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Electron-phonon contribution to the thermopower of metals
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A theorem is proved for the thermopower when limited by the electron-phonon interaction. It is

shown for simple metals that the thermopower is given by the Mott formula plus a correction term.
The correction term is evaluated and shown to be small for simple metals. Thus we are able to show

that Mott's formula is valid for phonon scattering by electrons, even when the energy dependence of
the phonons is taken into account. This proof extends our earlier result, which only applied to stat-
ic impurities, and to phonons in the adiabatic approximation.

I. INTRODUCTION

The thermoelectric power of metals continues to be a
phenomenon that intrigues both theorists and experimen-
talists. ' One issue, which has dominated the theoreti-
cal effort, is the role of electron-phonon interactions in
limiting the thermopower. The situation is understood at
high temperatures, and also at high magnetic fields. The
situation is controversial at low temperatures, in the ab-
sence of a magnetic field. The experiments show a com-
plicated dependence which is not understood. The theor-
ists argue about whether the low-temperature results are
affected by the electron-phonon mass enhancement.
Much theoretical work has been brought to bear on this
point 7 1 2 23

The purpose of the present paper is to prove a theorem
regarding the electron-phonon contribution to the elec-
tronic part of the thermopower. Our theorem is that
even for a fu11y interacting electron-phonon system, and
including the inelastic nature of the electron scattering by
the phonons, the thermopower is still given by the Mott
formula plus a small correction term

S =S~+6S,
"tt

k
dln[o (e)]

3 e,
,

dE,

where SM is the Mott formula, while 5S is a correction
term. The energy point v=0 is at the chemical potential.
We provide an explicit evaluation for the correction
term, and show that its leading term is of the fourth
power in the electron-phonon matrix element. Although
such high-order terms can often be neglected in transport
calculations, this need not be so for the thermopower,
which depends on how various quantities change at the
Fermi level. However, we show explicitly that 5S is
negligible at both high and low temperatures, so that the
Mott formula can be utilized in the evaluation of the
thermopower. This theorem should save much work,
since 0 (s) is just the energy-dependent scattering func-
tion needed for the electrical conductivity.

The first exact theorem on the thermopower was by

Chester and Thellung, who showed the Mott formula is
valid for electron scattering by static impurities. The
present theorem is a continuation of our earlier work' on
the Mott formula. Our earlier proof also considered pho-
nons, but treated them in the adiabatic approximation
which neglects the energy of the phonon. The present
generalization to phonons of nonzero frequency greatly
increases the power and usefulness of the Mott formula.

There are three separate regimes in simple metals.

(l) At large magnetic fields, experiments " showed
that there is mass enhancement to the thermopower.
Hansch and Mahan' showed that theory predicted this
result at high fields. This region seems understood.

(2) At high temperatures, in the absence of a field, the
Mott formula is quite accurate. Here the theory also
agrees with experiment. ' Electron-phonon effects are
important at high temperatures.

(3) At low temperatures, in the absence of a field, the
situation is largely not understood.

The present discussion will mainly treat case (3), al-
though we will also discuss case (2) briefly.

There has been much previous work on electron-
phonon contributions to the thermopower in metals.
Much of it has centered around the issue of whether the
electron-phonon mass enhancement affects the results.
The first discussion by Prange and Kadanoff concluded
that it did not. Later experimental work discovered mass
enhancement in the thermopower, " which showed
electron-phonon efects to be important. However, these
experiments were at high magnetic field, and the mea-
surements were for of-diagonal components of the ther-
mopower tensor. Later theory' ' showed that the
mass-enhancement factor A, did enter the thermopower
for this experiment, in agreement with experiments.

However, the issue which has been discussed most
often is whether electron-phonon interaction afects the
longitudinal thermopower in zero magnetic field. This is-
sue has been treated by Lyo, ' Vilenkin, ' ' Taylor, ' '
Ono, ' ' and a long sequence of other theorists. '

Generally speaking, each successive calculation con-
sidered more terms in the diagrammatic expansion, and
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found these terms are important. Thus the result is get-
ting longer with each published paper. There are two im-

portant interactions that scatter electrons at low
temperatures —impurities and phonons. Their contribu-
tions interfere, and the mass-enhancement factors depend
on the strength of the impurity scattering.

