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Thermopower in scanning-tunneling-microscope experiments
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We present a theory for the thermopower observed in scanning tunneling microscopy. The la-
teral variation of the thermopower is found to depend on the logarithmic derivative of the local
sample density of states at the Fermi level. We also derive a relation between the thermopower
and the nonlinear conductance. The heat transfer due to the tunneling electrons obeys the
Wiedemann-Franz law.

Recently Williams and Wickramasinghe have mea-
sured thermopower on the atomic scale by using different
tip and sample temperatures in a scanning tunneling mi-
croscope (STM). ' We derive an expression for the ther-
mopower starting from Bardeen's formula for the tunnel-
ing current and using the approximations proposed by
Tersoff and Hamann. We find that the magnitude of the
thermopower depends on the logarithmic derivative of the
local sample density of states at the Fermi level and does
not decrease exponentially with sample-tip distance, in

contrast to the conductance. Furthermore, we derive a re-
lation between the thermopower and the nonlinear con-
ductance. With respect to the heat flow due to the tunnel-
ing electrons, we find that the Wiedemann-Franz law is
obeyed in STM experiments. Finally, we give quantitative
estimates of the lateral variation of the thermopower for
different adatoms on a metal surface.

According to Bardeen, and the arguments given by
Tersoff and Hamann, the current is given by

J-a„dcopr( co+e V/2)ps(rr, co eV/2—) f f-co —eV/2 co+e V/2
ktt Ts ktt Tr

Here co refers to the energy relative to the Fermi level.
The transmission probability is approximated by the prod-
uct prps(rr), where pr is the density of states associated
with the tip atom, ps(rr) is the local density of states due
to the sample, and rr is the position of the tip. The mea-
sured voltage is V, Tr and Ts are the tip and sample tem-
peratures, respectively, and f(x) =I/[exp(x)+1] is the
Fermi-Dirac distribution function. The constant prefac-
tor a includes the electron charge and normalization of
the densities of states. Note that the local sample density
of states depends on the distance from the sample. This
dependence includes an appropriate barrier penetration
factor for tunneling across the gap between tip and sam-
ple.

The experiment is performed with an open circuit, giv-
ing zero net current across the tunneling junction. Thus
(1) is an implicit equation for the thermopower V as a
function of the two temperatures Ty and Tq. Since the
thermopower is small (V-10 -10 V), we may
linearize (1), writing J=Jr+ cr V. Here

is the thermally driven current. The conductance is

[a ea dcopr(co)ps(r& ,co)( ——, )'

x f' +f'
ktt Ts ktt T7.

(3)

pr(co) ps(rr ,co) =pr.(0)ps(r7.,0)+ [pr(0)ps(rr, 0)]'co.

Then
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JT a
6

[pT(0)ps(rr, 0)]'(Ts Tt ), (4)

where the prime denotes derivative with respect to the en-
ergy co. Convenient simplifications result if the local den-
sities of states vary slowly on the scale of kttTs r (-25
meV) around the Fermi level. This is certainly the case
for metals, and also for adatoms on a metal surface, as
shown by Lang. This justices a linear expansion in the
vicinity of the Fermi level:

NJr =a dcopr(co)ps(rr, co) f kgb kgTp
where we used Jo dxx/[exp(x)+1] =tt /12. Further-
more,

(2) o =eapr(0)ps(rr, 0) . (s)

9214 @1990The American Physical Society



THERMOPO%'ER IN SCANNING-TUNNELING-MICROSCOPE. . . 9215

Zero net current yields

Jy.V=— x'ko, , [pr(0)ps(rr,.O)1'
TT Ts
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(Tr' —Ts) [Ino(0) )'.
6e

(6)

This is our result for the thermopower. It does not depend
on which expression one uses for the transmission proba-
bility in Eq. (1). The approximation by the joint density
of states can be replaced by whatever more accurate ex-
pression one has at hand. It is also interesting to note that
(6) is identical to the old result for the thermopower in a
normal metal, usually derived from the Boltzmann equa-
tion.

In our discussion of Eq. (6) we rely on the following ap-
proximation of the local density of states due to the sam-
ple

p(rco)p(xyco)em(4 —e)1' /a

Here rr =(x,y, z) with z perpendicular to the surface,
ps(x, y;co) is the local density of states in a plane
r = (x,y, O) close to the sample surface, and 4 is the work
function that gives the barrier height for tunneling
through vacuum. This approximation has the advantage
of separating the dependence on the sample-tip distance
from the density of states dependence. The choice of z
dependence in (7) is the natural one when one thinks of
STM in terms of a one-dimensional tunneling process.
However, one should keep in mind that the simple ex-
ponential decay may not be suitable for strongly localized
d states in transition metals. Within approximation (7)
the thermopower consists of three terms,

z'ke (, , pr(0) ps(x, y;0)
6e pr(0) ps(x, y;0) x f co —e V/2

koTs

T
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This relation may be checked experimentally by measur-
ing the lateral variation of the J-V curve (for small volt-
ages) and the thermopower on the same sample. An ex-
perimental verification of Eq. (10) would lend support to
the approximations inherent in our derivation: (i) The
neglect of other proposed contributions to the lateral
dependence of the thermopower. ' (ii) The expansion in

the vicinity of the Fermi level. (iii) The approximation of
the tunneling probability by the joint density of states.
(iv) The decoupling of the dependence on the sample-tip
distance and the density-of-states dependence.

