
PHYSICAL REVIEW 8 VOLUME 42, NUMBER 14 15 NOVEMBER 1990-I

Estimation of the ideal fracture strength between two identical semi-infinite jellia
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We describe an interpolation procedure which allows an estimation of the maximum cohesive
force (ideal fracture strength) F between two identical semi-infinite jellia. To this purpose
use is made of the limiting form of the force E(z) at small and at large distance z, and of the
surface energy e, of a single semi-infinite jellium. We rely on model calculations of the force in
tile two limits, and t, ake the surface energy from the available literature.

The study of the interaction force between two solids
is of basic importance to understand the physics of the
cohesion or adhesion at interfaces and of the cleavage of
solids. The jellium model often serves as a first step
in the investigation on metallic interfaces. Thus, the
adhesive force between two touching semi-infinite jellia
(bijellic interface) and the corresponding linear force
constant have been recently reconsidered.

In this paper, we focus on the cleavage force F(z) be-
tween two identical semi-infinite jellia at distance z. We
propose to interpolate F(z) between the known small and
large distance functional forms, adapting to the present
case an idea originally due to Kohn and Yaniv. To this
purpose (i) we recalculate the linear force constant A,
(ii) we evaluate the quadratic force constant B and the
van der Waals coefficient C, and (iii) we mal&e use of
the surface energy s, of a semi-infinite jellium. ' ' In
such a manner we are able to obtain an estimate of the
maximum cohesive force I",which should be more reli-
able than that obtained with earlier simpler interpolation
formulas. We remark that the so-called ideal fracture
strength I'"~ constitutes —for real crystals —an important
input parameter for theories dealing with bond stretching
and crack propagation.

The interface between two semi-infinite jellia at dis-
tance z and with equal density n can be characterized by
an interfacial energy (per unit area) s, (z) and a cohesive
force (per unit area) of magnitude F(z). The interfacial
energy (see Fig. 1) can be defined as the work needed to
separate at distance z two semi-infinite jellia initially in

contact. This requires the application of a cleavage force
which just compensates the cohesive force. Thus,

'
Fp + Az 1Bz~ + . . as z ~ 0

F()= ~

C/zs + 0(1/z") as z ~ oo .

(2)

0

M

One also knows that the zero-separation force F is related
to the bulk pressure of the homogeneous electron gasi
with density n [= (47rrsaso/3) ij and bulk energy (per
particle) s(n),

, ds(n)
Fp ———n )0;

dn

therefore, it vanishes at r, = r,' 3.4, as is clear from
Fig. 2. Here, r, is the Wigner-Seitz sphere radius in

units of Bohr radii ao. I"rom Eqs. (2)—(4) and the fact
that C ) 0 (see below), it follows that for r, ( r,' the
cohesive force F(z) vanishes at some zo, with a linear
force constant F'(z ),sand has its maximum Fm (ideal
or theoretical fracture strength) at a separation zm (see
Fig. 3).

The linear force constant A can be expressed in terms
of the static dielectric function e(q) of the homogeneous

F(z) = ', s, (0) = 0, s, (oo) = 2c, ,
dh;(z)

dz

where e, is the surface energy of a semi-infinite jellium.
The functional form of the cohesive force F(z) is not

completely known. However,
FIG. 1. Interface energy s, (z) vs separation z for two val-

ues of r. . Solid line, r, = '2; dashed line, r. = 5.
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The various parameters mentioned above are more or
less readily available. The zero-separation force I" is
evaluated from a suitable parametrization of the quan-
tum Monte Carlo data of Ceperley and Alder. z5 A is

calculated from Eqs. (5) and (6) using the local field
function G(q) of Vashishta and Singwi, 2 which has the
correct small q behavior. In fact, it is the small q re-

gion that gives the dominant contribution to the inte-
gral of Eq. (5). We have also obtained A in an indepen-
dent manner, resorting to the gradient expansion method
(GEM).z io i4 zz Expanding the Euler and Poisson equa-
tions in powers of z one obtains the analytical expression

FIG. 2. Energy (per particle) of the homogeneous jellium
vs the density parameter r, (from the parametrization of
Ref. 24).

electron gas via'~

2seznz sin(3b)

q sin(2b)
'

(2n ez ) d' cr(n-)/dnz

(P(n) ) ' 4[2~e'P(n)] /z '

(8)

22 1A=2n e dq
e'e(V)

A convenient represent, ation of e(q) isz

(6)

e(0, iu) + 1''i ',
du dss e' —1

16' p p (e(0, iu) —1)

(v)xo(e)
1+v(~)G(~)Xo(~)

