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Alternant quantum cell models with unequal numbers of atoms on the two sublattices have been

predicted to have a high-spin ground state. In this paper, we examine the stability of this high-spin

ground state with respect to breaking the alternancy symmetry and distortion of the backbone con-

jugation. %'e find that in the Pariser-Parr-Pople (PPP) models and the Hubbard models with weak

correlations, the ground state continues to be the high-spin state, even when alternancy symmetry is

broken by introducing large site-energy differences. In the Hubbard model, for strong correlation

strengths, the ground state switches from a high-spin to a low-spin state when large site-energy

differences are introduced. The bond-order calculations in all these models shows that the low-spin

state is susceptible to dimerization of the backbone. In the distorted chains, the low-spin state stabi-

lizes to a greater extent leading to low-spin ground states at least in "soft" lattices. However, ex-

perience with one-dimensional systems suggests that the lattice distortion could occur uncondition-

ally leading to low-spin ground state in infinitely long polymers. Thus, realization of organic fer-

romagnetics via high-spin polymers could be elusive.

I. INTRODUCTION

All known ferromagnetic materials, both natural and
man-made, are primarily inorganic systems. The syn-
thesis of an organic or molecular ferromagnet has been a
challenge that has attracted considerable attention. ' Al-
though the early theoretical model for ferromagnetism in
organic solids was based on the stacking of organic radi-
cals so that in neighboring radicals the atoms with posi-
tive and negative spin densities are juxtaposed, thereby
leading to incomplete spin cancellation, ' it has been
realized that such a model cannot lead to bulk fer-
romagnetism. ' Currently there are two main avenues ex-
plored by experimentalists for obtaining an organic fer-
romagnet. The Arst has its origin in the model proposed
by McConnell for the formation of a dimer in the triplet
ground state. In this model, the triplet state is stabilized
relative to the singlet state by a configuration interaction
with a triplet charge-transfer excited state; this excited
state is lower in energy when compared to the singlet ex-
ited state due to the presence of degenerate partially oc-
cupied molecular orbitals. In low-dimensional organic
charge-transfer systems, many variants of this model
have been pursued, based on di8'erent stacking of the
donor and acceptor units.

The second approach, first suggested by Mataga, is
the synthesis of organic polymers in the high-spin ground
state. Later, Ovchinnikov' showed that in alternant hy-
drocarbons (wherein the carbon atoms can be partitioned
into two sublattices usua11y called the starred and the un-

starred) if the number of atoms on the starred and un-

starred sublattices are not equal, the ground state is a
high-spin state with its spin given by half the absolute
difterence between the number of starred and unstarred
atoms. Some small chain-length polymers in this
category have indeed been synthesized and they are

known to have a high-spin ground state. "
In this paper we present the results of a detailed study

of the energy-level spectrum of a class of polymers that
are expected to possess a high-spin ground state. Our
study is primarily concerned with the stability of the
high-spin ground state in the limit of long chain lengths
and with respect to the breaking of the alternancy sym-
metry. Since conjugated systems are known to be strong-
ly correlated, we have modeled them employing a
Pariser-Parr-Pople (PPP) model Hamiltonian. ' ' How-
ever, to understand the effect of correlations on the exci-
tation spectrum, we have also studied Hubbard models'
with varying on-site repulsion energy U.

In order to have reliable extrapolations of the excita-
tion gaps in the spectrum to the limit of infinite chain
length, it is essential that model exact calculations be car-
ried out on as large a system size as possible. In the PPP
and the Hubbard models, every given orbital or site has
four possible states and hence the dimension of the com-
plete Hilbert space spanned by a model Hamiltonian with
N sites goes up rapidly with N ( =—4 ). Therefore, a mod-
el exact computation in these models is typically restrict-
ed to about 12 carbon atoms. However, it is well known
that both these model Hamiltonians, in the half-filled
case and at large correlation energies, can be represented
by the spin-half antiferromagnetic Heisenberg Hamiltoni-
an. ' The Heisenberg Hamiltonian eliminates charge de-
grees of freedom by Axing the orbital occupancy of each
orbital to one. Therefore at each site there are only two
possibilities, namely, the spin can be either up or down.
This restriction results in a slower increase in the dimen-
sionality of the complete Hilbert space of the Hamiltoni-
an with an increase in the system size N ( —=2 ). There-
fore, in the large correlation limit we can obtain a model
exact solution of systems with up to 22 sites. This leads
to greater reliability in the extrapolation of the excitation
gaps in the system.
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II. MODEL HAMILTONIANS
AND COMPUTATIONAL DETAILS

