
PHYSICAL REVIEW B VOLUME 42, NUMBER 1 1 JULY 1990

Macroscopic quantum tunneling in long Josephson junctions
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Macroscopic quantum tunneling in a long-overlap Josepbson junction (JJ) is considered. Ex-
pressions for the nucleation rate of the phase of the JJ in the tunneling and thermal-activation re-
girnes are presented.

In the last several years, there has been great interest in
the effect of dissipation on macroscopic quantum tunnel-
ing (MQT). ' Experimental tests of MQT, however,
have been focused on small Josephson junctions (JJ's)
and superconducting quantum interference devices 3

(SQUID's). Giordano and Schuler9 have reported experi-
mental results on quantum nucleation in the current decay
of long one-dimensional (1D) superconductors and
theoretical studies on this effect have been reported by
Shieh et al. '

In a JJ, the macroscopic variable is the phase of the
junction and experiments on MQT are performed by
switching the junction, using a current bias, from its
metastable zero-voltage state to a nonzero-voltage state.
Recently, we have related the expressions for the tunnel-
ing and thermal activation rates in a small JJ to the intrin-
sic I-V characteristic of the JJ to clarify the role of the
dynamical resistance in MQT in JJ's.

In calculations of the tunneling rate of the phase of a JJ
one usually ignores, for a small junction, self-field effects.
For a JJ with a size larger than or on the order of the
Josephson penetration depth XJ, however, self-field
effects" cause the phase to be space dependent. Interest-
ingly enough, this allows us to study nucleation problems
in Josephson junctions which further provides another
possible test of MQT in JJ's. Nucleation problems have,
of course, been studied theoretically in other systems, such
as, to mention a few, the vapor-liquid transition, '2

solids, ' and ferromagnets. ' ' See also Refs. 18-20 for
a treatment of nucleation in the ID sine-Gordon model
with linear damping, which can thus be applied to shunted
junctions. In these papers only the exponent of the
quantum-nucleation rate was calculated. The thin-wall
approximation was used in Refs. 18 and 19. (This ap-
proximation, however, is not very useful for comparison
with experiment because it requires the bias current to be
much less than the critical current, in which case the nu-
cleation rate will be extremely small. ) In Ref. 15 the ex-
ponent of the nucleation rate per unit area due to tunnel-

I

ing at temperature T 0 was calculated for ferromagnetic
films while a detailed calculation of the prefactor was left
incomplete. In Ref. 16 a numerical calculation was per-
formed for the exponent of the rate of quantum nucleation
in a ferromagnetic film and the exponent was estimated
for a bulk ferromagnet. Estimates of the crossover tem-
perature T„between quantum tunneling and thermal ac-
tivation were also given in Refs. 15 and 16.

Recently, Ivlev and Melnikov2' studied nucleation
along a string in the absence of dissipation. The
mathematical model can be applied to the long JJ. Their
focus was on the thin-wall approximation for which the
exponent was calculated at T 0 and for T close to T,.
The exponent and prefactor were calculated for T above
T,. For nucleation at subcritical bias, which in our case is
a subcritical bias current, they calculated the exponent
and prefactor for T much greater than T„ including
quantum corrections.

Generally, the effect of dissipation due to external cir-
cuitry can complicate the analysis of experiments on
MQT in JJ's. Often, JJ's are resistively shunted so as to
avoid this problem and make the resistively shunted junc-
tion RSJ model applicable. (We look forward to studies
on the intrinsic behavior of JJ's whose behavior has been
discussed in detail for small junctions in a previous arti-
cle. ) It happens that the main effect of dissipation is to
"renormalize" the capacitance. In this paper we con-
sider an intrinsic, long-overlap JJ (Refs. 11 and 22) at
subcritical current bias (see below) and present the
thermal-nucleation rates of the phase of the junction at
temperatures T much higher than the crossover tempera-
ture and close to the crossover temperature, as well as the
quantum-nucleation rate at T 0. We use our model for
the intrinsic junction. The prefactor is calculated for all
three cases.

We start with nucleation by thermal activation in the
classical regime, but with quantum corrections included.
The Euclidean action for the phase 4 of an overlap JJ
(Refs. 11 and 22) is given by

r 2
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where the potential V(4) is given by

V(e) = ' cos(e) — e.hJ, hJ
2e 2e

(2)

Here, r is the imaginary time variable, p= 1/kT, where k
is Boltzmann's constant, C is the capacitance per unit
area, J, is the critical current density, and J is the bias
current density. XJ is the Josephson penetration depth
and W and L are the transverse dimensions of the junc-
tion. In the following, we will consider a large JJ with
L »XJ and W«XJ for simplicity. The dissipation kernel
a(r) is related to the I-V curve of the JJ (Refs. 4 and 7)
(see below).

