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Chaotic acoustoelectric oscillations in InSb in a magnetic field
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We report the first experimental time-series analysis of the noisy acoustoelectric voltage oscilla-
tions in dc-current-driven InSb in a transverse magnetic field. We show that these irregular oscil-
lations, originally thought to be random noise, are actually deterministic in origin. The fractal di-
mensions of typical oscillations are presented. We have observed deterministic chaos from 20 to
230 K. We find that the chaotic regime coincides with the freezeout of the intrinsic carriers, and
that the threshold for chaos as a function of temperature scales with the magnetoresistance.

Recently there has been much interest in chaos in semi-
conductors.! Several systems>™* (Si, Ge, GaAs, respec-
tively) under a variety of external conditions (tempera-
ture, magnetic field, ac and dc bias) have been shown to
exhibit deterministic chaos. Here we report on a novel
mechanism for chaos in the narrow-band-gap semicon-
ductor inductor indium antimonide (InSb).

In the 1960’s a great deal of effort was devoted to the
study of noisy radio-frequency oscillations in InSb. These
oscillations (often associated with microwave emission)
can be observed at liquid-nitrogen temperatures under a
variety of conditions of electric (E) and magnetic (B)
field magnitude and orientation.> There are two regimes
where oscillations can be observed: at high E (E > 200
V/cm) and at low E (E <10 V/cm). The high-field oscil-
lations were attributed to a variety of underlying mecha-
nisms, including plasma and avalanche instabilities. We
have focused upon the low-E-field regime, where the oscil-
lations are due to the acoustoelectric effect.® In the
acoustoelectric effect, amplification of acoustic waves in a
piezoelectric crystal occurs when the drift velocity of the
carriers is greater than the velocity of sound. Thus there
is a threshold for ac response in the applied dc current or
electric field. The noisy oscillations in InSb have been at-
tributed to the amplification of thermally generated
acoustic waves, and thus were thought to be random in
origin.

In this paper we present experimental evidence that the
low-E-field acoustoelectric current oscillations in InSb are
not random noise but deterministic chaos. The threshold
for chaos as a function of magnetic field (B), current (I),
and temperature (7) is reported, and is found to scale
with the freezeout of intrinsic carriers and the magne-
toresistance. Previous work on InSb by Seiler ez al.” used
power spectra to study chaotic oscillations arising from
impact ionization of magnetically frozen-out donor states
at below T=10 K. To the best of our knowledge, howev-
er, ours is the first time series analysis of chaotic oscilla-
tions in InSb, and the first experimental report of deter-
ministic chaos being associated with the acoustoelectric
effect in any material.

Nominally n-type doped (carrier concentration n~3
x10' cm ~3) InSb samples, with typical sample dimen-
sions of 5.0%1.0x0.4 mm? were mounted in a four-probe
resistance configuration. A constant current source was
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used to supply current to the samples. Both tin and indi-
um solders were used for contacts to copper leads. A
magnetic field transverse to the current direction was ap-
plied to the samples, which were cooled in a Janis Vari-
temp Dewar. Time series of the voltage oscillations were
recorded with an 8-bit LeCroy digitizer, sampling at a
rate of 200 MHz. Time series as long as 128000 points
were recorded. We studied the threshold for chaos with
respect to 7, I, and B by holding two parameters constant
and varying the third.

We have observed chaotic and periodic oscillations in a
temperature range from —20 to ~230 K. The frequen-
cies of these oscillations were in the range of ~1to ~10
MHz. The power spectra of typical chaotic and periodic
wave forms are presented in Fig. 1.

Different routes to chaos can be observed under
different conditions of T, I, and B. Most often the transi-
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FIG. 1. Power spectra of (a) chaotic and (b) periodic time
series.
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tion was directly from the steady state to chaos, indicative
of the crisis scenario, but at low-B fields it was often possi-
ble to observe periodic oscillations for values of current
near the threshold of chaos. Occasionally a doubling of
the period of such an oscillation could be induced by a
small change of parameter, indicative of a period doubling
route to chaos.® The amplitude of the ac response rises
rapidly above the background noise, from a few multivolts
to a few tens of multivolts as the applied current is in-
creased a few multiamperes above threshold, eventually
becoming as large as ~100 mV. The maximum ampli-
tude depended on the temperature and the sample. For
some samples it was possible to observe an upper thresh-
old curve of I and B beyond which no oscillations, either
chaotic or periodic, could be observed. Due to the pres-
ence of ambient rf background noise in our system, small
amplitude acoustoelectric oscillations might be buried in
the noise, and so a detailed study of the route to chaos was
not possible. Measurements using a lower-noise ap-
paratus are being performed and will be reported at a
later date.