The polymer on which we have carried out the calcula-
tions is shown in Fig. 1. The PPP model Hamiltonian
that we have employed for modeling this polymer is given
by

Hppp=to g g(a, 'a, +H. c. )+pe, n,
(ij ) cr 1

s, s, +,—2[s, s, +, , s, +, s, +z1+ (4b)

where (i,j)=(a,"a +a,@&) and k is the intervening or-
bital. We find this procedure in general to be slow and
cumbersome due to the presence of a large number of
long bonds in our system. Instead, we use the following
relation between "1ega1" and "illegal" diagrams repeated-
ly:

+ Ug n;(tt; —1)/2+ g V; n; n
2 3 2 3

where s; is the site (orbital) energy of site (orbital) i and to
is the transfer integral set to 2.4 eV in all cases except
where specified. a (a; ) creates (annihilates) an electron
in the spin orbital i with spin cr. The geometry of the po-
lymer, necessary for calculating the intersite interaction
energy is as shown in the figure. In the PPP model, the
on-site repulsion energy U is set to 11.26 eV and the or-
bital energies e; on the carbon atoms (atoms No. 2, 5, 8,
etc., in Fig. 1) and the dangling carbon atoms (atoms No.
3, 6, 9, etc. in Fig. 1) are varied between 0 and 2 eV to
mimic substitutions as well as to take into account the
different stabilities of the carbon atoms with different
numbers of C—C bonds. The intersite potential energy is
parametrized using Ohno parametrization, '

V,, = U(1+0.6117r,, ) (2)

Hspin = JR ( i 'sj
&ij )

(3)

where J is the exchange integral and the summation is
over all the nearest-neighbor spin bonds.

All the Hamiltonians in Eqs. (1) to (3) have the proper-
ty that they conserve total spin. Therefore, we have em-

ployed a valence-bond (VB) basis for carrying out all our
computations. The VB basis has the obvious advantage
that the states are spin labeled and also leads to smaller
dimensions of the exact Hamiltonian matrices that
represent these Hamiltonians. A complete and linearly
independent VB basis can be generated by employing the
modified Rumer-Pauling rules. ' However, the nonortho-
gonality of the basis leads to matrices that are nonsym-
metric, though real. The low-lying eigen values and
eigenfunctions are obtained using a numerical scheme
due to Davidson' and Rettrup. '

The polymeric systems that we are dealing with are not
topologically one-dimensional and contain transfer or ex-
change terms between nonconsecutively labeled atoms.
Such exchanges or electron transfers, termed long bonds,
can lead to VB diagrams that violate the Rumer-Pauling
rules. Although the generation of such "illegal" VB dia-
grams can be avoided by employing the computation re-
lations

(i,j)=[(i,k), (k,j)] (4a)

In the Hubbard model the intersite interaction term is
identically zero and we vary the parameters U/to and
c.; /to in our studies.

The Heisenberg Hamiltonian employed in these studies
is given by

1 2 '3 4

where a line between sites i and j (i (j ) represents a sing-
let pairing of the s~ins on the sites i and j, namely
[(a;"aj&

—a;@j' )/&2] ~0). In the case of high-spin states
(S)0), where we employ phantom sites, this procedure
is particularly useful since the presence of phantom sites
leads to long bond connections with at least 2S interven-
ing sites in cyclic systems.

