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Theory for light emission from a scanning tunneling microscope
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We have calculated the rate of light emission from a scanning tunneling microscope with an Ir
tip probing a silver film. We find a considerable enhancement of the rate of spontaneous light
emission compared with, for example, inverse-photoemission experiments. This enhancement is

the result of an amplification of the electromagnetic field in the area below the microscope tip due

to a localized interface plasmon. One can estimate that one out of 10 tunneling electrons will

emit a photon. We also find that the experimentally observed maximum in the light emission as a
function of bias voltage is directly related to the detailed behavior of tip-sample separation versus

bias voltage.

The scanning tunneling microscope (STM) is a useful
tool for the analysis of different surface structures. In the
usual mode of operation the STM is used to investigate
the topography of the surface in question with remarkable
resolution. '

In this paper we give a theoretical treatment of a new

way of using the STM where the light emitted from the
microscope is detected. Gimzewski etal. with an Ir-tip
STM probing a silver film deposited on a Si substrate
detected a strongly enhanced emission of light at photon
energies around 2.5 eV.

The study of light emission from STM's is quite a new

research field but light emission from other types of tunnel
junctions has been investigated for a long time. In
these experiments the tunnel junctions have had rough
surfaces.

The common theme in the explanations of these experi-
ments is that the tunneling electrons excite a surface
plasmon which decays by sending out light. Due to the
conservation of parallel momentum, surface plasmons on
perfectly smooth surfaces cannot radiate. If, however, the
translational invariance along the surface is broken by
roughness or irregularities it becomes possible for the sur-
face plasmon to send out light.

The silver film used in the experiment by Gimzewski
etal. was granular with a grain size of about 200 k
Persson and Baratoff have recently studied theoretically
the eH'ect of this granularity on the light emission.

In this work we investigate what role the microscope tip
itself plays in breaking the translational invariance along
the surface and so enhancing the rate of light emission
from the tunneling electrons.

Our calculation shows that the presence of the tip
creates a localized interface plasmon mode in the region
close to the tip. The rate of light emission is considerably
enhanced for photon energies around 2.5 eV due to this
resonance. %e find that in a typical experimental situa-
tion the photon creation efficiency is of the order of 10
photons per electron. This efficiency is, considering the
simplicity of our model, in reasonable agreement with ex-

perimental estimates. '

The calculation of the intensity of the emitted light
from the tunneling electrons splits into two separate prob-
lems. One is the determination of the electromagnetic
field in the vicinity of the tip giving us a measure of the
strength of the coupling between tunneling electrons and
the electromagnetic field. The other is the calculation of
the fiuctuations in the tunnel current that act as a source
for the radiation. The largest amount of energy an elec-
tron can lose when tunneling is eU, where U is the bias
voltage of the STM.

We will now derive an expression for the intensity of the
emitted light using the reciprocity theorem of electro-
dynamics. The quantity we want to deduce is the radiated
electric field E(r, co)8 at large distance from the STM tip
given a certain current density near the tip j(r', co)z.
What we do instead is that we place a b-function current
density job (x —r)8 far away from the tip and then cal-
culate the resulting electric field E;„q(r,r', co)z below the
tip. See Fig. 1. The radiated electric field can be ex-
pressed as '

E(r, co) = (J'o) ' d 'r'E;„q(r,r', co)j (r', co) . (1)

E j,

FIG. 1. The overall geometry (not to scale) of the field calcu-
lation. In the experiment the current j causes the field E far
away from the tip. In our calculation Jo is the source for E;,g.

The different quantities are related according to the reciprocity
theorem in Eq. (1).
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E;„qin turn can be written as the product of two factors.
The first factor is the magnitude of the plane wave that
the &function source sends out into free space. The
second factor G(r', co) holds in it all the dependence on the
materials and geometry of the tip and the silver film in-
cluding plasmon resonances. From electrodynamics we
get 1 l

jo eikr
E;„g(r,r', co) -i

~
G(r', co) . (2)

C2

The current density j(r', co) in the z direction caused by
the transition of an electron from an initial state li) in the
tip to a final state

lf) in the sample is
iP

Here y; and yrf are the wave functions of the two states
involved. Their eigenenergies diff'er by the photon energy
it, C0.

