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Magnetoresistance of a two-dimensional electron gas in a strong periodic potential
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We have investigated the magnetoresistance of a two-dimensional electron gas subjected to a
periodic potential of variable amplitude. The periodic potential, of period 300 nm, is generated
with use of a gate deposited over a layer of patterned resist, and its amplitude is controlled by the

gate voltage. At low gate voltages, two series of oscillations periodic in inverse magnetic field are
observed. One series, at low magnetic field, is due to the periodic potential and the other is the
usual Shubnikov-de Haas oscillations. The application of a small gate voltage generates an in-

crease in the amplitude of the low-field oscillations, followed by a quenching of these oscillations

as the gate voltage is increased further. In addition, a low-field positive magnetoresistance is gen-

erated, becoming larger with increasing gate voltage. These effects are explained within a semi-

classical model of electron transport. Also the Shubnikov-de Haas oscillations quench as the am-

plitude of the potential increases. This is explained in terms of a broadening of the Landau levels.

A series of oscillations periodic in 1/8 (8 is the magnet-
ic field) have been observed in the magnetoresistance of a
two-dimensional electron gas (2D EG) subjected to a
weak one-dimensional ' or two-dimensional periodic po-
tential. Several closely related explanations ' of the
oscillations have been given, but work has so far focused
on the effects of a weak applied potential. In this paper
we discuss the dependence of the low-field oscillations on
the amplitude of the potential. We emphasize the essen-
tially classical nature of the oscillations which occur due
to a resonant enhancement of the diffusivity and hence the
conductivity oyer, in the direction parallel to the lines of
constant potential. This results, for high-mobility sam-
ples, in an increase in the resistivity p„„perpendicular to
the lines. The enhancement occurs whenever 2R, =(n
+ 4 )a, where R, h, kF/e8 is the classical cyclotron ra-
dius at the Fermi momentum AkF, a is the period of the
potential, and n is a positive integer.

Figure 1 shows a schematic diagram of the device. A
"patterned gate" is formed on the surface of a modulation
doped GaAs/(Al, Ga)As heterostructure in which a high-
mobility 2D EG is embedded. Before lithography the mo-
bility was —100 m V ' s '. The patterned gate com-
prises a layer of negative resist patterned by electron-
beam lithography to give a series of lines. A Ti/Au layer
is evaporated over this pattern to form a gate which is
effective only where the metal adheres to the semiconduc-
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FIG. 1. Schematic diagram of the sample-fabrication pro-
cess.
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FIG. 2. Magnetoresistance at 2 K for a structure with
a=300 nm. Vs- —1.0 (top), —0.8, —0.6, —0.5, —0.3 (dis-
placed by 100 A), —0.2 (displaced by 50 0), and 0 V (bottom).

tor surface. Thus by biasing the gate we are able to gen-
erate a one-dimensional periodic potential in the plane of
the 2D EG, the amplitude of which may be varied by
varying the gate bias. The period of the potential is 300
nm, and the gate is deposited over a Hall bar of dimen-
sions 5 pm X10 pm, such that the current flows parallel to
the longer direction and perpendicular to the lines of con-
stant potential. We have measured the four terminal ac
resistance of such a gated Hall bar as a function of mag-
netic field for various applied gate voltages at a tempera-
ture T 2 K. Thisdata is shown in Fig. 2. When the gate
voltage Vs & —0.6 V, two series of oscillations periodic in
1/8 are clearly visible. The low-field series of oscilla-
tions generated by the periodic potential terminates at
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8-0.7 T. At higher fields Shubnikov-de Haas (SdH)
oscillations are observed. As the negative gate bias is in-
creased various effects are observed: (i) As expected the
zero field resistance increases; (ii) a positive magnetoresis-
tance is generated at magnetic fields below the onset of
the low-field oscillations. The magnitude and field range
of this magnetoresistance progressively increases with
negative gate bias; (iii) the amplitude of the low-field os-
cillations initially increases but as the gate bias is made
more negative these oscillations are quenched. The nega-
tive gate bias required to quench a particular maximum or
minimum at a given magnetic field increases with magnet-
ic field; (iv) the SdH oscillations are quenched by the ap-
plication of a large negative gate bias.

The generation of the positive magnetoresistance and
the suppression of the low-field oscillations are closely re-
lated and, as we argue below, can be explained by extend-
ing a theory due to Beenakker. The suppression of the
SdH oscillations is due to a broadening of the Landau lev-
els by the periodic potential.