The properties of the states that we have calculated in-
clude bond orders and spin densities in the PPP, Hub-
bard, and Heisenberg models. In the PPP and Hubbard
models, two functions in the VB basis are orthogonal
when the occupancy of the sites in the two functions are
not identical. This property can be used to advantage to
block diagonalize the VB basis in the course of calculat-
ing spin densities and bond orders. However, in the spin
models, for a given total spin, any two VB functions are
strictly nonorthogonal. In such a situation, calculation of
the spin bond orders and spin densities becomes compu-
tationally prohibitive for large systems. We have, there-
fore, transformed the eigenfunctions in the VB basis to
the Slater determinantal basis for calculating spin densi-
ties. The spin densities in the Hiickel model which can
be calculated analytically provide a convenient numerical
check on our method for the PPP and Hubbard models.
The procedure for spin densities of the Heisenberg model
are verified by calculating the spin density of the Hub-
bard chain at very large U/t and comparing the results
with the spin density of the corresponding Heisenberg
chain. The bond orders for the various bonds are calcu-
lated using numerical differentiation. In this procedure,
for each bond the total energy is calculated twice, once
with the exchange integral for the bond in question being
set to J+5 and the second time the same being set to
J—5, while all other exchange integrals remain the same.
The bond order of the band is now given by
[E(J+5)—E(J—5)]/25 and this definition yields twice
the value obtained from the usual definitions.

In Tables I(a) and I(b) we present the dimensionalities
of the various subspaces we have encountered in our cal-
culations. The largest matrix that we have dealt with is
for the case of S=3 in the 22-spin polymer. The com-
plete and linearly independent Hilbert space spanned in
this case has a dimension of 149 226 and the Hamiltonian
matrix has almost 2.2 million nonzero elements. The
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TABLE I. (a) Dimensions P(S) of the complete Hilbert spaces spanned by the PPP and Hubbard
Hamiltonians for different system sizes N and total spin S. (b) Dimension P(S) of the complete Hilbert
space spanned by the Heisenberg spin- —' Hamiltonian for different system sizes N and total spin S.

6

9

10

7

10
13

16
19

22

P(S)

175
784

8 820

19404

14

42
429

1 430
16 796
58 786

P(S)

(a)
189
392

5 760
29 700

(b)
14

90
572

3 640
23 256

149 226

P(S)

35
48

1 215
12 375

6

75
429

2 548
15 504

95 931

P(S)

1 925

35
208

1 260
7 752

48 279

lowest two eigenvalues for this case take about 18 h of
CPU time on a micro VAX II system on which all these
calculations were carried out.

III. RESULTS AND DISCUSSION

The energy of the expected ground state with spin 5,
where Ss= ~n,

—no~/2 (n, being the number of starred
atoms and no being the number of unstarred atoms), has
been calculated for each system size. To study the stabili-
ty of this high-spin state, we have also calculated the en-
ergies of the S =0 states in polymers with an even num-
ber of sites and the energies of the S=—,

' states in poly-
mers with an odd number of sites. Other excitation gaps
studied include the excitation energies to states with spin

S =S~+1. The system sizes that we have studied range
from six to ten sites in the case of the PPP and Hubbard
models and from seven to 22 spins in the spin models. In
the PPP model we have studied the stability of the high-
spin state with respect to the breaking of the electron-
hole symmetry. The symmetry breaking is achieved by
introducing different site energies for different sites. In
the Hubbard model we have also studied the stability of
the high-spin state as a function of the strength of on-site
electron correlations. We have calculated the bond or-
ders of different spin states in all the models. Based on
the bond-order pattern, we have carried out calculations
of the distorted systems to study the effect of distortions
on the excitation gaps and the stability of the high-spin
state in the system. We discuss in detail the results per-
taining to these studies in Secs. III A —III C.

TABLE II. Excitation gaps in the PPP model and Hubbard model with U/t =4.0 for different N
and site energies ~e~ =0.0.

