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Model for scanning tunneling optical microscopy: A microscopic self-consistent approach
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A general method based on a microscopic picture of matter is developed in order to describe the
optical interaction between a thin dielectric tip and a corrugated sample lighted in total reAection.
Such a model is expected to interpret recent images obtained from scanning tunneling optical mi-

croscopy (steps, infinite tracks, glass plate with local scratches). The conversion of evanescent
waves into homogeneous propagating ones is studied from a molecular-physics perspective (mul-

tipolar interactions between each atom of the tip and of the object). Our approach is concerned
with the study of subwavelength details lying at the surface of a transparent medium. So, instead of
solving the macroscopic Maxwell equations and applying the corresponding boundary conditions at
the surface of the tip and of the object, we prefer a microscopic treatment in which the dielectric
surrounding is taken into account from a set of dynamical matrices introducing all correlations be-

tween each elementary volume inside the object. Relations with experiments are discussed.

I. INTRODUCTION

In this paper we study the optical interaction between
a dielectric tip and a corrugated surface lighted in total
reflection. Our motivation in this work comes from re-
cent experimental studies based on the use of local optical
probes to image subwavelength structures lying on dielec-
tric surfaces. ' Indeed, a new type of optical micros-
copy has been recently developed. It is based on the
detection of the near field lying in the vicinity of a dielec-
tric surface. In these experiments, the basic idea is to
generate evanescent waves by total reflection at the sur-
face of a transparent object and to detect the evanescent
field by means of a dielectric stylus placed in a controlled
way in the vicinity of the interface object air. This new
scanning microscopy allows one to study individual
nanometer size structures by trapping the near field gen-
erated by the matter. Such experiments carried out both
in a constant-distance mode and a constant-intensity
mode enable one to obtain images of steps and fractures
appearing on mica and glass surfaces with a lateral reso-
lution of 10 nm.

In order to use scanning tunneling optical microscopy
not only for metrologic purposes, but also as a new physi-
cal probe, it is necessary to interpret these recent data.
In the case of scanning near-field optical microscopy
(SNOM) working in reflection mode, a recent theoretical
study ' has shown a dramatic dependence of the shape
images on the polarization of the external field. In short,
it seems that SNOM allows a better resolution of struc-
tures along the direction of polarization of the excitation
field. The aim of this paper is to present a formalism that
enables one to calculate the near field in the vicinity of
various types of rough surfaces (stepped surface, little
spheres adsorbed on transparent medium, etc.). There
are various ways for describing the near Geld in the vicin-

ity of an interface. Maxwell equations can be solved in
specific cases where the boundary conditions can be easi-
ly defined. On the other hand, another possibility con-
sists of applying the diffraction theory or analyzing the
diffracted field in term of angular spectrum. This ap-
proach leads to an interpretation in terms of propagating
and evanescent waves.

A completely different way is based on a microscopic
analysis of the light-rnatter interaction, assuming
discrete distribution of elementary components, each of
them being characterized by a certain set of multipolar
polarizabilities. This last approach will be developed in
this paper. So, instead of solving the macroscopic
Maxwe11 equations and of applying the corresponding
boundary conditions at the surface limiting the tip and
the sample, we prefer a microscopic treatment in which
screening efFects are taken into account from a dynamical
self-consistent equation. Such a description introduces
all correlations between n microsystems through a
(3n X3n) matrices. Note that similar methods, already
used to study enhanced fields on rough surfaces and elas-
tic scattering of light from small aggregates adsorbed on
a flat-metal surface, open a new way for the understand-
ing of the physical mechanisms appearing in optical mi-
croscopy by a local probe. Moreover, the microscopic
approach already applied for modeling SNOM foresees
nanometer resolution and is not very far from the models
developed in atomic force microscopy. ' ' Another ad-
vantage of such a calculation lies in the possibility of
simulating nanometer structures of arbitrary shape
without introducing boundary conditions. In this case
the generalized dielectric constant is built in the course of
the calculation. Nevertheless, one must keep in mind
that such an advaritage is associated with a new cornputa-
tional difficulty connected to the great dimension of the
dynamical matrix.
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The paper will be organized as follows. In Sec. II we
define a set of n self-consistent equations for each mi-
crosystern interacting individually with an evanescent
wave generated above a transparent surface. The correla-
tions between these systems are introduced in Sec. III,
and Sec. IV is devoted to the study of the electric cou-
pling with a spherical probe. Finally, numerical results
of the detected intensity for various polarization of the
excitation field and for various values of distance between
tip and object will be given.