Our theorem has little to say regarding this topic. We
prove that all of the complicated contributions are in the
Mott term in the thermopower. However, that does not
make them easier to calculate.

The early theories in this historical sequence were try-
ing to just calculate the Mott contribution. Hansch ' was
the first to realize the Mott term had corrections, and
tried to calculate them. Using his formulas, we have been
able to show the correction terms are small.

Recent calculations ' showed that the Mott expres-
sion gave good values for the thermopower of alkali met-
als at high temperature. These results provide
confirmation of our suggestion that the correction term
5S to the thermopower, which results from the phonon
energy, is small and can be neglected. We find that the
correction term 5S becomes increasingly small at high
temperatures, while S~ is becoming larger, so that the
Mott formula is increasingly accurate at high tempera-
tures.

Many of our derivatives use techniques analogous to
the method of "force-force" correlation functions. It is
well known that this technique is not exact, and gives
only approximate expressions for correlation functions.
However, here we use the method only to show whether
contributions are large or small. In particular, we use it
to estimate corrections to the Mott expressions. Since
our results are qualitative, the use of force-force correla-
tion functions is justified. That is, we use it to show the
terms are negligibly small.

g "(ice)=—

g' (ice)=—

f dre' '(T,j( r) j(0)),

J dr e' '( T„j(2(r) j(0) ) . (11)

The symbols j(0) and j(r) denote (7) evaluated at q=0,
but with ~ either zero or nonzero. The thermopower is
related to these transport coefBcients

1 L'
eT L11 (12}

These formulas are all needed for the derivation of the
thermopower.

III. PROOF OF THEOREM

To prove the validity of the Mott formula, we will
show that if a(e) is implicitly defined from its relation to
L "as given below, then L ' also has the following form:

Pi(q)=MQi(q) .

There is also a term' from inelastic impurity scattering,
which we neglect. In I it was shown that the Mott for-
mula (2) for the thermopower is exact in the approxima-
tion where the energy of the phonons is neglected. In
this approximation, the phonon displacement Q&(q) is
treated as a c number, while the phonon momentum
Pi (q) is neglected.

Now we evaluate the electron-phonon contribution to
the thermopower while including the energy of the pho-
nons. A small correction term is derived to the Mott for-
mula. To this end, we need to evaluate the transport
coefficients L'J=lim 0[Reg'~(co+i5)], where in dimen-
sion d

II. FORMALISM
dnF(e)—

a(e),
e

(13)

In the previous paper' (hereafter called I) we studied
the thermoelectric power S of a system of independent
electrons interacting with static impurities, and adiabatic
phonons, as described by the Hamiltonian

8 = g E~ckck+ g U(q}p(q)+ g &~,io,io,i,
k qA,

where p is the electron density operator, and for future
reference we have introduced the notation

L' = @de—oo

dn~( e)—
o(e)+5L' . (14)

In the energy integrals the factor of dnF /de is symmetric
in e. If o (e} and ea(e) are expanded in powers of e, the
integrals therefore get nonzero contributions from even
terms. The first term in (14) is the Mott contribution L~.
The two energy integrals can to lowest order in kz T/EF
be approximated as

U(q) =—V™(q)p™(q)+gWi(q)Q&(q) .
1

(4) L"= o(0),T
e2

In I the heat current corresponding to Eq. (1) was found
to be

,2
~ kar do(e)

3 dE e=O
(16)

4 Ea P (6)

j(q)= —,
' g (v„+vy )ckcp

k

('7)

X Pq ~~.(q)]P~(q),

j&= gg„v„c„c„.+ g U(q)j(q)+ g B(q)p(q), (5)
k q

The units are such that a(0) is the conductivity. The ra-
tio of these two quantities, as in (12), produces the Mott
expression (2) for the thermopower. The correction term
6S in (1) comes from 6L ' .