'

with v(q) = 4m'ez/qz, yo(q) the Lindhard function
and G(q) the local-field function, measuring exchange
and correlation eA'ects beyond the Bohm-Pines random-
phase-approximation (RPA) [G(q) = 0]. The quadratic
force constant B, on the other hand, can be ob-
tained from a study of the bijellic interface for small
separations. Finally, the van der Waals coefficient C
is given byz

with o.(n) = na(n) and P(n) = ezao/72n+ P„,(n), the
gradient coeKcient. We have taken the exchange and
correlation coefFicient P«(n) from Ref. 26. The nu-

merical solution of the Euler and Poisson equations for
small separation z yields z—through numerical differen-
tiation of F(z)—a value of A in agreement with that
of Eq. (8) and an estimate of the coefficient B. The
van der Waals coefficient C is calculated from Eq. (7)
with e(0, u) = 1 —urz/u, uz [= (4z e n/m)i/ ] being the
plasma frequency. This yields~

~2
C(r, ) = 1.24 x 10

vs ao

Finally, the surface energy z, has been taken from the
solution of the Kohn-Sham equation for a semi-infinite
jellium, obtained with various approximations of the ex-
change and correlation potential.

We interpolate F(z) between the two limiting regimes
discussed above by means of a Fade ansatz~s

with e(q, ~) the dynamical dielectric function. Fo+ az'(' = I+b, +., +d, (10)

—2
8~ —4

—6

Equations (2) and (3) immediately determine three of the
fit parameters according to

a —Ab=
+o

A(A —a) B a
C = —

)
Fi)2 Fp

' C

The remaining parameter a is readily obtained from the
extra condition

—10
—12

TABLE I. Input parameters for the interpolation 10: Fo
in units of 10 e /ae from Ref. 4, B in units of 10 e /a. e

from Ref. 22, and C in units of 10 e /ue from Ref. 10.

FIG. 3. Cohesive force vs interface separation for two r,
values. Solid line, r, = 2; dashed line, r, = 5. Notice that
Fe = F(0) = 0 for r, = r' (see text). .
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TABLE II. Ideal fracture strength F in units of 10 e /a&&, at two values of r, and for various

choices of the parameters A and c„using the interpolation scheme described in the text. The last
two rows give F from other calculations (Refs. 1 and 22). A is in units of 10 e /ao and s, in
units of 10 e /ao. For comparison, the Thomas-Fermi approximation for c(q) yields (Refs. 6 and

7) A=506,3.28 and the RPA [i.e. , G(q) = 0] yields A=539,3.73 at r, =2,5, respectively.

A
462
443'

—64.7

6.47
7.59

~s 2

—37.6

24.1
26.5

11
22~

—17.8'

46.1

49.5

A
2.38'
2.13'

6.42

3.14
3.05

2.1

5.14'

2.55
2.46

From Ref. 17.
From Ref. 18.

'From Ref. 19.
A using the G(q) from Ref. 18.

'A from GEM calculations (Ref. 20).
From Ref. 2.

From Ref. 22.

dz F(z) = t;(oo) —z;(0) = 2a. ,
0

which follows from Eq. (1). Clearly, only those solutions
of the equation above are accepted for which the denom-
inator in Eq. (10) does not vanish (for z ) 0). Once all

the parameters are known —for a given r,—the critical
values F~ and z, and zu and F'(z )oif wanted, can be
readily calculated.

The results of the interpolation are considered in de-

tail below for r, = 2 and r, = 5. The parameters F, B,
and C are given in Table I. For A and s', we have used
various estimates, as already mentioned above. Whereas
the estimates of A from ~(q) and from the GEM are in

fair agreement, there is still a sizable uncertainty on s,
for small r, , as obtained from the available I&ohn-Sham

calculations. In Table II we report the ideal fracture
strength F obtained from various choices of A and z, .
Our results for F are sensitive to the value of s, . There-
fore, the reliability of our calculated F~ [as well as that
of z~, F(zo), zo] depends on that of the surface energy
calculations.

Future work should try to assess the value of s, on a
firmer ground, through calculations on the semi-infinite

jellium. On the other hand, investigations on the force
constants A and B will require the study of the slightly
cleaved jellium. It should also be possible to calculate
B from the knowledge of the linear and of the quadratic
response functions for the homogeneous infinite jellium.
In this respect it would be interesting to try a RPA for
the quadratic response. zs

In trying a direct comparison of our results with em-

pirically (phenomenologically) estimated data one should
remember (i) that jellium can be considered a reasonable
model only for low-density simple metals —as far as the
surface energy is concerned; (ii) that for real solids the
cleavage force starts with Fo ——0, and therefore for a
metal with r, ) r,' the empirical fracture strength should
be compared with F —F0, rather than with F; similarly
for a metal with r, ( r,' the fracture strength separation
might be compared with z —z0, rather than with z0.

We notice that the present interpolation scheme can
be applied also to interfaces between real solids, if one
is able to estimate the values of A, B, C, and of the
adhesive energy Jo dz F(z).

The authors would like to thank V. Preuss for the elab-
oration of a computer program.
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