II. INTERACTION BETWEEN
AN ISOLATED MICROSYSTEM
AND AN EVANESCENT %'AVE

with

G(r, r', co)= I J f(l,z)f*(1',z'),dk
(2)

where r=(l, z}=(x,y, z) and ep(co) labels the dielectric
constant of the surface. Moreover, we have

f (l,z) = exp( —ik 1—kz) . (3)

Note that for n =n '= 1, one recovers the well-known ex-

We consider here the problem of a spherical microsys-
tem (atom or molecule) placed above a local dielectric
surface, as shown in Fig. 1. We calculate the effective
field in the microsystem when an evanescent wave is gen-
erated in half the space z &0. We assume the approach
distance d between the molecule and the surface is small
compared with the wavelength A, of the emitted light in
the dielectric (z &0}. In this approximation, the interac-
tion may be described from a set of nonretarded multipo-
lar propagators defined by' '

ep(co) —1
(n)S(n')(r r co)

— Pt(n')Pn'G(r r, )
2ir ep(co)+ 1

pression of the dipolar propagator near a dielectric sur-
face. The response of the microsystem will be described
by its multipolar polarizabilities '"'a'" '(co). ' The spirit
of the discussion will therefore be that the microsystem
M and the dielectric are described by their responses to
external fields (evanescent field and field generated by M).

A. The evanescent field in half the space z )0

Let us consider a plane wave falling on the boundary
between two homogeneous media (air and glass interface}.
From classical boundary conditions, both transmitted
and reflected waves simultaneously exist even in the case
of total reflection.

If we call kp=np2ir/A, and k, =2ir/A, the modulus of
the propagation vectors in the transparent medium and
in the air, respectively, and np =QEp the index of the re-
fracting medium, the (E„,K,K, ) components of the
propagation vector K of the transmitted wave can be
written

K =kp[sin8, 0, i(sin 8—sin 8L )' ], (4)

where 8 is the incident angle and OL, the limit angle of re-
fraction. K is then a complex vector whose real com-
ponent k„verifies the relation

k =kosin8 ~ k
&

since 8 8L .

The evanescent field is then given by

Ep(r, co)=(E, (8,kp), E, (8,kp), E„(8,kp)}

X exp[i(cot —K r)] . (6)

Note that this expression will be taken as the zeroth-
order solution of the self-consistent equation for the field
at the level of the microsystem M.

B. The self-consistent equation for the field
and the successive field gradients at the level

of the microsystem (M)

When the microsystem (M) is placed in the vicinity of
the dielectric surface, it is submitted to a set of effective-
field gradients E' '(R, co). Its induced multipolar mo-
ments m' '(co) are given by the following relation:

m' (co) = g ' a "'(co}[n]E'"'(R,co),
1

(2n —1)!!

where R represents the position vector of M and the sym-
bol [n] means a tensorial contraction between the tensors

'a "' and E'"'(R,co). Moreover, one has between the
effective field E' "(R,co) and the successive field gradients
the relation

FIG. 1. A microscopic system labeled (i) interacts with an
evanescent wave generated by total reAection in the dielectric
medium: ko characterizes the direction of the propagating
wave.

E(nl(R ) [P(n —1)E(ll(r )]

In the framework of the linear response theory the nth-
rank tensor E'"'(R, co) may be expressed from the mul-
tipolar propagator '"'S' '. One has
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E'"'(R,co)='"'S' '(R, R, co)[m]m' '(co)+E' '(R, co),

Eo '(R, co) =[V'„"Eo(r,co)], (10)

(9)

where Eo '(R, co) represents the mth-order gradient of
the evanescent field Eo(R, co) [cf. Eq. (6)]. It is defined by

f (co)

8R

f (co)

8R

f (co)

4R

(14)

The substitution of Eq. (7) into Eq. (9) leads to a self-
consistent equation for the various field gradients experi-
enced by the microsystem (M):

E'"'( R, co )= g 1 '"'S' '(R, R,co)[m]
(2p —1)!

P

X 'a i'(co)[p]E'i'(R, co)+ED"'(R, co) .