In order to show the relationship between L" and L '

implied above, we take a slightly different route than in I.
Define a function F(r, r') which is the current-current
correlation function when ~=a':
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F(r, r') =gvk. (ck' (r)ck(r') j(0)),
}t~

F(r, r )=(T,j(&) j(0)) .

(17)

(18}

o(E)= [F(e —i5,e+i5) —ReF(e+i5, e+i5)] . (21)

Now consider another function S(i., i') related to Fby

Define its Fourier transform in the Matsubara formalism
as S(r, r') =—— —,F(i., v') .

a' —
2

(22)

F(i-, r') = g F(ip, i—p')e'~'e'~'
(fiP)

It follows from Eq. (23) of I that

iT 1
QF(ip, ip+iu) .

(ice fidQ fi
(20)

The "time" derivatives implied by (22) are evaluated us-
ing the equations of motion

c„(r)=[H,ck]=gkck+ g U(q)ck+q,
BT

One can perform the summation over the complex fre-

quency ip and cast the right-hand side in the form of (13)
which derives an expression for

ck(r) = [H, ck(r)) = (kc—k —g U(q)c„
a

q

It then follows from (17) and (22) that

r kkvk'~ T, c(k&) c(k&)j(0))+—,'y(vk+vk+ ) (T,U(q, r)ck+ (1)ck(7)j.(0)) .
k q/&

(25)

Compare this expression to (5). The right-hand side of
the above equation has the form (T,j&(r) j(0)) except
the last term in j& is missing. Thus we can write

(T,j&(r) j(0))=S(r,r ) +g(T, p(q, r)&(q, r) j(0)),
(26)

which relates S(r, i.') to g ' in (11). The last term in the
above equation causes 6L ', which becomes from the
third term in the expression (5) for the heat current. The
first term on the right gives the Mott contribution. It is
interesting that early theories' of the thermopower
neglected the last term in the heat current. Vilenkin and
Taylor' were the first to derive this term in the heat
current, but neglected it as small. They were right.

We show that the first term in (26) gives the Mott ex-
pression by taking the Fourier transform

AP die' 'S(r, r )
0

2 g [(ip)+(ip +i co)]F(ip, ip +ice) . (27)

iripu i/i/Su
coth

2
"

2
(28)

Here a~i&(u}F(u} is related to the McMillan function

The summation over frequency can be evaluated. Equa-
tion (5) is similar to Eq. (20) for E "(ico) except for the en-
ergy factor of , [(ip)+(—ip+ico)] This fac. tor gives the
extra factor of e in the integrand of (14). The result is the
first term on the right-hand side of (14), which gives the
Mott expression for the thermopower.

The small term 6L ' stems from the third term in Eq.
(5) for the heat current. An explicit evaluation of 5L 'i is
provided in the Appendix, where we derive

2AkF ~g5L'i= I u du a/z/(u)F(u)ni/(u)[1+ni/(u)]
3~k~ o

(29)

Here the value of the Riemann g function is j(3)=1.2,
and RH =h ie =25.8 kQ is the quantum resistance. This
can be compared with the free-electron Mott expression,

kaSo=— (30)
2 e

Hence the relative importance of the correction term is
given by

16k (2)g( 3) E~ki/ T kFp

So ir ( fg~D ) RH
=bpT . (31)

We estimate that for simple metals with A,[2]-1 then
b —10 /(II cm K). This value is very sinall. Typically at
low temperature, T—1 K, the resistivity is
p-10 fl cm, so that 5S/So —10 . Thus the correc-
tion term seems entirely negligible at low temperatures.