We next restrict our attention to the case when J is very
close to J„,so that the potential V(4) can be approximat-
ed by a quadratic plus a cubic term in 4 and the sine
function in Eq. (1) can be approximated by its argument.
We introduce the small parameter e= 1

—(J/J, ), the re-
I

and
u(y) - —,

' y'(I —y) (3)

rt(t) -—,, a(r-t/Q. ),l

4 CWLhe 2Q3

we can rewrite the action as

duced phase

J 4 —sin ~(J/J, ) g) —tr/2

the eff'ective Josephson penetration depth

~*=-~,/(I -J'/J') '"=~ /(2e) '"
and the frequency

—= (2eJo/h C) ~(I —J /J ) '/ = (2eJ /h C) '/ (2e) ~/

of small oscillations around a local minimum of the poten-
tial V(4). Then, in terms of the reduced variables
t Q, r, y x/A, J, I L/Az and the dimensionless func-
tions

r n 2
I/2 +ph o, /2

8 b, dy „„/
dt — +— +u(y)

~J —//2 Q plloa/2 2 t 2 y

~I/2 t PAO0/2 t Ijhn, /2
+ & b, dy z„ /2dt z„ /2dt'rt(t —t') [p(y, t) —p(y, t')1 (5)

(9)

(i2)

where

bo 9eh M J(h CJ,/2e ) ' (6)
In Eqs. (3) and (5) we have shifted the potential so that
the minimum is at p 0.

To find the thermal nuclea-tion rate of p per unit
length, we follow the path integral method, wherein

2kT,
Dy(x, r)e ~ "' /" (7)

h LZ,
Here, Z, is the partition function about the minimum of
the potential u (p).

For nucleation via thermal activation, a "bubble" p has
to reach a critical nucleus p, (y) before it can grow fur-
ther. This critical nucleus is determined by minimizing
the action' ' of Eq. (5), with p(y, t) taken to be in-
dependent of time, which gives the equation

d'y„(y) du (y„)
dy

2 d4.
As usual, we then consider fluctuations about the critical
nucleus p, (y) given by

P(y, t) p, (y) + g c, ,g, (y)exp(iv„t ),
n —boa 0

v„=2trn/PhQ„n 0, ~1, ~2, . . . . (io)
Then the action equation (5) becomes, up to Gaussian
terms,

8 =8,+ ,' b.ph Q. gk„.c„.—c (ii)
n, a

where 8„=8(p, (y ) ). The eigen values

X„,=v„—2g„+k,
are connected with the equation for the eigenvalues k and
eigenfunctions Q, (y),

d'u(y, (y))
, + ', g.(y) =k.g.(y), (13)

dy dp,

I

with the normalization

dy Q, (y)gp(y) b, ,p. (i4)
The rt„ in Eq. (12) are the Fourier components of rt(t),

rt(t) g rt„exp(iv„t ), rt, 0, (15)1

Qo n-
so that effectively'
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n CWLQ Rq 2h

r

] ) hQov„+ tan
R~ 2h

where Rv and Rz are respectively the quasiparticle and
normal resistances of the JJ and 6 is the energy gap of the
superconductors, being considered identical on both sides
of the JJ.

The action equation (11) is now substituted into the
path integral equation (7) so as to obtain the nucleation
rate per unit length. The integral over the negative eigen-
value Xo o as usual must be continued into the complex
plane, which results in a factor i/2(phQ, b, litoo l )'
while the integration over the eigenvalue A.0 I

=0 produces
a factor (8,/2nh) '/ l/[(ph Q, b, ) '/ ]. The remaining in-

tegrals and Z, are Gaussian integrals and can be per-
formed directly so as to obtain the thermal-nucleation rate
per unit length

' [/2
kT0 1 (i7)

where A 8„/h and

+go ' I/2,
a 0 g n, a
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The prime on the product omits the zero eigenvalue
kp ~ 0. The eigenvalues A,„',are given by

k„',=v„—2g„+k,'+1, (19)
where the k; satisfy the equation

g'(y) k;g: (y) . (2o)

The critical nucleus p, (y) of Eqs. (3) and (8) is p, (y)
sech (y/2), which, along with its action 8,(p(y)),

leads to
c 12

( 5/4 hjc~j8
(21)

h 5 ekT
Note that kT, /h, —0, [see Eq. (24) below] and that the
barrier energy Utt kTA. The factor f~ reflects quantum
corrections in the classical regime and is given by Eq.
(18). The calculation off ~ can be done using the method
of Ref. 23. The first factor (with n 0) in Eq. (18) gives
2~15, while the second factor (over n/0 and a) diverges
as a result of the breakdown of the model Lagrangian at
small wavelengths. ' We therefore need to introduce a
small wavelength cutoff which results in

(24)

for all h/ttRNCWL/3. . This crossover temperature is JS/2
times that for small junctions. '

For T slightly greater than or equal to T, (0~ T
—T, « T, ), the nucleation rate per unit length is given by

2

( ) 3/2 c 0 exP(x ) [ f( )] gf
eT b

(2s)

where

f ~ 2v15exp 6
hna lnN

. (22)
1+h nR/vCWLd

The cutoff N is given by
1

hQ,
2ttkT

where (, is on the order of the BCS coherence length of
the superconductor. Equation (17) with f~ in Eq. (22) is
valid for T, « T« T, (T, is the transition temperature of
the superconductor), so that we can ignore the I/Rv term
in Eq. (16), and for low damping (h/R/v CWL& «1).