Several remarks can be made about this result.
(i) If the charge distribution characterizing the system

(M) is very localized (atoms or little molecules), the dipo-
lar approximation is reasonable. In this case the multipo-
lar polarizabilities ' 'a ~'(co) of order (m and p ) 1) may
be neglected. The self-consistent equation (11) becomes
then

E'"(R,co)=S(R,R, co) a(co) E "(R,co)+ED(R,co),

(12)

where one has put a(co) —= ' "a "(co) and '"S'"(co)—=S(co)
for the dipolar polarizability and the dipolar propagator.
This equation can be easily solved by inverting a coupling
matrix A(R, co)

with

eo(co) —1f (co) =a(co)
~, ~+1 (15)

(ii) If now the spatial extension of the system M is im-

portant (little dielectric spheres, polyatomic molecule,
etc.) the multipolar polarizabilities of higher order must
be taken into account in the calculation of the effective
field and in this case the more general equation (11) must
be solved.

III. SELF-CONSISTENT EQUATION
FOR AN ENSEMBLE OF N MICROSYSTEMS

When a great number of identical microsystems (atom-
ic aggregate) interact with an external field (propagating
or evanescent), the self-consistent field E(R;,co) on each
atomic site can be determined from a (3n X3n) matrice
equation. In the case of systems of weak spatial exten-
sion, the effective fields E(R;,co) and E(Ri, co) acting on
two microsystems (i) and (j) are related by the following
self-consistent equation:

E(R;,co) =E"'(R;, co)

+g T(R, —R ) a(co) E(Ri, co) . (16)

E'"(R,co) = A '(R, co) Eo(R, co) . (13)

Moreover from Eqs. (1) and (2), A (co) may be analytically
calculated. We find

Within the dipolar approximation E"'(R;,co) is given by
the relation (13) and the retarded propagator T in the
vacuum is defined by

T(R, —R, ) = exp i iR, ——R, ~ T3(R, —R, )+ T2(R; —R )
— T,(R; —R )

C
(17)

The second-rank tensors T3, T2, and T, are given by

3rr —r I

r'
3rr —r I

2 4

(18)

E "(co)=(E'"(R,, co), E'"(R2,co), . . . , E'"(R„,co)) (21)

of T(Ri —R ) may be disregarded. Now, in order to
solve Eq. (16), it is convenient to introduce two supervec-
tors defined by

and

rr —r I

r (20)

E(co)=(E(R„co),E(R2, co), . . . , E(R„,co)) .

where I represents the identity tensor. It is important to
note that, when the spatial extension of the aggregate is
small with respect to the wavelength k, the radiative term

The relation (16) becoines then

E(co)= E '''(co)+a(co)8(co). E(co),

where 8(co) represents a (3n X 3n) matrix:

(22)
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0 0 0
0 0 0 T(R, —R~) T(R, —R)
0 0 0

T(Rq —R))
0 0 0
0 0 0
0 0 0

T(R —R )2 3

8(co)=

T(R3—R, ) T(R3—R2)

0 0 0
0 0 0
0 0 0

(23)

where the vanishing terms on the diagonal express the
fact that it is not possible to couple a given microsystem
with itself. The solution of Eq. (22} can be written in a
very compact way:

E(co)=[l—a(co)8(co)] ' E'"(co) . (24)

The matrix [I—a(co)8(co)] describing the electric cou-
pling between every microsystem plays a central role in
our formalism. In the near-field range, we will show that
it contains subwavelength features of the object.

placed in the vicinity of the surface, its extremity is sub-
mitted to E, . Consequently, it acquires a fluctuating di-
pole moment p(co). This dipole can be again described
from a self-consistent relation including the response of
the object:

p(R~, co)=p,(R~, co)+g( co)y~( co) f [S(r,R, co)
V

+S, (r, R,co)]

Xp,(R,co)dr, (26)

where R represents the position vector of the center of
the sphere, S is given, in the nonretarded approximation,
by Eq. (1); S,s represents the dipolar propagator associat-
ed to the atomic aggregate, and po(R, co) defines the
first-order-induced dipole, i.e., in other words, the direct
interaction of E, with the tip. This term may be obtained
by performing a spatial integration on a little sphere of
radius a and of susceptibility y~(co):

)Mo(R, co)=g(co)y (co)f E,(r, co)dr (27)

in which U represents the volume of the sphere and g (co)
defines a screening factor connected to the continuous
treatment used to describe the tip:

3
g(co) =

3+4ny (co)
(28)

IV. OPTICAL INTERACTION
WITH A DIELECTRIC TIP

A. The self-consistent equation
for the dipole moment induced in the probe extremity

In the absence of detector the field generated by the
surface is given by

E,(r, co) =ED(r, co)+ $ T(r —R,. ).a(co).E(R;,co), (25)

where E(R;,co) represents the self-consistent field acting
on the ith microsystem, i.e., it is the ith component of the
supervector E(co} given by Eq. (24}. When the probe is