Putting together what we have so far we get the follow-
ing expression for the radiated electric field:

d I'
d 0 d(hco)

= ' Zr'lE(r, ~)l'. (5)
2K i,f

In this expression E(r, c0) is the radiated electric field
caused by the transition from li) to lf). To be able to cal-
culate the integral in Eq. (4) we must know the wave
functions entering the expression. In this work we de-
scribe the tunneling in an essentially one-dimensional pic-
ture. '~ We use wave functions that have a space depen-
dence typical for free electrons in the tip and also in the
sample. The fact that the tunneling occurs over a limited
cross-section area around the tip apex is taken into ac-
count in the choice of quantization volume. This is taken
to be a cylinder with cross-section area equal to the
eff'ective tunneling area A. Letting V denote the quantiza-
tion volume the wave functions will have the space depen-
dence

~ V
—I/2e&&ti'P~( )

The function p(z) is calculated by solving the one-
dimensional Schrodinger equation with a potential given
by the shape of the barrier. Making use of Eq. (6) we get

Adding the contributions from different transitions we
find the total radiated power per unit solid angle and unit
photon energy,

d r'G(r', co), y; —yf, bg„,q/(A/V) dz'G(z', ro), y; —pf, bg„,,g/(A/V)Mf;.4 z' z' lli~ Ilf z' z'

Transforming the sums over initial and final states into momentum integrals, the differential power is found to be

d'P ~dkf "dk; ~ d k))

dgd(g+) 2& 4m c " 2& ~ 2&" (2x)
2 lMI;l b(e; —ef —hro) .

The first factor of 2 comes from the spin summation.
The momentum quantum numbers in the z direction k;
and kf are both referring to the silver sample.

The quantity still needed to calculate the differential
power is G(r', ro). In this calculation we choose to de-
scribe the tip-sample geometry using the model shown in

Fig. 2. The Ir tip has been replaced by an Ir sphere placed
above a perfectly smooth Ag surface. The geometry is de-
scribed by the radius R of the sphere and the tip-sample
separation d. Solutions to the field calculation problem in
the nonretarded limit in this geometry have been given in

the literature. The virtue of this model geometry is that
it describes in a correct way the curvature of the tip as
seen from the silver surface. The fields of a localized in-
terface plasmon are concentrated to the region between
the STM tip and the silver surface and therefore it is most
important to model the geometry in a correct way in that
region. When it comes to describing the actual materials
in the tip and in the sample we have used experimentally
measured dielectric functions. '

Our calculation of G(r', co) is carried out in two steps.
In the first step the presence of the sphere is ignored. We
use the Fresnel formula to get the z component of the
electric field that results from the reflection of the wave
coming in from the source far away. In the second step of
our calculation, the effect of the sphere on the electric
field is determined in the nonretarded limit. We are al-

I

lowed to perform a nonretarded calculation since the di-
mension of the sphere is much less than a visible-light
wavelength. The second calculation is carried out using
bispherical coordinates as described in the paper by Ren-
dell and Scalapino. s This leads to an equation system
describing the coupling of the surface modes of an isolated
sphere to each other due to the presence of the silver sur-
face. The numerical solution of the equations system
yields the result for the factor G(r', ro).

We have calculated G for a number of experimentally
reasonable sphere radii R, keeping the tip-sample separa-

Ag sample

FIG. 2. The model geometry used in our calculation.
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tion d constantly equal to 5 A which is a typical value in
experiments. The results of our nonretarded model calcu-
lation does not depend on the actual size of the system,
only on the proportions; thus R and d only enter the re-
sults in the combination d/R. A resonant maximum
occurs in G(ro) showing that the field just below the tip
can be enhanced by a factor of the order of 100. The reso-
nance frequency depends on the tip radius, for R =100 A
it is = 3.1 eV and for R =300 A it is = 2.5 eV.

Materialwise, we have tried other sphere-sample com-
binations like a Ag sphere above a Ag sample and an Ir
sphere above an Ir sample. These tests show quite clearly
that all the structure in G(cu) originates primarily from
the silver. The iridium tip plays a passive but yet very im-
portant role in breaking the translational invariance along
the surface and thereby forming a localized interface
plasmon mode.