As stated above the low-field oscillations are due to a
resonant enhancement of the electron mobility parallel to
the equipotentials when 2R, (n+ —,

' )a. This result was
derived within a semiclassical framework. In the limit
where eVo, the amplitude of the potential is small com-
pared with the Fermi energy EF. Typical electron trajec-
tories at the Fermi energy for this weak limit are shown in
Figs. 3(a) and 3(b). In both cases the ratio x =—eVo/EF is
0.01. The straight lines represent the maxima of the
sinusoidal periodic potentials and the curves are the elec-
tron trajectories obtained by numerical integration of the
semiclassical equation of motion. For the purposes of the
simulation we took EF 10 meV above the minimum of
the periodic potential. In Fig. 3(a) we have 2R, 6.25a, a
condition for the resonant enhancement of the electron
mobility. The left-hand orbit is symmetric with respect to
the periodic potential and hence is stationary, despite this
resonant condition. However, all other orbits experience
some drift, as shown for example by the right-hand orbit
in Fig. 3(a). In Fig. 3(b), also in the limit x«1, 2R,

5.75a and all electron orbits are essentially stationary,
regardless of the position of the orbit center. This corre-
sponds to a minimum of the magnetoresistance oscillation.
Insofar as all the orbits are stationary then there is no
enhancement of ayy and p„po,its value at 8 0.

In Figs. 3(c)-3(h) we plot electron trajectories for in-
creasing Vo. In Figs. 3(c) and 3(d), x 0.05. As well as
the increased drift velocity in Fig. 3(c), which follows
directly from the increase in potential since the drift ve-
locity is proportional to the electric field generated by the
periodic potential, there is also a slight visible distortion of
the electron trajectories. In Fig. 3(d) the distortion has
the effect of causing a previously stationary orbit to drift.
This means that the minimum of the magnetoresistance
oscillation no longer corresponds to a zero enhancement of
oyy. The eff'ect is even more pronounced in Figs. 3(e) and
3(f) where x'=0.09. Here the drift induced by the distor-
tion of the orbits in 3(f) is becoming comparable to the
drift in 3(e)-the net eff'ect is a considerable reduction in
the contrast of the oscillations, largely due to an increase
in resistance at the minima of the oscillations. Precisely
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FIG. 3. Numerical simulations of the classical particle trajec-
tories in a magnetic field and a periodic electric potential. The
two left-hand columns are for 2RJa 6.25 and the two right-
hand columns for 2R, /a 5.75. The values of x=eVo/EF are-
(a), (b) 0.0l, (c),(d) 0.05, (e),(f) 0.09, and (g), (h) 0.15. The
straight lines represent equipotential maxima.
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where bDyy/Do is the relative diffusivity enhancement in
the y direction, po is the resistivity in zero magnetic field,
m, is the classical cyclotron frequency, and i is the
scattering time. For the open orbits (vj), the mean-square
drift velocity is -vF so Eq. (1) implies a magnetoresis-
tance

hp„2~No
2COc

po +v- ' (2)

the same eff'ect occurs if, instead of increasing Vo at con-
stant 8, we reduce 8 at constant Vo. Thus the predictions
of the numerical simulations are in good qualitative agree-
ment with the experimental results shown in Fig. 2. Fig-
ures 3(g) and 3(h) illustrate the situation for x=0.15.
Some orbits are still closed in both magnetic fields. How-
ever, there are now some orbits which are open. These or-
bits have a greatly enhanced drift, of order vF rather than
the somewhat smaller drift velocities of the closed orbits.
Therefore, where they occur, the open orbits dominatep„„.It is easy to show for eo, i & 1,
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where No is the number of open electron orbits and NT is

the total number of electron orbits.
To calculate the fraction of electron orbits which are

open we ~rite down the classical electron Hamiltonian in

the gauge A =(0,8x,0), for electrons at the Fermi ener-

gy

p„' (p»+ eBx) ' 2@x+ +eVpcos EF,
2m* 2m a

(3)

where p„and p» are the momentum components and m
is the electron effective mass. EF and p» are constants of
the motion. Each electron orbit can be represented by the
position xo, where its motion is entirely along the y direc-
tion. Equation (3) then has the following solutions for
eVp&&EF'
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FIG. 4. The percentage of open orbits vs V= 2VO/—avFB
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for all x such that 0&x & xo. This can be written as