The conversion of evanescent waves into homogeneous
ones can be performed with a dielectric stylus placed in
the vicinity of the object. In other words, the non-
homogeneous field generated by the surface can be then
locally converted into a propagating mode by optical tun-
neling. This section aims to detail such physical mecha-
nisms. The stylus playing the role of detector will be
represented as a sphere of radius a. This choice avoids
the complexity due to the conical shape of the probe used
in experiments. Nevertheless, it retains the main charac-
ters of the physical process studied here. Note that a
complete description of the probe shape could be taken
into account from a microscopic treatment similar to
those used in Sec. III to characterize the aggregate. Such
improvements are left for a further step. In this section
we restrict our purpose by considering the probe as a
continuum medium characterized by an isotropic dipolar
susceptibility y (co).

Moreover, in a first approximation, when one disre-
gards the possible many-body contributions involving the
high-order interactions between several atoms belonging
to the aggregate, it is possible to write the dipolar propa-
gator S,s(r, r', co) as a simple sum of microscopic contri-
butions

S, (r, r', co)= g T(r —R, ) a(co).T(R, —r') . (29}

Now, in order to solve Eq. (26}, it is convenient to in-

troduce the following (3 X 3}matrix:

C(R,co)=l —g(co)y (co)f [S(r,R, co)

+S, (r, R,co}]dr . (30)

This quantity, which describes the dynamical coupling
between the detector and the object of interest, depends
on the dimension of the stylus extremity through the spa-
tial integration of dr. It will be calculated in Appendix
A. We have then

p(R~, co)=C '(R~, co) po(R~, co) . (31)

This dipole scatters in the upper part of the tip a propa-
gating wave of intensity proportional to

I(R~ ) = 4 ~T, (Rob —
R~ ).C '(R~, co) yo(R~, co)

~

C

(32}

Note that such an approximation may be justified by the
fact that S, appears in the perturbative term of Eq. (26)
only.

B. Signal detected by the tip
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(ii) In order to study the influence of the correlations
between the different microscopic systems belonging to a
same atomic aggregate, we give in Fig. 3 both the image
calculated by taking into account the effects due to the
correlation matrix 8(co) (solid curves) and the one calcu-
lated by neglecting this contribution (dashed curves). In
this case, the object is a small aggregate of (7 X7) atoms
of identical dipolar polarizability a, =1.5 A . This ag-
gregate is adsorbed on a planar surface at a distance
D, =3 A. The profile image along the (Oy) axis is given

for three different values of the interatomic distance d,
between each scattering center. One remarks that for an
interatomic distance d, greater than 4 A and by using the

0
value a, =1.5 A, the dipolar correlations becomes
negligible [cf. Fig. 3(a)]. On the other hand, when d, de-
creases and becomes close to about 2 A, the profile of the
aggregate is very sensitive to the dipolar correlations. In
this case [Fig. 3(c)] the profile of the aggregate evolves
and becomes like the one of a single dipole. To summa-
rize, at the realistic interatomic distance d, =3 A, the
surrounding efFect appears as a little correction in the
near-field calculation. This behavior is due to the rapid
spatial dependence (like R ) of the nonradiative term
mediated by the tensor T3(r, r') and to the small extension
of the aggregate. Note that this property is not true in
far-field range where the dipolar centers are correlated on
longer distances.

(iii) Figure 4 represents the surface map of the intensity
I(R ) detected by a very thin probe (a =0.4 nm) scan-
ning a planar surface exhibiting an infinite track in the
(Ox) direction. The track of width b =6.2 nm and
height c =2.4 nm is formed of a great number of atoms
separated by a distance d, =3 A. Moreover the images
4(a), 4(b), and 4(c) have been calculated for three values of
the nearest approach distance Z=R, —a b. At any-
distance R „the object appears, as in Fig. 2, in contrast
reversal. Moreover Fig. 4(a) shows that at very short
range, the rectangular shape of the track is well restored
with a very thin tip. At a longer approach distance [Figs.
4(b) and 4(c)] the object appears less well defined spatially
but remains detectable. In any case, these results clearly
show that the near field detected at a very small distance
from a corrugated object contains subwavelength details
lying on a dielectric surface.