Along with period doubling and broad band power spec-
tra, an estimate of a finite fractal dimension of the attrac-
tor can help distinguish deterministic chaos from random
noise (although certain examples of colored noise can ex-
hibit finite correlation dimension®). Here we calculate the
dimension using the nearest-neighbor method of Ter-
monia and Alexandrowicz.!© We chose delay times in
keeping with the criteria of,'! i.e., the first minima in the
correlation function, which corresponded typically to
25-50-ns delay times. We did not find that our dimension
calculations were sensitive to the particular choice of de-
lay time. The attractor dimensions of a typical chaotic
time series and a periodic time series are plotted as a func-
tion of embedding dimension in Fig. 2. For comparison
the dimension for a sample of the experimental back-
ground noise (ambient rf pickup) is plotted. This noise is
ever present in the experiment, and thus constitutes a
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FIG. 2. Attractor dimension vs embedding dimension for typ-
ical chaotic and periodic time series, with a sample of the experi-
mental background noise shown for comparison. Calculated di-
mensions of deterministic attractors saturate, while dimension of
background noise does not. The dashed line is a guide to the eye
for the expected ideal behavior of a high dimensional or random
system.
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“noise floor”” which limits the resolution of the measure-
ments. The attractor dimension of a random signal is
equal to its embedding dimension, whereas for a deter-
ministic signal the attractor dimension will saturate. The
calculated dimensions of the periodic oscillation and the
chaotic oscillation begin to saturate to values of approxi-
mately 1 and 2.7-3.3, respectively, while for the back-
ground noise the calculated dimension is greater than 6.
There have been few efforts to solve either analytically or
numerically the nonlinear partial differential equations
which govern the acoustoelectric effect.'> The evidence
that the broad band oscillations are deterministic in na-
ture clearly emphasizes the need for such solutions.

In Fig. 3 the threshold current versus magnetic field for
the transition from steady state directly to broad band
chaos is plotted for a typical sample. No periodic oscilla-
tions were observed for that sample at that temperature.
The threshold was estimated by choosing the values of 7
and B at which the acoustoelectric signal attained an arbi-
trary small amplitude, in this case twice the background
noise level. We find that the product of 7 and B (IT) at
threshold for a given temperature is approximately a con-
stant. We plot I1 as a function of temperature in Fig. 4.
For comparison, the number of carriers and the magne-
toresistance are presented. Above ~175 K the threshold
for chaos coincides with the freeze-out of the intrinsic car-
riers, while below 175 K IT scales with the magnetoresis-
tance. We account for this temperature dependence
below.

The ac response due to acoustoelectric amplification
can occur when the drift velocity exceeds the velocity of
wave propagation. The fact that the product of the mobil-
ity of our samples (u > 10° cm?/V's) and threshold E field
for chaos (~5 V/cm) yield drift velocities greater than
the velocity of sound (2.35x10° cm/s) is consistent with
such a description. Steele!3 developed a linear, small sig-
nal theory which demonstrated that a transverse magnetic
field can lower the minimum drift velocity necessary for
acoustic wave gain. The expression for the gain a as a
function of current density and transverse magnetic field
18
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FIG. 3. Threshold for transition from steady state to chaos as
a function of current and transverse magnetic field.
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FIG. 4. 11, the product of current and transverse magnetic
field at the threshold for chaos, plotted as a function of tempera-
ture (here I is normalized to 1 at its minimum value). For com-
parison the carrier concentration N (normalized to 1 at T=77
K) and the magnetoresistance Ap/po are shown. The inset is a
comparison to a linear gain theory (solid line).

where K is the piezoelectric coupling constant, 7 is the
momentum relaxation time, w, is the cyclotron frequency,
7p is the dielectric relaxation time, j is the current densi-
ty, n is the number of carriers, v; is the velocity of sound,
and o is the frequency of the acoustic wave. By inspec-
tion we see that the gain will increase as the carriers
freeze out, and as the magnetic field is increased. In the
inset of Fig. 4 we compare the temperature dependence of
IT at the threshold for chaos with IT required for a con-
stant gain from the above expression. We find that there
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is reasonable qualitative agreement between theory and
experiment particularly above 175 K, suggesting that the
gain at the threshold for chaos is roughly the same at all
temperatures. The predicted threshold-temperature slope
is markedly lower than the experimental measurement
below 175 K. Thus, while the linear theory for constant
gain can be used to estimate a lower bound for the thresh-
old for chaos, such as analysis is inadequate for a full un-
derstanding of the threshold behavior.

In conclusion, this is the first time-series analysis of the
noisy oscillations of the low-field instability in InSb. Our
calculations of the attractor dimensions for these oscilla-
tions show that they are not random noise but low-
dimensional, deterministic chaos. Our study of the tem-
perature dependence of the threshold for chaos reveals
that this threshold scales with the carrier concentration
and the magnetoresistance. Comparison with a linear
gain theory shows that a constant acoustoelectric gain sets
a lower bound for the threshold for chaos. This suggests
that the gain is an important parameter for determining
the dynamics of this system. The behavior of the thresh-
old for chaos and the fact that the acoustoelectric oscilla-
tions are deterministic rather than random in nature un-
derscores the need for a reexamination of the acoustoelec-
tric effect in terms of a full nonlinear analysis.
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