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Electric-field gradients in dilute Cu alloys: The role of the Cu d electrons
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The electric-field gradients induced by 3d and 4sp impurities on neighboring Cu atoms are calcu-
lated with use of local-density-functional theory and a recently developed full-potential Green's-
function method. We find that the dominant contribution arises from the Cu d electrons, in particu-
lar from unoccupied antibonding d states on the Cu sites formed by hybridization with the impurity
states. All previous calculations, strongly relying on jellium models, completely fail to describe this
effect.

Since the pioneering work of Bloembergen and Row-
land, ' it has been realized that electric-field gradients
(EFG) can yield important information about the anisot-
ropy of the charge density in solids. Traditionally Cu al-
loys have been considered as a classic case, mostly be-
cause of the apparently simple electronic structure of Cu
and the good solubility for many different impurities.
The work of Kohn and Vosko and Blandin and Friedel
led to a first basic understanding of the EFG as arising
from the Friedel oscillations of the perturbed charge den-
sity around the impurities. Considering Cu as a nearly-
free-electron material, these theories are based on a jelli-
um model. The influence of the more-localized d elec-
trons is described together with the core electrons by a
Sternheimer antishielding factor. Using the jellium ap-
proach introduced by these authors, a large number of
authors " have tried to improve these calculations by,
e.g. , using more accurate preasymptotic expressions for
the charge-density oscillations, improvements of the im-
purity potentials, and a better solution of the self-
consistency problem. Also the effects of lattice relaxa-
tions have been discussed in various sophistication using
point-charge models together with empirical models for
the displacements. In total, however, the problem of cal-
culating the EFG remained in a rather unsatisfactory
stage.

Recently Blaha et a/. ' have shown that the EFG can
be directly calculated from the Coulomb potential using
modern full-potential methods based on density-
functional theory. No adjustable parameters or an-
tishielding factors are needed. Detailed calculations of
the EFG of all hcp metals' from Be to Cd are in very
good agreement with experiments. The EFG's were
found to be dominated by the anisotropic local charge
density due to p states, even for those transition metals
for which the d anisotropy is especially large. Blaha and
Schwarz' and Ambrosh-Draxl et al. ' have recently per-

formed full-potential linear augmented-plane-wave
(FLAPW) calculations for Cu oxide materials, where also
the charge anisotropy of the d states contributes to the
EFG of the Cu atoms.

The aim of our present work is to perform accurate
ab initio calculations for the classical model system of
impurities in Cu. Since all previous theoretical work
is based on jellium models, we discuss the role of the p
and d electrons for the EFG in particular. A central re-
sult of our calculation is that the d electrons dominate
the EFG of the nearest-neighbor Cu atoms and that for
this reason jellium calculations are quite unrealistic. We
give a simple explanation of this effect in terms of unoc-
cupied antibonding d states induced by the neighboring
impurities.

Our calculations rely on density-functional theory in
the local-density approximation. We use the Korringa-
Kohn-Rostoker (KKR) —Green's-function method' for
point defects, which we have generalized by taking the
full cellular potentials into account. ' In a cell-centered
representation, the Green's function G(r+R", r+R";E)
of the system can be written as'

G(r+R", r'+R";E)

=v'E 5„„.g H (rL), E)RL(r(, E)
L

+ g RL(r;E G)tL(E)R L(r';E) .
L,L'

Here the vectors r and r' are restricted to the Wigner-
Seitz cell and r& (r& ) denotes which of the two vectors r
and r' has the largest (smallest) absolute value. As usual,
L=(l, m) denotes collectively the angular-momentum
quantum numbers. RL(r, E) is the solution of the single
potential scattering problem for a spherical wave
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j,(&Er)YI (r) of angular momentum L incident on the
general potential V„(r)of cell n .Here, j,(x) is a spheri-
cal Bessel function and YL (r) a spherical harmonic.
HI" (r,E) is the corresponding irregular solution that,
outside cell n, coincides with hl(&Er)YL(r), where hl
denotes an outgoing Hankel function. %hereas for a
spherical potential both functions decouple into a radial
function times a spherical harmonics, e.g.,
RL (r E ) =$~(r, E ) Yr (r), for a nonspherical potential the
solution can only be found by solving a set of coupled ra-
dial integral equations. ' Details about this procedure
will be published elsewhere. '

The structural Green-function matrix Gl L (E) contains
all the information about the multiple scattering. It is re-
lated to the structural Green function Gll (E) of the host

by a Dyson equation. Compared to the case of central
potentials treated in Ref. 16, the only difference is that
for general potentials the t matrices are nondiagonal in

the angular-momentum indices. In the calculations we

include angular momenta up to 1=3. In addition to the
host potential, the impurity potential and the potentials
of four shells of surrounding Cu atoms are calculated
self-consistently.