Up to now we have assumed that the tip temperature is
independent of position in the (x,y) plane. This assump-
tion will only be satisfied if the heat transfer due to the
tunneling electrons is negligible compared to other heat
transfer mechanisms, for example the dipole coupling pro-
posed by Dransfeld and Xu. s An estimate of the heat flow

due to the tunneling electrons, based on the Wiedemann-
Franz law, shows that this contribution is indeed negligi-
ble. Next we verify that the Wiedemann-Franz law is
obeyed with respect to the tunneling process in STM ex-
periments. The heat flow associated with the tunneling
electrons is given by

a
Q — Cco(co+eV/2)pr(co+eV/2)ps(rr ,co —eV/. 2)e4

co —e V/2 f co+ e V/2
ka Ts ka Tr

Comparing with Eq. (1) for the electric current, we have

replaced the electron charge e with the energy co+eV/2
relative to the Fermi level in the tip. We can write (11)as

Q & VJ+ — dcocopr(co+eV/2)ps(rr, co —eV/2)e4

The main concern of the experiments is the lateral depen-
dence of V. The decomposition (8) shows that the (x,y)
dependence is not afl'ected by the choice of tip material
and tip-sample distance. As expected, the lateral varia-
tion only reflects properties of the sample. Important also
is the fact that the thermopower depends on the logarith-
mic derivative which can be appreciable even in (x,y) po-
sitions with a small density of states.

%e now derive a relation between the lateral variation
of the thermopower and the nonlinear conductance. We
keep the sample and tip temperatures equal and expand
Eq. (1) to second order in V, writing J crV+ZVz
Within approximation (7) we obtain

P

e p7-(0) ps(x y'0)
o 2 pr (0) ps (x,y;0)

The (x,y) dependence of V and X/o are both given in

terms of ps/ps. Thus,

V(x,y) =
2 (Ts —Tr ) ' +const. (10)

3e ' cr(x,y)

(i2)
Since J 0 in the experiment, there is no joule heating due
to the tunneling process, and the only contribution comes
from the second term. Again we expand in the vicinity of
the Fermi level. Since there is already a factor co in the
integrand, only pr(0) ps(r&, 0)co survives, and one finds

x ko2 2

Q a pr(0)ps(rr, O)(Ts —Tr)2 2

6e
xk2

a(Ts —Tr') . (i3)
6e

Now, introduce the average temperature T = (Ts
+Tr )/2, the temperature difference hT = Ts —Tr, and
the thermal conductance x Q/AT. Since the ratio be-
tween two conductances and two conductivities is the
same, (13) is equivalent to the Wiedemann-Franz law,

r/o LT, where L x ko/3e is the Lorenz number.
From (10) we want to give an order of magnitude esti-

mate of the lateral variation of the thermopower. This re-

quires knowledge of the temperature diN'erence across the

gap, b,T Tg —T~. The experimentally known tempera-
tures are not Ty at the end of the tip and Tq at the sample
surface, but rather T~ and Tq of the reservoirs to which
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the tip and sample are connected. For an accurate calcu-
lation of Tr and Tg one needs to know the tip and sample
geometries in detail as well as their thermal conductivi-
ties. In addition one has to determine the dominant pro-
cess of heat transfer across the STM gap.

We have made a rough estimate of hT, assuming a con-
ical tip of diameter 100 A and a sample-tip separation of 5
A. The reservoirs are typically kept at T~ 300 K and
T2 350 K. ' Replacing the gap with tip material, we find
hT- I K. This is clearly an underestimate, since a metal
has a much higher thermal conductivity than water or air,
which typically make up the gap in the experiments. The
dipole coupling proposed by Dransfeld and Xu may give a
considerable heat transfer, but presumably this will be
smaller than our estimate with a metal connecting the tip
and the sample. Thus, for a lower bound on the thermo-
power we will use T 325 K and hT 1 K. We should
add that the thermocoupling in STM is not well enough
understood to give a reliable estimate of iJ T. However, al-
though there is no direct measurement of the temperature
difference, our order-of-magnitude estimate of 1 K is sup-
ported by Williams and Wickramasinghe. 9

Unfortunately, we have not found experimental values
of the nonlinear conductance Z in print. For a crude idea
we will use the results derived by Lang. He evaluated
the tip corrugation s as a function of bias V for Na, Mo,
and S adatoms on a model sample surface of jellium. '

Using a work function 4 4 eV, we find that h(Z/cr)
-2. 06( ds/dV) v- oV ', with ds/dV given in units of
A/V and 5 denoting the variation between different ada-

toms. Lang's results yield A(Z/ts) -0.6 V ' for Mo and S
adsorbates on jellium. Using the above values of T and
h, T, we And a spatial variation in the thermopower of
about 10 pV. This is likely to be somewhat smaller than
the observed variation. First, as argued above, we have
probably underestimated the temperature difference
across the gap. Second, since MoS2 is a semiconductor
with an energy gap, the values of ps/ps, and thus Z/cs,

may be substantially larger than the estimates based on
adatoms on jellium. However, whereas Lang's model may
be inadequate for making quantitative predictions in the
case of semiconductors, it should provide a good descrip-
tion for metals and adsorbed atoms on metal surfaces.

In conclusion, from Bardeen's formula for the tunneling
current we have derived an expression for the thermo-
power observed in STM measurements. An experiinental
test of our theory would be to measure the lateral varia-
tion of the nonlinear conductance and the thermopower on
the same sample. The lateral variation in the thermo-
power can be attributed to local changes in the logarith-
mic derivative of the sample density of states at the Fermi
level, and the amplitude of the variation is not sensitive to
the sample-tip distance.
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