Model

PPP

System
size

10

SG E(S~ )

0.0000
2.1924
0.0000
3.3344
0.0000
2.9408
0.0000
3.0215

E(S=0, —,
'

I

0.7673
1.0984
0.2937
1.0300
0.4550
0.6280
0.3633
1.1753

E(SG+1)

3.6158
5.7716
5.1998
6.0330
4.7563

5.4025
4.7797
5.5726

E(SG —1)

Same as
in S=O
Same as

in S=—1

2

Same as

in S= —,
'

0.1660
0.5373

Hubbard

10

0.0000
0.6906
0.0000
1.0411
0.0000
0.9782
0.0000
0.9501

0.4349
0.5125
0.1184
0.4033
0.2125
0.5171
0.1548
0.4250

0.9948
1.6732
1.4117
1.6774
1.2866
1.6114
1.2981
1.5385

Same as
in S=O
Same as

in S=—1

2

Same as

in S=—1

7

0.0692
0.2075
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A. Magnetic excitations in alternant models

In Table II we present the excitation gaps in the PPP
and Hubbard models. In these models all the site ener-
gies c,- are set to zero. A11 the transfer integrals in the
PPP model are set to the molecular value of 2.4 eV ap-
propriate to the C—C ~ bond in benzene. In the Hub-
bard model, the ratio U/t is varied, with the transfer in-
tegral t fixed at 1.0 eV for all the bonds. While the seven-
and ten-site models are solved using open boundaries, the
six- and nine-site models are solved using a cyclic bound-
ary, resulting in the inclusion of a 1 —5 transfer term in
the six-site case and a 1 —8 transfer term in the nine-site
Hamiltonians. The geometries of the polymers, which
determine the interaction energies in the PPP model, are
always taken to correspond to the free-boundary case as
shown in Fig. 1.

From Table II we notice that in all the cases the state
with spin S is the ground state. The lowest-energy exci-
tation is to the state with spin S —1. The excitation en-

ergy to the singlet (if the number of sites is even) or the
doublet state (if the number of sites is odd) is comparable
to the excitation energy to the state with spin S —1 and
is substantially lower than that for the excitation to the
state with spin S +1. The excitation energy to the first
excited state with spin S is also much larger than the en-

ergy needed to excite the system to the S =0 or —,
' state.

The excitation energies show a systematic decrease with
an increase in the system size. Within the PPP and the
Hubbard models, it is not possible to obtain a reliable ex-
trapolation of the excitation gap to the infinite limit be-
cause of the limited size of the system for which exact
calculations can be carried out. However, in the spin
models, we can carry out exact calculations on much
larger systems. Both the PPP and the Hubbard models in
the limit of strong correlations map onto the Heisenberg
model.

To obtain reasonable extrapolations of the magnetic
gap, we have carried out calculations on Heisenberg sys-
tems with up to 22 spins. In all cases, we have employed
open boundary conditions. In Fig. 2 is shown the varia-
tion of the magnetic gap and excitation gap to the lowest
state with spin S —1 as a function of the inverse system
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gap, /
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size. We have two difFerent dependences corresponding
to half-integer and integer spin values. In the infinite sys-
tern size limit, the gaps in both cases should converge to
the same value. This restriction provides an estimate of
the error in the extrapolations. The magnetic gap in
units of J is 0.061+0.007. Thus, the high-spin state
remains the ground state even in the infinite size limit.
The excitation energy to the S —1 state decreases rapid-
ly. The dependence not being linear, we cannot estimate
this gap in the infinite limit. But it appears that the two
states become degenerate to O(N ') in the infinite poly-
mer. The excitation gap to the state with spin Sg+ 1, on
the other hand, remains finite and large in the infinite
limit (Fig. 3).

In the case of the Hubbard model, we have also studied
the dependence of the magnetic gap on U/t, the ratio of
correlation strength to the transfer integral. In the limit
of U/t =0, all the lowest-energy states in the subspaces
with spin S (S are degenerate since the highest occu-
pied molecular orbitals are 2S -fold degenerate. In the
limit of U/t ~ oo all the spin states are degenerate, the
system being in the atomic limit. This degeneracy is lift-
ed for finite U/r and from our calculations we find that
the gap goes through a maximum (Fig. 4) when the band-
width equals the correlation strength for all system sizes.