The EFG tensor V," is given by the second derivatives
of the Coulomb potential V(r) at the nuclear position.
When V(r), the electrostatic potential of all other nuclei
and all electrons, is expanded into spherical harmonics
around the nuclear position

V( r ) =g VL ( r ) YL ( r ),
L

(2)

V2 (r)
with Vz (0)=lim

2r~0 p'
(3)

Note that the second derivatives of r Y2 (r) are con-
stants. If also the charge density p(r) is expanded into
spherical harmonics according to (2), the potential
coeScients V2 are related to the quadrupolar charge
densities p2 (r) by

~ p~ (r')
V2 (0)=f dr'(r')

T
(4)

Typically this integral is divided into an integral over the
atomic sphere r (R (local contribution) and the rest (lat-
tice contribution). The local contribution can be further
analyzed according to the symmetry of the atomic wave
functions. One can only have (up to 1=3) p-p, d-d, ff-
and s-d, and p fcontributions to p2 (r-). Since the
mixed, and in the case of transition metals also the f f, -

contributions are small, the p electrons (p-p) and d elec-
trons (d-d) make up most of the anisotropy of p2 (r) and
hence the electric field gradient V; . According to the re-
sults of Blaha et al. ,

' core contributions can be neglect-
ed for an element like Cu at the end of the transition-

the electric field gradient V, is directly determined by the
quadrupolar (l =2) component V2 of the potential
V(r):

+2 B2
V, = g V2 (0) [r Y2 (r)]

m= 2 r dr J
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FIG. 1. Calculated quadrupolar frequencies v& for the first
nearest neighbors of 3d and 4sp impurities in Cu. The triangles
refer to experimental data (Refs. 5 and 20—23). The sign of v&

has been chosen to agree with the one of the largest EFG com-
ponents. The solid (dashed) line refers to a calculation includ-

ing (not including) spin polarization.

metal series. Also neglected are lattice relaxations, i.e.,
we fix the neighboring Cu atoms at their ideal lattice po-
sitions. The inclusion of such relaxations, while remain-
ing a problem for the future, should not change the con-
clusion of this work.

Figure 1 shows the calculated quadrupolar frequencies
for the first nearest neighbors of 3d and 4sp impurities in
Cu. The theoretical values, obtained from (4) by using a
nuclear quadrupole moment of Q = —0.15 X 10 2" cm~
for Cu, agree reasonably well with the experiments.
The appreciably smaller experimental values for Ga, Ge,
and V could partly be due to the rather large lattice re-
laxations of these atoms, which are not included in the
calculations. [We have also calculated the quadrupolar
frequency for the nearest neighbor of a vacancy, yielding
v&= —4.1 MHz compared to an experimental value of
(
—)3.4 MHz. ] In agreement with the results for hcp

crystals, ' the calculations show that the lattice contribu-
tions to the EFG are very small: typically smaller than
5% of the total values for transition-metal impurities and
5 —7% for the sp impurities. Point-charge models, which
have been widely used in the literature, are therefore to-
tally unreliable, since they consider the lattice contribu-
tion only.

The dominate contribution of more than 90% comes
from directly around the Cu atom itself and can be split
up into the contributions from the valence 4p and 3d elec-
trons. Figure 2 shows these on-site p-p and d-d contribu-
tions together with the total value of V„,representing the
eigenvalue of the EFG tensor with the principal axis in
the direction towards the first neighbor. Clearly the d
electrons, and not the p, give the most important contri-
butions and determine the trend. This is a very surpris-
ing and unexpected result in view of all the jellium
work " done on this subject. Note also that in the cal-
culations for hcp transition metals' the p contributions
are always more important despite the fact that in some
cases the d shell has a larger anisotropy.