(iv) In order to complete our numerical study we have
examined how the images of several parallel tracks evolve
when the tip-object distance d increases. Figures 5 and 6
give the image of five tracks of identical height c =9 nm
and of width b =10.8 nm. Each track is separated by a
gap e equal to 8 nm. The object appears well defined for
0.25 ~ d ~ 3 nm (Fig. 5). Beyond this limit value the im-

age of five tracks becomes equivalent to the one of a sin-

gle track of width &eq 56+4e.

C

o
0

L
C

-2

ib]

I

-2
I

0
'f ( nrn)

l

0
7 [ nrn)

I

0
y [nm)

VI. CONCLUSION

We have presented a microscopic self-consistent ap-
proach to describe the optical interaction between a thin

FIG. 3. Numerical study of the influence of the dipolar
correlations on the detected intensity I(0,y). The object is a
small aggregate of (7 X 7) atoms lying on a planar surface. Solid
curves and dashed curves represent both calculations performed

by including the dipolar interactions and by neglecting the dipo-
lar interactions; a =0.25 nm and R~, = 1 nm. (a) The interatom-
ic distance d, =0.4nm. (b) d, =0.3 nm. (c) d, =0.2 nm.
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dielectric tip and a corrugated surface lighted in total
reAection. In the near-field range the interaction is de-
scribed in terms of multipolar localized interactions.
When the probe is placed at some nanometers to the sur-
face, the images calculated from this method exhibit
features of nanometer size and show in this case a possi-
bility to overpass the Rayleigh limit. Moreover, when it

is submitted to an external excitation (evanescent wave),
each polarizable system confines a nonradiative field in a
very small spatial region. The extension of this field de-
pends on the magnitude of the dipolar polarizability.
The first cause of confinement is the rapid decreasing of
the near field generated by each dipolar center. More-
over, along the direction parallel to the external field, a

(a) C3
A

3p e'0 90 'f (nrn)

)3.5

f

60
I

9P

&.5
l

1 3.5 Y (urn)

L
0

C

I

30 ep 90 y (nm)

q.5 1 3.5 Y (nm)

FIG. 4. Tridimensional representation of the intensity I (x,y)
detected by a spherical probe of radius a =0.4 nm. %'e have
chosen an infinite track of height c =2.4 nm and of width
b =6.2 nm. (a) The nearest approach distance d =8,—a —b is
equal to 0.35 nm. (b) d=1 nm. (c) d=2. 35 nm.

FIG. 5. Tridimensional calculated map of a perfectly planar
surface exhibiting five infinite tracks of identical height c =9
nm. The tracks have a width b =10.3 nm and are separated by
a gap of width e =8 nm. (a) The size of the tip extremity is
chosen equal to a = 1 nm and d =0.25 nm. (b} Same object with
a =1 nm and d =1.25 nm. {c)Same object with a =1 nm and
d =1.75 nm.
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take into account the nonlocal effects introduced by the
delocalized electrons moving in the aggregate will be per-
formed by applying the present method and nonlocal
theory developed in Ref. 24.
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FIG. 6. Same caption as Fig. 5 for d =3.75 nm. In this case
the image becomes similar to that of a larger track of width
equal to Sb +4e.

phenomenon of "overconfinement" appears due to the
change of sign of near field when the tip moves above a
microscopic system. Consequently, in this direction a
given dipole appears as a hole of very small width.

Rectangular tracks have been modeled as a set of po-
larizable atoms. In this case, the shape of the image also
appears in contrast reversal and at very short approach
distance the edge of the track is very well restored. Con-
cerning the inhuence of the second nonradiative term of
dependence like R, calculations indicate that the cor-
responding contribution can be neglected at small tip-
sample distances used in experimental studies.

Finally, as it stands, our model could also be used to
investigate local plasmon resonances appearing near me-
tallic aggregate deposed on a planar transparent surface
(mica, for example). Such a calculation which needs to

APPENDIX A: CALCULATION
OF THE MATRIX C ( Rp Q7 )

C(R~, co) = l
—C(R~, co)+ C(R~, co),

R =(R „,R,R, )

with

C(R, co) =g(co)y (co)I S(r,R,co)dr
U

and

(Al)

(A2)

C(R~, co) =g(co)y~(co) I S„(r,R,~)d r . (A3)

In the near-field range, these matrices may be obtained
from the relations (1) and (29). After integration on the
sphere involving straightforward calculations one obtains
analytical expressions for C,

From Eq. (30), the coupling matrix between the sample
and the tip can be separated into two contributions con-
nected to the perfectly planar surface and to the aggre-
gate, respectively:

1
pPC(R, co) = —2m.ah (co)

R
pZ

2

1+
12R,

2

1+
12R,

(A4)