0
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FIG. 1. Geometry of a typical polymer that has a high-spin
ground state in an alternant model. c. are site energies. Starred
( + ) and unstarred (O ) atoms belong to diferent sublattices. In
calculations involving cyclic boundary conditions, site 10 is el-
iminated and a 1-8 bond is introduced without altering the site
positions. All the bond angles are assumed to be 120 and all
bond lengths in the undistorted system are set to 1.397 A.

l
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FIG. 2. Variation of the magnetic gap and excitation gap to
the lowest state with spin Sg —1 as a function of the inverse sys-
tem size in the Heisenberg model.
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TABLE III. Magnetic gap as a function of c/t in the Hubbard model at U/t =4.0 for a system of
seven sites with open boundary condition ( A ) and a system of six sites with cyclic boundary condition
(&).

Magnetic gap Magnetic gap

0.0

0.5

1.0

1.5

2.0

2.5

0.1184

0.1170

0.1087

0.0831

0.0400

0.0013

0.4349

0.4959

0.4428

0.3428

0.1855

0.0003

3.0

3.5

4.0

4.5

5.0

5.5

—0.0557

—0.0781

—0.0268

—0.0725

—0.0215

—0.0187

—0.1350

—0.1903

—1.7708

—0.1832

—0.1640

—0.1445

TABLE IV. (a) Bond orders in the PPP model for a system of ten sites with an open boundary condi-
tion (see Fig. 1 for site numbering). (b) Bond orders in the Hubbard model for a system of ten sites with
an open boundary condition (see Fig. 1 for site numbering).

(a)

Bond

1-2

v=0.0 eV

1.139

SG =2
c, =2.0 eV

1.007

c, =0.0 eV

1.114

S=O
c.=2.0 eV

0.994

2-3 1.157 1.215 1.138 1.191

2-4 0.933 0.910 0.966 0.943

4-5 0.978 0.919 0.823 0.797

5-6

1-2

1.231

c, =0.0 eV

0.941

SG =2

1.247
(b)

@=3.0 eV

0.494

1.452

v=0.0 eV

0.914

S=O

1.398

v=3.0 eV

0.556

2-3 0.941 1.158 0.914 1.101

2-4 0.808 0.495 0.837 0.548

4 5 0.843 0.499 0.669 0.512

5-6 0.984 1.158 1.189 1.142

TABLE V. Spin density in different spin states in the Hubbard ( U/t =4.0) and PPP models of ten sites (Fig. 1 gives site number-
ing).

Site S=1
PPP model

S=2 S=3 S=1
Hubbard model

S=2 S=3
0.1918

—0.0898

0.1996

0.4989

—0.1635

0.5627

0.7004

—0.1920

0.6894

0.5779

—0.1925

0.6409

0.8211

0.0901

0.8195

0,5130

0.5762

0.9365

0.2147

—0.1616

0.2147

0.5571

—0.2884

0.6385

0.7481

—0.3297

0.7481

0.6430

—0.3345

0.7154

0.8533

0.0183

0.8533

0.5406

0.5265

0.9433
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TABLE VI. Magnetic gap in the distorted Hubbard
(Ult =4.0) and PPP chains of ten sites. ~e is the site energy
on the nodal and dangling sites.

252 252

"V"V"4
Magnetic gap

Distorted Undistorted

4 2

S"-2' f =0eV

&0 l 4 7 10

S=O; e=oeV

Hubbard
model

ppp
model

0,0
3.0

0.0
2.0

—0.0729
0.3049

—0.4338
—0.5016

0.1548
—0.0854

0.3633
0.2655

S=2( 6 20eV

36 36

~a+.

S =0' 6 =2 OeV

the lifting of the degeneracy of the highest occupied
molecular orbitals. Consequently, the low-spin state
turns out to be the ground state with the excitation gaps
to the high-spin states increasing for higher spin states.
But in the PPP model we find (Fig. 5) that breaking
electron-hole symmetry does not significantly alter the
stability of the high-spin ground state. The magnetic gap
shows a slight decrease with an increase in ~e~ and so
does the excitation gap [E(S ) E(ss —I—)], but the exci-
tation to the state with spin S +1 increases with an in-
crease in

~
e ~. Thus in real polymers, introducing electron

pull and push groups will not have a significant effect on
the ordering of the spin states. Indeed, a similar observa-
tion was made in the case of singlet excitation in push-
pull polyenes. ' In the Hubbard models, where we find
that for U/t=4. 0, the ground state switches from the
high-spin state to the low-spin state for alt & 2. 5 (Table
III). Although there is a slight anomaly in the stability of
the low-spin state at sit =4.0, the ground state continues
to be the low-spin state for all values of e!t& 2. 5 when
the correlation strength is equal to the bandwidth.