The physical reason for the importance of the d elec-
trons for the EFG in Cu is the strong spatial contraction
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FIG. 2. Eigenvalue V„ofthe electric field gradient tensor of
a nearest-neighbor Cu atom with principal axis towards the im-

purity. Shown are the d-d and p-p contributions arising from
the p and d wave functions together with the total field gradient.

of the d wave functions at the end of the transition-metal
series, which, due to the 1lr weighting in Eq. (4), strong-
ly enhances their effectiveness for the electric Geld gra-
dients. This contraction alone, however, is not sufticient
since, e.g., in Zn and Cd the d wave functions are even
more contracted but do not influence the EFG very much
because they behave already as core electrons. In con-
trast, in Cu the d electrons still behave as valence elec-
trons, in the sense that they hybridize suSciently with
the d or sp wave functions of the neighboring impurities.
Hybridization between the host and impurity levels
effectively changes the Cu d occupancy, which in turn re-
sults in nonzero contributions to p2 (r) and the EFG.
For instance, the 3d states of the impurities form bonding
and antibonding state with d electrons of the Cu d band.
The virtual bound states of the impurities are essentially
the antibonding hybrides' and contain some important d
admixture on the neighboring Cu sites. Whereas for Ti
the virtual bound state is far above the Fermi energy EF
and essentially fully unoccupied, for Ni it is centered
about 1 eV below EF and is practically fully occupied.
Accompanying the lowering of the impurity virtual
bound state is the filling of the antibonding d states on
the neighboring Cu sites, which explains the trend of the
d-d contributions to the EFG seen in Fig. 2 for the 3d im-

purities. For the sp impurities similar arguments hold.
Here it is the hybridization between the impurity sp
states and the Cu d states which creates the unoccupied
antibonding-like d states on the Cu sites determining the
EFG. In both cases the EFG scales with the number
AN& of unoccupied d states on the Cu site, provided these
states are properly normalized. (Since due to the I/r
weighting only the localized atomiclike d states deter-
mine the EFG, delocalized d-like charges arising from
overlap or charge transfer from the impurity should not
be counted, since they are concentrated at the outer
boundary of the cell and do not influence the EFG.)

The unoccupied d states can directly be seen in Fig. 3,
where the anisotropic part of the charge density for a
nearest-neighbor atom of a Cr impurity is plotted. Since
the charge density of an unperturbed Cu atom is very iso-
tropic (only a small 1=4 term), the anisotropy of the
charge density in Fig. 3 is induced by the impurity, locat-
ed towards the left of the figure. Positive contributions

FIG. 3. Anisotropic part of the charge density of a nearest-
neighbor Cu atom to a Cr impurity in Cu. Charge profiles
shown for the (001) plane containing the impurity and the Cu
atoms. The solid lines indicate missing charge (compared to
bulk Cu), the dashed ones additional charge. The arrow points
to the missing charge due to the unoccupied d states, which
gives the most important contribution to the EFG. The impuri-

ty is located towards the left in [110]direction.

are indicated by dashed contour lines, negative ones by
solid lines. The arrow marks the highly directional d-
hole towards the impurity, which essentially determines
the EFG.

From the above discussion it is clear that jellium calcu-
lations " totally fail to describe the EFG of Cu since
the Cu d states are considered as core states with fixed
occupation numbers. Another indication of the failure is
the anisotropy of the EFG tensor. Figure 4 shows the
three eigenvalues of the EFG tensor for the directions
[110], i.e., towards the impurity, and [110] as well as
[001], both perpendicular to this direction. In a jellium
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FIG. 4. The three eigenvalue of the EFG tensor of a neigh-
boring Cu atom. The [110] eigenvalue has its principal axis
pointing towards the impurity.
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model one would have V»p =
Vpp&

= —
—,
'

V]]p since the

trace of the EFG tensor vanishes. The calculations show,
however, that for the 3d impurities the Vpp& eigenvalue is
considerably smaller than the one in [110] direction,
pointing to a considerable anisotropy of the charge-
density disturbance around the [110]axis connecting the
Cu atom with the impurity. In the past the rather large
observed anisotropies have been attributed solely to size
contributions arising from lattice relaxations.

Compared to the nearest neighbors, the EFG of outer-
shell atoms do not have such a dominant d contribution.
This can be understood from the fact that only the d
wave functions of the first-shell atoms have a direct over-
lap with the impurity states. Since the host d states are
energetically well below Ez, such d disturbances cannot
propagate into the bulk, so that their effect for atoms fur-
ther away is small. But also for these atoms the jellium
model fails. For instance, it predicts a vanishing anisot-
ropy of the EFG, whereas the calculated anisotropy for
the third- and fourth-shell atoms is as big as the one of
the first shell. (The EFG for the second shell is isotropic

due to symmetry. )

In summary, we have shown that the EFG of the
neighboring Cu atoms is dominated by the d electrons.
We explain this surprising result by unoccupied anti-
bonding Cu d states, which are formed by hybridization
with the impurity states. The resulting highly directional
"d-hole states" give rise to the major part of the EFG of
the nearest-neighbor atoms. This effect, which cannot be
described in jellium models, leads to large anisotropy fac-
tors, even if—as in the present calculations —lattice re-
laxations are not included.
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