesive and structural properties of Si calculated using the LDA {Ceperley-Alder) and
the GGA. The GGA (NSC) is calculated by putting LDA charge densities into the GGA exchange-
correlation functional. A zero-point energy of 0.065 eV is included in the calculation of cohesive ener-

gy. Experimental values are taken from Ref. 37.

Cohesive energy (eV)
0

Lattice constant (A)
Bulk modulus (Mbar)

Expt.

4.63
5.43
0.99

5.33
5.35
1.19

4.55
5.39
1.10

GGA (NSC)

4.53
5.39
1.09

tal energy of the system under consideration. We use the
set of coefficients a=I1.75, 0.85, 0.41,0.20I (with r in
atomic units) for Si and the set I3. 10, 1.22, 0.48, 0. 19I for
C. We include cubic harmonics up to 1=1 (s,p) for C
and 1=2 (s,p, d) for Si. Although it is difficult to gauge
the absolute convergence of a linear-combination-of-
atomic-orbitals-type basis, tests based on varying the
number and values of the Gaussian coefficients indicate
that we are converged to about 0.1 eV for Si and 0.2 eV
for C. Ten special k points in the irreducible part of the
Brillouin zone are used for computing charge densities
and the sum of eigenvalues. Cohesive energy, lattice con-
stant, and bulk modulus are calculated for C and Si with
both the LDA (with the Ceperley-Alder form of correla-
tion) and the GGA. Results are shown in Tables V and
VI. Again, we see that the LDA (Ref. 34) gives good lat-
tice constants and bulk moduli and overbinds the
cohesive energies. The GGA results change the structur-
al properties only by a small amount but substantially im-
prove the cohesive energies for both Si and C. Just as in
the case of Al, the GGA correction gives lower energy
for both the isolated atom and solid, but lowers the ener-

gy in the atom more than the solid, compensating for the
overbinding. For C, the GGA lowers the energy in the
isolated (pseudo)atom by 1.326 eV and the solid by 0.465
eV, while for Si, the atomic energy is lowered by 1.221 eV
and the solid by 0.446 eV. The valence charge densities
in Si and C have directional bondings, and are not as
smooth as the charge densities in Al. This contributes to
larger gradient corrections in the energy of the crystal
than that found in Al. Results calculated by putting
LDA charge densities into the GGA functional are again
very close to those calculated self-consistently within the
framework of the GGA. This can be seen by comparing
the last two columns in Tables V and VI.

IV. DISCUSSION

The main purpose of this paper is to apply the GGA to
study the cohesive and structural properties of Al, Si, and
C. For all three of them, the GGA corrects for the over-
binding of cohesive energies in the LDA, giving excellent
cohesive energies when compared with experiments. The
changes in the structural properties such as the equilibri-
um lattice constants are relatively small. GGA has been
applied to improve the total energy of atoms and dissoci-
ation energy of molecules, ' and here we show that it is
also good for the cohesive energy for solids.

The question then is why the GGA should work so
well in describing the cohesive energies, at least for the

elements we have tested. It does not seem to be a coin-
cidence, as the three elements we considered have rather
different electronic properties, and yet the GGA gives
very good cohesive energies for all three. We know from
numerous previous calculations that the LDA almost al-
ways overestimates cohesive energies. The exchange-
correlation contributions due to the gradient terms of the
GGA lower the total energy of the system with respect to
the energy given by the LDA. This can be seen directly
from the GGA expressions of exchange and correlation,
noting that the exchange term is usually dominant, and is
also evident from Table II. Total energies computed with
GGA will thus be lower than those given by the LDA for
both the atom and the solid, but we expect the GGA to
lower the energy of the atom more than the energy of the
solid. This is because the charge-density gradient is ex-
pected to be smaller in a bulk-crystalline environment
than in the isolated atomic environment, as the valence
electrons smear out through the solid. As the energy of
the atom is lowered with respect to the solid, the cohesive
energy deduced from the GGA will be smaller than that
from the LDA, thus correcting the overbinding in the
right direction. This is basically what we have observed
for Al, Si, and C. However, we should not have the il-
lusion that the GGA is correct to the order of 0.1 eV on
an absolute scale, either for atomic or crystalline environ-
ments. There is no doubt that the GGA gives better
atomic total energies than the LDA, but the absolute er-
ror (as compared with the exact atomic total energy) is
still nontrivial. If we focus on the description of the
valence electrons, we can see from Table III(b) or Fig. 3
that the GGA is making an error of the order of 1 eV for
the elements under consideration. Thus, the good
cohesive energy obtained is still mainly a consequence of
error cancellation properties, rather than the ability to
describe the absolute value of the total energy. If we take
a second look at Figs. 4(a) —4(c), we can see that the LDA
gives very reasonable binding energies for valence elec-
trons but substantially underestimates the binding of
tightly bound core electrons. On the other hand, the
GGA is about equally good for valence and core elec-
trons. This may serve as evidence that the GGA is mak-
ing more or less the same error for the binding energy of
electrons under a different environment and it is then not
surprising that most of these errors cancel out if we are
interested in relative energies (e.g. , cohesive energy) rath-
er than absolute energies.

All cohesive energies in this paper are computed with
pseudopotentials. Previous experience has suggested that
modern norm-conserving pseudopotentials give
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cohesive properties very close to all-electron results, if
both calculations are equally well converged. It is, how-
ever, rather difficult to give a priori error estimates for
pseudopotentials. As long as the valence electrons are
well separated from the core electrons, we may view
pseudopotential as an implementation of the "frozen-
core" approximation. For Si, the calculation of Harmon,
Weber and Hamann show that frozen core results of the
cohesive energy differs from all-electron results by less
than 0.1 eV. It is thus reasonable to believe that the con-
clusion reached in this paper about cohesive energies will
not change if the results are computed with all-electron
calculations.

If the eigenvalues from solving the Kohn-Sham equa-
tions within the LDA are interpreted as quasiparticle en-
ergies, the energy gaps for semiconductors and insulators
are consistently underestimated by as much as 30—50%.
When we compare the band structures for Si and C ob-
tained using the GGA with those obtained with the
LDA, we find that the GGA gives larger eigenvalue
differences and, hence, larger gaps. For instance, the in-
direct gap of Si is increased by 0.32 eV while the direct
gap is increased by 0.14 eV. The GGA thus improves the
gaps when compared with experimental values. Howev-
er, we do not want to put too much emphasis on this as-
pect since even the "exact" density-functional eigenval-
ues are not supposed to give the correct fundamental
gaps. The proper way to obtain quasiparticle energies is
to compute the self-energy operator.

Lastly, we note that the atomic reference energies used
in the calculation of cohesive energies are calculated from
"spherical" atoms. In LDA calculations, one seldom

worries about nonspherical corrections in the atomic to-
tal energy since the correction is usually much smaller
than the error in the calculated cohesive energy and the
correction is not systematic (the correction can either be
positive or negative). Kutzler and Painter' calculated
atomic energies for B, C, 0, and F and found that the
gradient corrections give systematically lower energies
for the nonspherical atoms. For C, the removal of the
spherical approximation lowers the energy by 0.113 eV.
So, if one worries about cohesive energies down to the
O. 1-eV level, the nonspherical corrections should be taken
into account.

There are still many areas that the applicability of the
GGA need to be tested. Some examples are cohesive
properties of transition-metal elements, magnetic proper-
ties, and phonon frequencies computed using the frozen-
phonon method. For the moment, the results look en-
couraging. It seems that the GGA offers a rather pain-
less way of improving the systematic overbinding prob-
lem of LDA calculations.
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