C. Magnetic excitations in distorted polymers

The results discussed above pertain to polymers in
which all the bonds are taken to be equivalent. However,

FIG. 7. Transfer integrals in the distorted PPP polymer of
ten sites for S =2 and S =0 states with

~
E

~

=0 and 2.0 eV.

it is known that one-dimensional systems are particularly
unstable to distortions of the chain. The distortion pat-
tern can be known if we calculate the bond orders of all
the bonds. In Tables IV(a) and IV(b), we present results
of the bond-order calculations in the PPP model and the
Hubbard model for different spin states in a polymer of
ten sites. We find that for all the states, the bond order of
the bonds between the nodal atom and the dangling atom
are the largest. In the spin state Sg the bonds in the
chain have weak alternation in the bond order while in
the lowest-spin state this alternation along the chain is
stronger. When large site-energy differences, ~e~, are in-
troduced, the bonds along the chain have nearly uniform
bond order in both the S =0 state and the S =Sg state in
the Hubbard model while the alternation does not show
any significant changes in the PPP model.

The spin-density calculations (Table V) in the spin state
S show that the spin on the nodal carbon atom is nega-
tive while that on the others is positive. The spin density
is largest positive on the dangling carbon atoms. In the
interior of the polymer, we find that the sum total of the
spin densities of the dangling, nodal, and doubly bonded
carbon atoms in a unit cell corresponds to one unpaired

TABLE VII. Bond order ( A) of bonds (8) in the central unit cell in various spin states for different system sizes (Fig. 8 gives site
numbering).

N =19 N =16 N =13 N =10

S=o -' 11-12
10-11
11-13

0.752
0.583
0.602

8-9
5-7
7-8

0.807
0.611
0.524

8-9
7-8
8-10

0.760
0.567
0.563

5-6
2-4
4-5

0.869
0.616
0.455

S =Sg —1 11-12
10-11
11-13

0.733
0.603
0.598

8-9
5-7
7-8

0.739
0.603
0.597

8-9
7-8
8-10

0.742
0.592
0.596

5-6
2-4
4-5

0.754
0.602
0.568

S =Sg 11-12
10-11
11-13

0.787
0.610
0.610

8-9
5-7
7-8

0.729
0.609
0.610

8-9
7-8
8-10

0.725
0.612
0.615

5-6
2-4
4-5

0.723
0.591
0.615

S =Sg+1 11-12
10-11
11-13

0.433
0.580
0.515

8-9
5-7
7-8

0.348
0.633
0.513

8-9
7-8
8-10

0.339
0.569
0.421

5-6
2-4
4-5

0.221
0.683
0.404
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N=)g, S= I/2

) 3

N = &9, S=&/2

12

l2 &8 21

22

N=22, S=I,

i.25 1.2 5 1-25

N =22. S=o

FIG. 8. Exchange integrals J of various bonds in the distorted Heisenberg model for states with spin S= —', and S= —,
' for the 19

spin case and S =4 and S =0 for the 22-spin case. End-to-end interchange symmetry is always assumed and where the J value is
specified for fewer bonds, either uniform exchange or dimerization, as appropriate, is implied. The distortion in N =10 and 16 is the
same as in the chain with N =22 while for N = 13 the distortion is as in the N = 19 chain.

electron. We can, therefore, describe the spin states as
originating from the coupling of the effective spin of the
unit cells. The state with spin S does not have any frus-
tration and the bonds in the chain will be identical while
the bond between the nodal atom and the dangling atom
would be strongest. If we form a low-spin state with spin

S =0, we find that if the dangling bond, which is the
strongest bond, is not to be frustrated, the bonds along
the chain are alternately frustrated. This is why the
chain is unstable to dimerization in the low-spin state.