Turning to the final calculation of the differential power
we have found that the contributions to the matrix ele-
ments Mf; from the regions inside the silver and iridium
are small compared to the contributions from the region
between the tip and the sample. We have therefore ap-
proximated the matrix element by taking out G(z', ru) of
the integral in Eq. (7) in our calculation of the differential
power d'P/dft d(hco).

From the work by Pitarke, Flores, and Echenique' we
know that the tip curvature plays an important role in

determining the voltage-distance characteristics d(U) of
the STM when operating in the constant current mode.
The main effect of the tip curvature is to increase the
effective area seen by the tunneling electrons when either
the applied bias or the tip radius is increased. To get the
main features of the photon emission spectrum without
resorting to lengthy numerical calculations we proceed in
the simplest possible way as follows. First, we determine
the voltage-distance characteristics for a constant tunnel-
ing current of 300 nA. The current is obtained as the
product of the effective area and the current density. The
effective area is taken from Ref. 12 and in the calculation
of the current density we use wave functions calculated

160

from a trapezoidal potential barrier. The values of the
work functions and bandwidths are P~ =4.7 eV and
W~ =5.5 eV for Ag and &2=5.8 eV and &2=9.3 eV for
Ir. Using the voltage-distance characteristic so obtained
and wave functions calculated from the above-mentioned
potential we calculate the photon differential power.

In Fig. 3 we have plotted the final result for the
differential power for three different biases. The angle of
detection is 45', and the sphere radius is 300 A for all the
curves. The tip-sample separation and bias voltage are
chosen in combinations such that the tunneling current is
kept constantly equal to 300 nA.

We see when comparing these results with the experi-
ment that the curves have several features in common.
The maximum intensity in the emitted light occurs at ap-
proximately the same photon energy. Moreover our re-
sults, similarly to the experimental results, show a trend of
increasing ru, „with increasing bias voltage.

In Fig. 4 we have plotted the differential power at pho-
ton energy 2.4 eV as a function of bias voltage. Our re-
sults here agree qualitatively, however, not quantitatively
with the experiment. We get a maximum in the
differential power for a bias voltage of 4-5 V. The experi-
mental maximum occurred at about 3.5 V and for volt-
ages above 4 V the intensity was considerably lower than
the maximum intensity. Our explanation of the maximum
is the following. As the bias voltage increases to values
above 2.4 V the number of decay channels involving the
emission of a 2.4 eV photon increases. This, of course,
gives a diA'erential power that grows with increasing bias
voltage. However, when the bias voltage reaches values of
4-5 V the voltage-distance characteristics d(U) changes
from a linear increase for small U to an increase that is
stronger than quadratic. This trend leads to a decrease in

the light intensity because the function G roughly depends
on d as 1/d. Thus the curvature of the tip is essential not
only when explaining the field enhancement in the tunnel-
ing region but it also gives an explanation to the max-
imum in the emitted light intensity as a function of bias
voltage.

In summary, we have investigated theoretically the role
the tip in a Ir-tip Ag-sample STM has on the spontaneous
light emission from the microscope. We find that the
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FIG. 3. The diff'erential power d'P/drt d(hco) given in the
direction e 45' for bias voltages 2.7 V (d 4.8 A), 3.2 V
(d 4.92 A), and 5.1 V (d=5.49 A). The tip-sample separa-
tion d is in each case chosen such as to give a tunnel current
equal to 300 nA.
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FIG. 4. The differential power d2P/drt d(tice) as a function
of bias voltage U for photon energy ha =2.4 eV.
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presence of the tip close to the sample surface creates a lo-
calized interface plasmon built up by surface charges of
opposite polarity on the tip and the sample surface, re-
spectively. This plasmon resonance leads to a consider-
able enhancement of the light emission from the tunneling
electrons, with a quantum efficiency of the light emission
of the order of 10 . The resonance frequency is sensitive
to the tip curvature. Using a tip radius of 300 A the cal-
culated resonance coincides with the experimental reso-
nance at a photon energy of 2.5 eV. We have also been

able to give a qualitative explanation for the experimen-
tally observed maximum in the light emission as a func-
tion of bias voltage.
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