Since 5S increases its value with O(T ) as T increases,
the correction term appears to be more important at
higher temperature. However, this is not the case. It is
also shown in the Appendix that at high temperature

l

a F.
We observe that while the leading contribution to L'

is inversely proportional to the square of the electron-
phonon interaction (L' —W ), 5L' is proportional to
the square of the electron-phonon interaction
(5L ' —W ). It is smaller than L '

by four powers of the
interaction. Usually such terms can be neglected in
transport calculations. This is also true for 5L' in this
case. An estimate of this term can be obtained at low
temperatures. In the Appendix we show that at small u

one can approximate +[2]F-—k[2]u /coD„, where ~D is2 2 2

the Debye frequency and A, [2] is dimensionless and of or-
der unity. Then at low temperature we get

k~ kq T kFp
5S 8X/2I((3 )

igcoD R0
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then 5L ' tends to a constant, which is quite negligible
compared to the first term in (14) which is O(T ). The
first term in (14) gives the Mott term S~ in (2), while
5S-6L' /TL". The correction term becomes increas-
ingly negligible at high temperature, k~ T &)Acta. Its rel-
ative importance is given by

2
S A(2)A r ~~a

So 12 k~ T
(32)

where A.„ the transport version of the electron-phonon
coupling constant, can be of order unity for simple met-
als. Hence, it is indeed small also at high temperature.
Since it is negligible at both high and low temperatures,
we conclude that it is negligible at all temperatures.

Finally, we would like to make a comment regarding
the contribution to L ' from the two terms in the heat
current which arise from the electron-phonon interac-
tion:

tion. Since the Hamiltonian (3) contains the electron-
phonon interaction, the first two terms in the energy
current (5) also contribute electron-phonon terms to the
energy current. They are the ones which are important
at both high and low temperatures.

IV. DISCUSSION

In conclusion, we have shown that the Mott formula
for the thermoelectric power is approximately valid for a
system of independent electrons interacting with static
impurities and with harmonic phonons. The inelastic na-
ture of the scattering of electrons by phonons makes a
small correction to the Mott formula. We have derived
this correction, and have explicitly shown that it is small
at both low and high temperatures.

Thus the Mott formula can be used as a starting for-
mula for discussing the thermopower, even for the system
of electrons and phonons. This should make easier any
future work on this topic.

jg'=X ~~(q)Q~(q)j(q), (33) ACKNOWLEDGMENTS

jg = X[V,~~(q)]P~(q)p(q) . (34)

From the relation (i3/B~)Q&(q) = iP&(q)—/M, where the
time derivative gives rise to a factor of the phonon fre-

quency co &, it has been argued' that the contribution to
L' from j'"' should be smaller than that from j' ' by a
factor of c, /uF, where c, is the sound velocity and vF is

the Fermi velocity. However, this conjecture is not borne
out by an explicit calculation (see the Appendix). There
we show that treating j' ' in the same way as j' ' gives an
exponentially small contribution at low temperatures.
This term, which in contrast to j' ' is contained in the
Mott formula, does, however, make an important contri-
bution at high temperatures, where it can be of the same
order of magnitude as the free-electron Mott term (30)
(see the Appendix). This is interesting because this con-
tribution to the thermopower is of the fourth order in the
electron-phonon matrix element. Such terms are often
neglected in transport calculations. However, in this case
it is not small.

Of course, these are not the only two terms in the ener-

gy current which contain the electron-phonon interac-

We wish to acknowledge research support from the
U.S. National Science Foundation under Grant No.
DMR-87-04210, from the University of Tennessee, and
from the U.S. Department of Energy through Contract
No. DE-AC05-84OR21400 administered by Martin
Marietta Energy Systems.

APPENDIX

Here we calculate explicitly the contributions to L '

from the two terms in the heat current which arise from
the energy currents j' ' and j' ' given in (33) and (34).
The contribution from j&, which gives rise to the correc-
tion 5L ' in (28), and which is the largest one at low tem-
peratures, will be evaluated first. It can be expressed as

&z T . R '(co+i 6)
1im Im

dQA ~-0 CO

R (ice) =g J dr e' [Vq 8 g(q)]

X(T,Q&(q, r)p(q, ~)j(0)) .

