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Plasmons in amorphous multilayer films
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We show, with use of a field-emission scanning transmission electron microscope, changes in the
plasmon region from thin films of silicon in a cobalt matrix. These effects are consistent with the
dielectric-response theory developed by Howie.

It is now possible, using the field-emission scanning
transmission electron (STEM), to record electron-
energy-loss spectra from nanometer-sized regions. Apart
from high spatial resolution microanaiysis using charac-
teristic inner-shell signals, there is some interest in detect-
ing changes in the low-loss region that might be due to
quantum size effects. In particular Batson' showed peaks
corresponding to the allowed modes of a free-electron gas
in small aluminum spheres and also showed the interface
plasmons between the dielectric oxide surface layer and
the metal sphere. A more detailed analysis from spheres
on various substrates has been given by Wang and Cow-
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In this paper we report the observation of low-loss
spectra (up to 30 eV loss) as a probe is moved across a
10-A silicon layer in a cobalt-silicon multilayer film. We
show that the changes in the spectrum can be modeled by
the dielectric-response-function theory of Howie and
Garcia-Molina et al.

Multilayers of cobalt and silicon were prepared by suc-
cessive UHV evaporations at a rate of 0.5 A/sec with ini-
tial deposition onto the [100] surface of a silicon sub-
strate. Cross-sectional specimens were prepared using
the technique of Bravman and Sinclair for examination
by scanning transmission electron microscopy. A stan-
dard dark-field image taken using a probe of diameter 10
A, a divergence semiangle of 4 mrad, and a collection
semiangle of 6 mrad is shown in Fig. 1. The thin silicon
layers appear as dark areas as they scatter less than the
cobalt matrix. The specimen was estimated to have a
thickness of 350+50 A by taking a ratio of the total in-
elastic scattering to the zero-loss peak. Figure 2 shows
the geometry of the speciment with respect to the elec-
tron beam.
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An energy-loss spectrum from the silicon layer 10 A
wide is shown in Fig. 3(a) (solid line) and compared with
a spectrum taken from a similar thickness of amorphous
silicon (dashed line). Note the broadening of the plasmon
peak to about 8.5 eV from 4.0 eV and the shift in the po-
sition of the maximum by about 2.0 eV. At first it was
thought that this might be a manifestation of quantum
size effects on the plasmon modes in a thin layer. This
should result in quantization of the component of

momentum normal to the layer and the plasmon disper-
sion should be that appropriate for a two-dimensional
electron gas. Preliminary calculations showed that if the
layer thickness was 10—20 A, the component of momen-
tum perpendicular to the interface would be 0.3—0.6 A
and these effects would not be observable if the width of
the plasmon (due to finite lifetime) is of order 1.5 eV.

For comparison, Fig. 3(b) shows an energy-loss spec-
trum from pure cobalt (solid line) and the spectrum from
the thin silicon layer (dashed line). The cobalt peak is
much broader, half-width 15 eV, and the maximum is at
an energy of 20.5 eV, which is 1.8 eV higher than the en-

ergy of the maximum of the plasmon from the thin sil-
icon layer. At first sight the features in the spectrum
from the thin layer are closer to those of pure cobalt; al-
though it might be thought that this is a consequence of
beam spreading, calculations show that beam broadening
is negligible for this thickness of silicon.

Recently Howie and Garcia-Molina et al. have pub-
lished expressions for the energy-loss spectra from a sys-
tem of three layers in terms of the frequency-dependent
dielectric constant of each medium. They derive their ex-

FIG. 1. Dark-field image of cobalt-silicon multilayers.
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FIG. 2. Schematic illustrating the geometry of the specimen
with respect to the electron beam.
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pression from the classical electrodynamics of a moving
point charge. Programs have been written for calculating
observed energy-loss spectra as a probe in a STEM is
moved across a surface or interface. Batson' has applied
the theory to explaining the spectrum from a beam at
grazing incidence to a film of aluminum oxide on alumi-
num. Results of the application of the theory to energy-
loss spectra from a SilSiOz interface, the (110) surface of
GaAs, and the (100) surface of a MgO cube have been re-
ported by Howie and Milne. " They managed to repro-
duce all the features of the low-loss spectra, which in
some cases might have been confused with surface or in-
terface states. The theory has been extended to cylindri-
cal interfaces by Walsh, ' who showed that the calcula-
tions reproduced the shape of a spectrum from a beam
passing through a hole drilled in A1F3.

The differential cross section for a beam incident at the
center of a layer, dielectric constant e', surrounded by
material of dielectric constant e is
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FIG. 3. (a) Electron-energy-loss spectrum taken from Si layer
0

10 A wide (dashed line) compared with an energy-loss spectrum
taken from bulk silicon of the same thickness (solid line). The
spectra have been scaled so that the zero-loss intensities are
identical. (b) Comparison of the energy-loss spectrum from 10-
0
A-wide silicon layer (dashed line) and the spectrum from cobalt
(solid line}.
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q is the momentum transfer parallel to the specimen sur-
face, v is the fast electron velocity, E the energy loss, and
w the width of the layer. Both the real and imaginary
parts of the dielectric constant are required in the theory.
These were obtained by a Kramers-Kronig analysis of
spectra from pure silicon and pure cobalt using the
Fourier-transform method of Johnson. ' The results
from the theory are compared with the experiment in
Fig. 4. Both the shift and broadening of the plasmon
peak are faithfully reproduced. This illustrates that the
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FIG. 4. Electron-energy-loss spectrum from silicon layer 10
0
A wide (solid line} compared with calculated spectrum (dashed
line).
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change in shape of the plasmon peak for a thin silicon
layer can be explained by the dielectric response theory.

In conclusion, we have shown that the energy-loss
spectrum from a thin layer of silicon in a cobalt-silicon
multilayer structure can be explained using the classical
dielectric theory of Howie and Garcia-Molina et al.
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