In Table VI we present the magnetic gap of the distort-
ed chains along with the gap in the undistorted chains for

TABLE VIII. Spin density in different spin states in the spin model of 19 and 22 sites {Fig.8 gives site numbering).

Site

1

2

3
4
5

6
7
8
9

10
11
12

S=—'
2

—0.0894
0.0337

—0.0890
—0.0046
—0.0707

0.0686
0.2148

—0.2694
0.4175
0.5748

—0.2695
0.4174

S=='
2

0.4017
—0.2826

0.4020
0.5058

—0.3990
0.5828
0.6687

—0.4845
0.7278
0.7429

—0.4837
0.7259

N =19
S=—'

2

0.8050
—0.5018

0.8050
0.7606

—0.5151
0.7702
0.7500

—0.5139
0.7658
0.7486

—0.5139
0.7658

9
2

0.8269
—0.4298

0.8270
0.7341

—0.1878
0.8503
0.6286
0.0631
0.8964
0.5787
0.0645
0.8966

0.4396
—0.2974

0.4401
0.5061

—0.3883
0.5675
0.6359

—0.4690
0.6996
0.7317

—0.5015
0.7534

N =22
S=4

0.8050
—0.5018

0.8050
0.7606

—0.5151
0.7702
0.7500

—0.5138
0.7657
0.7484

—0.5135
0.7653

S=5

0.8195
—0.4570

0.8194
0.7453

—0.2965
0.8268
0.6665

—0.0755
0.8694
0.6067
0.0315
0.8910
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TABLE IX. Magnetic gap in the undistorted and distorted
polymers in the Heisenberg model.

System
size Undistorted

Magnetic gap
Distorted

7
10
13
16
19
22

0.1812
0.2392
0.1526
0.1724
0.1254
0.1365

0.1013
0.1360
0.0135
0.0577

—0.0562
0.0014

comparison. The distortion is such as to conserve the
average transfer integral in the Hubbard models at 1.0 eV
and in the PPP models at 2.4 eV to enable proper com-
parisons. Within this constraint, the transfer integrals
are reassigned to each bond so as to be roughly propor-
tional to the bond order. In Figs. 6 and 7 we give the dis-
tortion pattern used for the different spin states in the
Hubbard and the PPP models. In the PPP model, the po-
tential energy depends upon the intersite separation. The
intersite separations are also adjusted by inverting the
equation

r~ ~+, =( t„+2.40 eV—)I(3.21 eV)+1.397 A

which relates the transfer integral to intersite separation
around the mean distance of 1.397 A at which the
transfer integral is assumed to be 2.4 eV. We find that in

the distorted PPP and Hubbard chains, except for the
Hubbard chain with c.=3.0 eV, the ground state is the
low-spin state. In the Hubbard model with c.=3.0 eV,
the site energy is comparable to the correlation energy
and the bond alternation is also rather large; these condi-
tions are unlikely to be realized in polymeric systems of
the type we have considered.

We see the same behavior in the spin models as well.
In Table VII we present bond orders in the central unit
cell in various states for different system sizes. The bond
orders in the state Sg for all system sizes correspond to a
strong bond between the nodal site and the dangling site.
The bond orders of the two bonds in the chain are equal.
In the states with spin S =0 and —,', while the strongest
bond is still the bond between the nodal site and the dan-
gling site, the S =0 state shows a larger alternation in the
bond orders while the S =

—,
' state shows a much weaker

alternation. The bond orders in the state with spin S —1

are similar to those in the state with spin Sg. However,
in the state with spin S +1, the bond between the nodal
site and the dangling site is the weakest.