After integrating by parts and using the cyclic properties
of the trace we get

R' '(iso)=g [V& W'&(q)] (Qz[j(0),p(q}])+I dre' ' T,Q&(q, ~)p(q, ~), j(r')
qk l 6)

L

(Al)

The first term on the right contributes a real term to R ' ' which can be neglected since we want its imaginary part. In
the second term on the right, we have

a.
B~ A

'
m

j(i)= [H,j ]=——gq'U—(q')p(q'1 . (A2)

The interaction U(q) is given in (4). To lowest order in the electron-phonon interaction, the only nonzero terms in (Al)
have q'= —q. The second term above gives
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e ,„, a
R ' '(ice) = g f dr e'"'y(q, r) D),(q, r},

2m
& 2M' & im 0

' Br

D(q, r)= —(T,[aqua(r)+a q~(r)][a qz(0)+a, ~(0)]),

y(q, r):——(T,p(q, q)p( —
q, 0)) .

(A3)

(A4)

(A5}

The quantity D(q, r) is the phonon Green s function, while y(q, r) is the density-density correlation function, which is
related to the inverse of the longitudinal dielectric function.

The conventional symbol for the electron-phonon matrix element is Mz(q) = Wz(q)(A'/2M')q), )' . In Fourier space
the above expression becomes

q '()', [~,), lM~(q)l'] 1R1 )(i~)= g . Q (iq)D) (q, iq)g(q, iq +ia1),
2m ~qX l CO

2')qg

(iq) a)—
q)

On performing the Matsubara sum one finds that

(A6)

(A7)

5L 12— T d Imp(q, coq), +i5) dna coque
d n~

da)qx dN&~ 2

coq)„m ve(2kF q)
Imp(q, coque)

=-
2m% qe(q)

(A8)

where e(q) is the static dielectric function of the electron
gas, and v is the volume of a primitive unit cell. It is use-
ful to express the integrals over phonon frequency with
the help of the McMillan function a F,

a (u)F(u)=
(2M) UF

2
2kF M, (q)

X f q dq 5(u a)qq) . —
0 eq

(A9)

Here we need a slightly di6'erent version, which we call
2a(2)F

a1z)(u )F (u ) =
Sm. A' U

2kF q 2dq d
X gf, [co,„lM„(q)I']

o ~ ze(q)2 dq

where ns(co ),) is the Bose-Einstein factor. In the limit of
small frequency the density-density response function be-
comes in d = 3 dimensions

(A12)E

~(2)2kF(kg T) &

gL 12

3mkqA coD
(A13)

This result shows that 6L ' is of the order of the square
of the electron-phonon matrix element. Since I." is pro-
portional to the electric conductivity, which is propor-
tional to L "-lMl, then the ratio 5S=5L' /L"
-O(M ). It is not surprising therefore that 5S is rather
small and can be neglected.

It is interesting to examine 5S in the limit of low tem-
perature. Here all phonons but the acoustic modes of
long wavelength are frozen out. In this regime of small q,
we can accurately approximate a)qz=czq, lM&(q)l-q, and e(q)=1+k'/q . Note that in the present
notation M~(q) is the unscreened electron-phonon matrix
element. By changing to the dimensionless variable
x =u/k&T in Eqs. (A9) and (A10), it is straightforward
to show that 5L ' —T . If the conductivity is taken to be
a constant, from impurity scattering, then 5S- T at low
temperature. A simple estimate of the coefficient is ob-
tained at low temperatures by writing

2

(2) 2) 2 (2) ZcOD

X5(u —co q) . (A 10)

Using this dimensionless function enables us to express
5L" as

00 1 X XI= x dx l ——coth
o 2(coshx —1) 2 2

I = —60(3) .

(A14)

(A15)

A/3u
h

fiPucoth
2

"
2

(A 1 1 }

,2
2fikF

gL 12

3mk~

coD

X u du a)2)(u)F(u)n~(u)[1+ns(u)]

Here the dimensionless constant k[2) is of order unity,
and g(3) —1.2 is a value of Riemann g function. From
the above estimate of 5L ' it follows that 5S is given by
(29) and is negligible at low temperature as discussed in
the main text.

