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Band structure of CsSnBr3
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The band structure of cubic CsSnBr3 is determined by an empirical pseudopotential method. In-

dependent of the choice of the parameters used in the calculation, cubic CsSnBr3 is shown to be a
zero-band-gap semiconductor. Based on this result, a new interpretation of the experimental data is

proposed.

CsSnBr3 crystals exhibit interesting electronic proper-
ties because of the phase transitions as a function of the
temperature around O'C. ' At room temperature the
structure is cubic, and becomes slightly distorted as the
temperature decreases. The electronic structure of the
cubic phase has been already investigated both experi-
mentally and theoretically. However, some ambiguities
appear in the determination of its electrical character.
Parry et al. have proposed that cubic CsSnBr3 is a sem-
imetal. This result is obtained from an extended-
Hiickel-method calculation. As pointed out by the au-
thors, the resulting band structure depends upon the
choice of parameters and does not always show a
semimetallic character. The experimental data given in
their paper do not clearly show this character. In addi-
tion, it is well known that the extended-Huckel method
does not provide a good description of the conduction
band, in contrast with pseudopotential calculations.
Thus, we make use here of the latter approach, which is
more adequate for a determination of the electrical be-
havior of CsSnBr3. Other experimental data have been
reported by Clark et al. which will also be discussed in
this paper.

The empirical pseudopotential method has been exten-
sively used in the calculation of band structures. This ap-
proach provides a good description of the valence band
and of the lowest conduction bands. A lot of papers con-
cerning this method have been published. We just detail
its application to the case of cubic CsSnBr3.

The one-electron pseudopotential can be written as a
function of the form factors V, (q) where i denotes the
atomic site in the unit cell and q is the reciprocal-lattice
vector. The calculation of the band structure of CsSnBr3
requires the knowledge of three different form factors.
They can be calculated from the analytical relation pro-
posed by Falicov and Lin:

2

V;(q)=
1+exp[y(q —5)]

where a, P, y, and 5 are the form-factor parameters.
Different sets of parameters have been reported in the
literature for Sn. ' The variations of the form factors
as a function of q obtained from these parameters are
found in the dashed area plotted in Fig. 1. For Cs we
have used the set of parameters given by Harrison. ' No
reliable parameters have been found for Br. However, it
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FIG. 1. Form factors for Sn atoms. The dashed area con-
tains the values of Refs. 7—12. The straight line represents the
variations of the form factor obtained from Table I.

has been shown' that the elements in a same column of
the Periodic Table exhibit similar variations of 0;V;(q) as
a function of q, where 0, is the volume of the atom i.
Thus, we have calculated the parameters of Br from those
of iodine. ' ' The values of the parameters are given in
Table I and the variations of the form factors in Fig. 2.

We have plotted the band structures of CsSnBr3 ob-
tained from the present pseudopotential calculation in
Fig. 3(a), and from the extended-Hiickel-method calcula-
tion of Parry et al. in Fig. 3(b). The differences in the
predicted electrical behaviors can be seen by comparison
of these two figures, and in particular from the differences
in the values of the highest valence band at the point M, .
The position of the Fermi level is found to be between the
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used in the calculation of the formTABLE I. Parameters use in e
factors [Eq. (1)].
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Sn
Br
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density of states in the valence band. The spectra exhibit
five main peaks at about —27, —21, —18, —12, and —5
eV (see Fig. 2 in Ref. 2). These values are given relative
to the experimentally determined Fermi level. A direct
comparison of these data with the results of the present
pseudopotential calculation can be made by aligning the
experimental and theoretical Fermi levels. In our calcu-
lation the Fermi level is found at the point R» of the top
of the valence band. The three lowest and nearly flat
bands which are found from our calculation at about
—16 eV can be compared to the peak at —18 eV. The
energy difference can be attributed to the uncertainty in
the position of the experimental peak which is not well
resolved. The nearly Bat bands at —5 eV correspond to
the peak of the density of states at the same energy. The
three other peaks, as noticed by Parry et al. can be as-

signed to states which do not significantly participate in
the bonding of CsSnBr3 because of their compact struc-
ture. The effect of the corresponding orbitals is not in-

cluded in the calculation of the form factors. Thus, these
three peaks cannot be predicted from our calculation.
The comparison between the experimental data and the
band structure calculated by Parry et al. [Fig. 3(b)] is
more difficult. The Fermi level is found by those authors
between the levels at points R» and M5. The alignment
of the Fermi levels does not provide a correct agreement
between the calculated density of states and the experi-
mental data. The peaks are found to be at —24 and —12
eV instead of —18 and —5 eV, respectively. Thus, there
is a shift of about 6 eV. This problem has already been
pointed out by Parry et al. in their paper. For a correct
comparison, these authors have aligned the highest ener-