Q

12R,

with

eo( co )
—1

h (~)=g (co)y~(cu)
Eo CO +1

n

C(R~, co)=g(co)g~(co) g J(R;).a(co).T(R; —R ), (A6)
i=1

(A5) where

1. The corrugation part of the matrix C

In the same way: the corrugation part of C can be
analytically calculated:

J(R, )=I dr T(r —R;), R, =(l, ,z, )=(x, ,y;,z;) . (A7)

Note that at short range corresponding to ~R
~

& A, , one
can neglect the radiative contribution in the expression of
the propagator T. If moreover the radius of the sphere is
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small with respect to k, one may write

exp[ —i(co/c)~R~ —R, ~]=1 .

One has then

(AS)

and

R. —z,
cosO=

R
I,

sin0=
R

(A14)

J(R;)=J3(R;)+ J2(R;) (A9)

with and (A15)

J3(R;)=f dr T3(r —R;) (A10)
Rp, =(I;,R~, —z, } .

Let us write the expression J3 and J2 in the reference

Jz(R,. )=f dr Tz(r —R;) . (Al 1) FR

0

2. The tensors J3 and J2
0 J3, 0

0 0 J3„
(A16)

In order to calculate these tensors it is more appropri-
ate to work in a particular frame (X, Y, Z) in which J3
and J2 are diagonal. This frame will be labeled F„and
the matrix R used to return to the absolute frame F, is a
function of two Euler angles (y, 8) referring to the orien-
tation of the vector (Rz —R;) with respect to F, . The
definition of the angles is that of Rose:

Jl
2

J2,„0
0 J2y 0

0 0 J2„
(A17}

In the absolute frame F„ these tensors can be expressed
by the following transformation equations:

cosy cos8 —sing cosy sin8

R(p, 9)= sintpcos8 cosy sinipsin8
—sin 0 0 cos8

(A12)
(A1S)

R R~,
cosy= ', sing=

I,
'

I;
(A13)

In this expression the cosine and the sine of y and I9

may be expressed as a function of the components of R
and R; as

[J2(R; )],i =R,kRJ([Jz(Ri )]„, (A19)

in which the matrix R appears twofold since we trans-
form here second-rank tensors.

Thus, from these final expressions, it is possible to ex-
press in a simple way the corrugation matrix C defined by
the Eq. (A6) as

n

C(R&, co) =a(co)g(co)y~(co) g J3(R; )+ J2(R, )
i=1 C

T3(R; —R~ )+ T2(R, —Rp )
C

(A20)

where T3 and T2 are given in the absolute frame F, from

Eqs. (1S) and (19).

APPENDIX B: THE ZKROTH-ORDER-INDUCED
DIPOLE MOMENT pip( Rp N )

It remains now, to determine the vector po(R~, co) in-

duced in the tip. Following the same procedure as the
one presented in Appendix A, we separate po(R, co) into
two different parts:

and po(R~, co} is due to the nanometer structures lying on
the surface

n

po(R~, co) =g(co)y~(cu)a(co) g fT(r —R; ).E(R;,co)dr .

The integration over the sphere can be performed from
the previous results developed in Appendix A [Eqs. (A7),
(A10), and (Al 1)] to yield

po(Rp, ~)=g(~)yp(~)a(co)

po(Rp co) =po(Rp ci))+po(Rp co) (Bl)
X g J,(R, )+ J2(R; ) .E(R;,co)

c
(B3)

Thus, as in Eq. {A1),po(R, co) represents the continuum
contribution generated by the evanescent wave only:

po(R~, co)=g(co)y (ra) f Eo(r, co)dr
V

and

po(R~, cu) =a (co)F(a)Eo(R,co), (B4)
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a (to)= a y (to)g(to)
4m

(B5)

where a (to) denotes the dipolar polarizability of the tip %hen the radius a of the sphere becomes very small, the
factor F (a) may be expanded on series as

and F(a) defines a shape factor describing the spatial ex-
tension of the spherical extremity of the probe. It is
given by

F(a)= (2+K, a ) — 2K,a+ a
3 2a p 2 2

a

(B7)

F(a)= e
4a I%',

2 —Ka 2a 2

(B6)

Thus when a ~0, F(a)= 1, and in this case one recovers
the result obtained in the framework of the dipolar ap-
proximation:

—k R
Po(R, co) =a (co)E&(R,co) =—a (to)E&(8,ko)e

%'e study now a limit case deduced from this last result. !Bg)
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