Another interesting limit is a high temperature. Here
we can show that 5L ' goes to a constant, since all of the
thermal factors cancel:
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AkF
lim 5L' = — J u du a[i)(u)F(u) . (A16)

18m k~ 0

iri (ficoD)i
6S k(2)kt

24 EFk~ T (A 1 8)

lim cr =e %no/(2irm l), kii ,T) .
kyar»S D

(A17)

This coupling constant is similar to (A9), but has an addi-
tional factor of q /(2kF) in the integrand. From (12) and

(15) we see that 5S —0 ( T '). The correction term be-
comes smaller at large temperature. Since the Mott term
in (2) is proportional to T, it becomes larger while 5S iq

becoming smaller. Thus the Mott expression becomes in
creasingly accurate at high temperature. A crude esti.
mate is obtained by using the small-frequency limit
a[i[F- —k[2[u /coD for al/ frequencies On. e finds that at
high temperatures

At high temperature, the electrical conductivity is dom-
inated by electron-phonon scattering. It is then given in
terms of the transport-version A, , of the electron-phonon
coupling constant,

and the relative importance 5S/So is given by (32).
The contribution of j&' to L ', which we shall call L(3)

is included in the Mott formula (2). Nevertheless, it is in-
teresting to examine its magnitude at low and high tem-
peratures and compare it to the other contribution from
the electron-phonon interaction to the heat current j&'.
We have

L(3) lim Im12

Qj~ 0

R (co+ i 5)

R[i'(ice)=g Wi(q) J dre' '(T,gi(q, r)j(q, i) j(0)) .

Integrating by parts, and using the cyclic properties of
the trace, we find

R' '(ice)=X ))r (q) (Qe)q)[j(0) j(q)] + I dre'"'(T, Q&(q, )j(q,rr), j(r')
q

1N 0 a~' 7'=0

The first term of this expression is real and does not contribute to the answer. The second term is evaluated to lowest
order in the electron-phonon matrix element by taking terms with q = —q. Using (A14), and the equation of continuity
[)p(q)/Br =q j(q), we find

R["(ice)= . +~M&(q)~ I dre' 'D, (q, r) g(q-, i)a

—g ~M&(q) ~ g(iq +ice)Di (q, iq)y(q, iq, +ice) .
1 1 2 1

ice m z Pip

Compare this expression with (A6) for R' '(ice) They d. iffer in their matrix elements. They also differ in that one has a
factor of (iq) while the other has a factor of (iq +ice) This d.ifFerence changes the thermal occupation factors. The re-
sult can be expressed as

4AkF
Lt3) J u du a F(u)ne(u)[1+nii(u)] 1—

3mk~ 0

fipu „ fipu
(A19)

A,kFk~ T
lim L (3):

kB T»AcuD 3'' (A20)

~2
0

(A21)

This term increases according to O(T ), in contrast to
(A16), which goes to a constant at high temperature.
These two terms are similar at low temperature, but not

At low temperature this expression vanishes, since the in-
tegral equivalent to (A14) is zero. Thus it does not con-
tribute anything at low temperature [more precisely,
there is an exponentially small contribution, as in (A14),
the upper integration limit ficoD/kii T has been approxi-
mated by infinity].

At high temperatures (ki[T» ficoD) expression (A19)
becomes

at high temperature, where using (A17) the contribution
to the thermopower corresponding to (A20) is (A9), but
has an additional factor of

k~
lim S(3)= —m kA, ,

kB T» ficuD e
(A22)

This expression is interesting because it is of the order of
the fourth power of the electron-phonon matrix element.
Thus it is neglected by the usual treatments. However,
this expression is not small, since both A. and A, , can be of
order one for simple metals. Hence it is of the same order
of magnitude as the free-electron contribution (30), which
is of zeroth order in the electron-phonon interaction.
There are other terms in the Mott expression which de-
pend upon the electron-phonon coupling constant besides
this one. They give the standard expression of Ziman.
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