Our spin-density calculations show (Table VIII) that
the total spin of the unit cell rapidly approaches one in
the S state, and also that the ratio of the total positive-
negative spin density in the unit cell indicates that there
are larger positive spin densities on the dangling and the
doubly bonded atoms and a more sizable negative spin
density on the nodal atoms than in the Hubbard and PPP
models. In the S=

—,
' state the spin-density pattern in the

chain corresponds to that of a soliton with most of the

TABLE X. The ratio of the bond orders (P„)to the exchange integrals (J„)for systems with N=13,
16, 19, in the ground and excited states in undistorted and distorted chains. The indices i and j corre-
spond to the spin indices in Fig. 8.

13

Bond (i-j)

8-9

7-8
8-10

p,q

J
V uniform

0.760
0.567
0.563

P„
J.

, distorted

0.655
0.623
0.589

8-9

7-8
8-10

0.725

0.612
0.615

0.662
0.634
0.637

16 8-9
5-7
7-8

0.807
0.611
0.524

0.684
0.646
0.676

8-9
5-7
7-8

0.729
0.609
0.610

0.663
0.634
0.634

19 11-12
10-11
11-13

0.752

0.583
0.602

0.663
0.613
0.636

11-12
10-11
11-13

0.787

0.610
0.610

0.663
0.633
0.634
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spin density centered in the central unit cell. In the
S =S +1 state, the excess spin density (relative to the
S =S state) is concentrated around the central unit cell
and in the state with spin S=S —1, the spin density
around the edges of the chain is reduced relative to the
S=S state, while in the middle of the chain the spin
density corresponds to that in the ground state.

The chain is distorted so as to follow the bond-order
patterns in the respective states, as shown in Fig. 8. The
total exchange is retained so as to enable comparisons of
energies. The magnetic gap in the distorted chains is
presented in Table IX. We find that although the high-
spin state is the ground state in the distorted chains of
shorter chain length, in longer chains the ground state
switches over to the low-spin state just as in the PPP and
Hubbard (~a~=0) models. We have recalculated the
bond orders in the distorted chains to see whether the
distortions introduced in the chain are close to equilibri-
um. Table X gives the ratio of the bond order to the ex-
change constant for the bonds in the distorted and the
undistorted systems for spin models with N = 13, 16, and
19 in the lowest-spin state and in the state with spin S .
We find that this ratio is close to a constant value in the
distorted chains for all the bonds for a given N and S.
This implies that the distortions we have introduced in
the spin models are quite close to equilibrium. Our cal-
culation of this ratio in the PPP models showed a larger
spread in the ratio although this spread was considerably
smaller than in the undistorted systems.

While we have not considered the increase in lattice
energy accompanying the distortion of the polymers,
both in the spin models and the PPP or Hubbard models,
our calculations do show that at least in the case of
"soft" lattices, the high-spin state ceases to be the ground

state. However, given that in one-dimension, Peierls and
spin-Peierls distortions ' occur independently of the
stiffness of the lattice, we can say that the polymers are
indeed unstable to backbone dimerization for arbitrary
lattice stiffness. Thus in really long polymers of this type
it is unlikely that the high-spin state will be the ground
state.

IV. SUMMARY

The calculation of the energies of the different spin
states of the polymers in Fig. 1 calculated employing PPP
and Hubbard models shows that the high-spin state is the
ground state in long-chain polymers. While the state
with spin S —1 is nearly degenerate with the state with
spin S, the S =0 or —,

' state is separated by a finite gap
even in the infinite limit as shown by the calculations on
the Heisenberg spin systems. The studies on the Hub-
bard model show that the magnetic gap is maximum for
U=4t. Breaking the alternancy symmetry by introduc-
ing unequal site energies in the polymer only marginally
reduces the stability of the high-spin ground state in the
PPP model. In the Hubbard model with U=4t, the
high-spin state ceases to be the ground state for

~
e

~
)2. 5t.

The bond-order calculations show that the low-spin
state is susceptible to dimerization of the chain and that
the bond between the nodal and the dangling site is the
strongest. The spin-density pattern also suggests that the
chain in the low-spin state is unstable to dimerization.
The magnetic gaps in the dimerized chains show that the
ground state ceases to be the high-spin state. Therefore,
to succeed in the synthesis of long-chain high-spin poly-
mers it is essential that substituents be introduced along
the chain that prevent chain dimerization.
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