gy peaks obtained in experiments with those of their cal-
culation instead of the Fermi levels. In that case, a
correct agreement is observed. The reason for this
discrepancy is inherent to the use of the extended-Huckel
method. This method gives a correct description of the
bands formed from bonding states, but not of the bands
which include a large contribution of the antibonding
states. In particular, it has been shown that the width of
the latter bands is strongly overestimated by that kind of
calculation. The same effect is observed in the calculat-
ed band structure of Parry et al. for energies higher than
about —10 eV, as can be seen by comparison of Figs. 3(a)
and 3(b). Thus, the description of the valence band, and,
in particular, the position of the main peaks relative to
the Fermi level, is correctly predicted by our calculation.

In their paper Clark et al. have reported measure-
ments of the optical absorption, of the luminescence, and
of the electrical conductivity of CsSnBr3. The quantita-
tive interpretation of their results requires complicated
calculations, and we just suggest some qualitative ex-
planations. The most interesting results concern the vari-
ations of the electrical conductivity as a function of tern-
perature. The authors have observed that the conductivi-
ty increases with the temperature up to about 303 K, and
then decreases for higher temperatures. A phase transi-
tion (cubic~tetragonal) has been observed by Mori and
Saito' at 292 K and could explain this abrupt change in
conductivity. In the range 160—303 K, CsSnBr3 exhibits

the behavior of a semiconductor with a small band gap
( =0.34 eV). The phase transition yields modifications of
the crystal symmetry. Mori and Saito have shown that
the point group of CsSnBr3 changes from OI, to D4& at
292 K with decreasing temperature. Thus, the irreduc-
ible representations (E, T, , Tz ) of the Oh group are split
into the representations (A, +B„Az+E,B~+E) of the

D4h group, respectively. This transformation will remove
the degeneracy of the point R» and open a band gap.
This assumption is consistent with the small value of the
gap which is observed experimentally. For temperature
higher than about 300 K the conductivity strongly de-
creases. This is consistent with the semimetallic behavior
proposed by Parry et al. as well as with our calculation if
we consider the existence of impurities. Impurities are
expected to introduce energy levels at about 0 eV and
give a metallic character to the zero-band-gap semicon-
ductor. In the experiments of Clark et al. the presence of
impurities has been effectively shown by the values of the
conductivity at low temperatures.

At room temperature, the optical-absorption spectra
exhibit a threshold at about 1.8 eV, and the luminescence
curve a peak at about 1.7 eV. As can be seen in Fig. 3(b)
such a transition cannot be predicted from the band
structure of Parry et al. On the other hand, our calcula-
tion clearly shows that the transition between the point
M, of the highest valence band ( = —1.5 eV) and the
point M5 of the lowest conduction band ( =0.2 eV) could
explain these optical features. This assumption is
confirmed by the fact that optical transitions are forbid-
den at the threefold degenerated R» point but are al-
lowed between points M, and M5. A simple calculation
of the optical-absorption coefficient can be made by as-
suming no energy dispersion between points R» and M5,
and a parabolic curve between points R» and M, . The
absorption coefficient is shown to strongly increase at the
energy of the transition M, ~Ms, as observed experi-
mentally. In fact, all the directions in the momentum
space must be taken into account for a realistic calcula-
tion. However, similar variations of the absorption
coefficient are expected for energies lower than 2 eV.

Our discussion of the experimental data is based on the
calculated band structure of Fig. 3(a) and is mainly quali-
tative. A more rigorous interpretation requires the calcu-
lation of the conductivity and the optical-absorption
coefficient in the different phases of the crystal. The
influence of the impurities should also be taken into ac-
count. Ho~ever, the good agreement between our pseu-
dopotential calculation and the experimental data
confirms our description of the band structure. In con-
trast to the extended-Huckel calculation of Parry et al. ,
the position of the main features of the density of states
relative to the position of the Fermi level, and the optical
transition at about 1.7 eV can be predicted. In addition,
the pseudopotential method is well known to give a better
description of the band structure than the extended-
Hiickel method. Thus, cubic CsSnBr3 must be a semicon-
ductor with a zero or a narrow band gap. The phase
transitions, which occur when the temperature decreases,
are expected to increase the value of the band gap.
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