Xp —X
V

) sin[ir(X+Xo)]sin[@(Xo —X)j,
where

The solutions 4(a) and 4(b) are closed orbits correspond-
ing to motion in either the +y or —y direction at x xo.
Equations 4(c) and 4(d) clearly have x xo as one solu-
tion. However, there may be other solutions correspond-
ing to open orbits where the electron starting from xo does
not receive a sufficient increase of momentum from the
Lorentz force to enable it to cross the first potential bar-
rier it encounters. The condition that an electron starting
from xo in the +y direction has a closed orbit is

ate the peak in the magnetoresistance with a rapid reduc-
tion in the number of open orbits. The values of 8 where
the peak occurs for the data shown in Fig. 2 are listed in
Table I together with the deduced values of Vo. We pre-
dict, therefore, that the position of the peak in magnetic
field should scale as I/a. Therefore, a smaller period
leads, all things being equal, to a peak in magnetoresis-
tance at a higher field. This is in agreement with our ob-
servation. At low 8, V&&1/ir and there is a large propor-
tion of open orbits and we predict hR/Rcx:82 as ob-
served.

There is a discrepancy between our predictions and the
results. The model predicts a very rapid fall in the magne-
toresistance for V& I/ir; this is not seen in the experi-
ments. This discrepancy may be due to the neglect of dis-
order. It is well known that there is considerable disorder
in a 2D EG. The effect of this would be to smear out the
rapid fall in the magnetoresistance while still preserving
the low-8 behavior and the dependence on a.

An alternative model for the positive magnetoresistance
has been postulated by Streda and MacDonalds in terms
of a magnetic breakthrough of the band gap created by
the periodic potential. Although the predicted magne-
toresistance peaks occur at the right order of magnitude of
8, we do not believe this is a satisfactory explanation for
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X=x/a, and X =o/ xoaThe fraction of open orbits is a
function only of V, i.e., for a given device, the ratio Vo/8.
This fraction is plotted versus V in Fig. 4. The rapid onset
of open orbits occurs at a threshold value V I/x. This
has a very simple interpretation —it is the value of Vo/8
for which the maximum electric force is equal to the mag-
netic force, i.e., 2' Vo/a eBvF.

Within the approximation of Eq. (2) we can calculate a
classical magnetoresistance for any Vo, a, vF, and 8. As
an example, Fig. 5 shows magnetoresistance curves calcu-
lated for EF=10 meV, r 3x10 ' s, a 300 nm, and
various values of Vp. There is a strong similarity between
these predictions and the data shown in Fig. 2. We associ-
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FIG. 5. Calculation of AR/R using Eq. (2) using r 3
X10 '~ s, vF 2.3X105 ms ', and a 300 nm. Vo 3 (top),
2.5, 2, 1.5, 1, and 0.7 mV (bottom).
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TABLE I. Nominal gate voltages and magnetic-6eld values

for the peak in positive magnetoresistance, 8 (peak). Vo are
values of the amplitude of the electrostatic potential derived
from B and Vh

L from the quenching of the Landau levels.

0
—0.2
—0.3
—0.5
—0.6
—0.8
-1.0

0.1 1

0.1 1

0.12
0.15
0.18
0.24
0.31

v, (mv)

1.2
1.2
1.3
1.7
2.0
2.6
3.4

VP' (mV)

0.73
0.73
0.75
1.06
1.34

two reasons. First, with the known potential disorder it is
highly unlikely that superlattice minibands would occur
with well-defined energy gaps. Second, Streda and Mac-
Donald predict that the field at which the magnetoresis-
tance peak occurs is proportional to a in contradiction to
measurements made on similarly constructed samples
with differing periods.

We now address the quenching of the SdH oscillations
by the periodic potential. The energy of the Nth Landau
level Erv has been shown 2 to be an oscillatory function of
orbit center position, xL,

EN(xp) = (N+ 2 )pro, +evpJp(2rrR, /a)cosl 2ÃXL

a
(7)

where Jp(y) is a Bessel function and ro, is the cyclotron
frequency. This leads to a broadening of the Landau lev-
els by an energy -eVO when 2R, & a. We anticipate that
the SdH oscillations will be suppressed when this broaden-
ing is equal to the Landau-level separation hro, . We are
able to deduce values for the amplitude of the potential
using this condition which are also tabulated in Table I.
Given the simplicity of the arguments used to derive them,
the values for the potential amplitudes extracted from the
data for the positive magnetoresistance peak and the SdH
oscillations are consistent. We interpret this as evidence
that the simple models we have used to explain our data
are correct.

In conclusion, we have presented data showing how the
magnetoresistance oscillations in a 2D EG subject to a
one-dimensional (1D) periodic potential depend on the
amplitude of that potential. The behavior at very low field

may be described by a semiclassical model. We find no
evidence in the experimental data currently available for
the existence of miniband behavior. The dependence of
the SdH oscillations is determined by the effect of the
periodic potential on the density of states.
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