To make a comparison with small junctions, the ex-
ponent A in Eq. (21) is [—", (XJ/L)] times that for small

junctions. Furthermore, for small junctions the tempera-
ture dependence of the factor f ~ goes simply like
exp(const/T ).

Next we find the crossover temperature T, between nu-
cleation due to quantum tunneling and thermal activation,
which is determined by the equation k~ 0 0. With Eq.
(16), as long as (h 0,/2z) «6, the crossover temperature
is approximately given by

—t/2
vs I1o I+
2 2n nR/v CWLh

&exp 6
hna in%'

(29)
2ttk T (I + h/trRN CWLLL) '/

where r [-,' (T/T, ) +I]'
We now turn to the problem of nucleation due to quan

turn tunneling in an overlap JJ. In the following discus-
sion we will only consider T 0. At T 0, the main effect
of the dissipation term (i.e., the last term) in Eq. (1) is to
"renormalize" the capacitance, so that we can approxi-
mate the action equation (5) by ' '

I B& 1 B8-b.' dy dt — +— +u(y),
//2 ~ —-2 By 2 By

(3o)
where b, is given by Eq. (6) but with C now replaced by

(31)C C+
mRgWLh

The usual path integral method leads to the nu-
cleation rate per unit length

I
' '

exp( —8,/h)f, ,
QJ 2X

(32)

where
n' -=(2ej lhc') '"(1—J'/J') '"

=(2eJ,/h C') '"(2e) '".
The action 8, is given by Eq. (30) with p p, as the solu-
tion of the equation

d '4c 1 dPc
, +— —(y, —

—, y, )-0, (33)
dp p dp

where p (y +t ) '/. The factor f, in Eq. (32) is given

by
i/2'

rrA:, .
ri'iA. .i

(34)

, n, a

~here A„and A„', are now the eigenvalues of their
respective equations

B2

Bt

B'u(y, )
2+ y„,.(y, t) -A. ,.v/. ,.(y, t)

In Eq. (27) X2,o v2
—2tiz ——,', with rt, given by Eq. (16).

The factor f2 in Eq. (25) is given by

.-rr-' '

fr- (28)
~n, a

, n l;a 0

~here the prime here now omits the eigenvalue A, ~0.
Equation (28) also diverges and therefore needs a cutoff
N'-N, so that for low damping

3 (2r+ 1)(r+1)(2r+3)
(2r —1)(r —1)

c

hJ, ~J
2ekTb

]/2-
2zkT —2rti —— (26)5

ho. and
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and

b
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32

3
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5 A, 2 0
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B B
, +1 tt/„'. (y, t) -A„',y„'.(y, t).

V
(36)

The prime on the product in the denominator of Eq. (34)
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now omits the two zero eigenvalues of Eq. (35).
We have solved Eq. (33) numerically and used the re-

sult in Eq. (30) to give B, in Eq. (32) as

2hC J,
8, 155h e (37)

e

which is (6.Q,J/L) times that for small JJ's. The prod-
uct f, can be calculated by the method of Ref. 23. It also
needs a small wavelength cutoff so that the leading order
goes like

f, ctexp czln c3

where c~, cq, and cq are constants.
To summarize, we have presented the calculation of the

quantum-tunneling and thermal-nucleation rates of the
phase p of a long overlap JJ. It would be interesting,
therefore, to see experimentally the variation of the nu-
cleation rate with the size of the junction. Consequently,
we are currently extending our calculations to the case of

long but finite junctions, in which case nucleation at the
ends of the junction can be dominant. It is very important
to note that our results hold only for a perfectly homo-
geneous JJ. Modest inhomogeneities will lead to strong
nucleation centers. The results for the thermal nucleation
rates in Eqs. (17) and (25) can be used for a fit of the crit-
ical current density J„which is needed in order to check
experimentally the validity of our theoretical prediction
for quantum nucleation at T 0. In the RSJ model, ri„ is
replaced by [—

~
v„~/(2RCWL 0,)], where R is the resis-

tance in the model. T, is given by [AQ, /(2trk)][ —,
' [5

+ (RCWL 0, ) ] '/ —(2RCWL 0, ) ' j. The calcula-
tion of the nucleation rate in this model is complicated
and is left for future study. Finally, the method presented
in this paper can be applied straightforwardly to calculate
the nucleation rate of other systems, such as ferromagnet-
ic films and bulk ferromagnets.
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