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We consider the effect of thermal fluctuations on the phase of the superconducting order pa-
rameter of the Abrikosov flux-line-lattice state of a type-II superconductor. While in the electro-
dynamic gauges usually chosen there are apparently divergent phase fluctuations, we show that
the gauge-invariant phase has a finite average value. Thus, conventional superconducting long-

range order is present in a three-dimensional flux line lattice.

The discovery of type-II superconducting material with
high-critical temperatures has brought renewed interest to
the study of the Abrikosov flux-line lattice (FLL). In par-
ticular, the relatively short correlation lengths in these
materials (and hence the correspondingly large values of
the Ginzburg-Landau parameter tc) and the high-critical
temperatures enhance the effects of thermal fluctuations
leading to, among other things, a large depression of the
melting temperature of the lattice below the mean-field
H, 2 phase boundary. ' The study of thermal fluctua-
tions in the Abrikosov state has led to some controversy
regarding the lower critical dimension of superconducting
long-range order, i.e., the dimensionality below which the
long-range order is destroyed at all temperatures. Some
authors4 7 s' have argued that three is the lower critical di-
mension with superconducting correlations decaying alge-
braically in that dimension. This conclusion is found on
examining the phase of the superconducting order param-
eter in the fluctuating flux lattice. With the choice of
gauge made by these authors, the fluctuations of this
phase diverge logarithmically in three dimensions, which
leads then to an algebraic decay of the order-parameter
correlations. In this paper we evaluate the gauge
invariant order parameter, and show explicitly that its
phase is finite in three dimensions. The previous results to
the contrary are apparently artifacts of the particular
choice of gauge.

Our starting point is the Ginzburg-Landau (GL) free
energy of a superconductor in the presence of an external
magnetic field, written in dimensionless units,
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Here, a. l,/g, where A, and ( are the penetration depth
and correlation length, respectively. The order-parameter
y is measured in units of the London solution, the mag-

r, , (z) R,, +s,. (z), (2)

where R,. (X, , Y, ,z) and s,, (s,", (z),s»(z), 0) is the dis-
placement of the point on the FL initially located at R,
Replacing X,, and Y,. in Eq. (2) by X,, (z) and Y,, (z) and
expanding to first order in s yields a solution iitt then of the
linearized GL equations. However, as first noted by
Brandt, this solution leads to a divergent order parame-
ter. Brandt obtained a well-behaved solution of the full
nonlinear GL equations by multiplying ittt by a slowly
varying function which modulates the amplitude and
phase of the order parameter but leaves the zeros at the
points defined in Eq. (2),

iit-ittt(1+8/2) e"». (3)

The functions 8 and g are then determined variationally
by minimizing the free energy. The results found by

netic field is measured in units of J2 H„where H, is the
critical fields, and lengths are measured in units of A, . The
microscopic field H and vector potential A are related by
V&A H. While the high-T, materials are anisotropic,
for simplicity we restrict our discussion to the isotropic
case shown in Eq. (1). It is relatively straightforward to
incorporate anisotropy into our subsequent analysis, at
least in the case where the magnetic field is along the c
axis of the crystal; we only consider that geometry here.

In the absence of fluctuations the GL equations that re-
sult from minimizing Eq. (1) with respect to variations in

iit and A yield the well-known Abrikosov triangular FLL,
with flux lines (FL's) parallel to the magnetic field which
we take to be along the z axis. It will be convenient to
work in the symmetric gauge specified by A (8/2)
&(zxr) where B (H(r)&, v, the brackets (&,v indicating
a spatial average. The Abrikosov solution for a FLL with
N lines is then given by
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Brandt reduce in the continuum limit of the lattice to
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The elastic propagator appearing in Eq. (12) is found
readily from the Hamiltonian Eq. (8) and is given by

G;.(k)=&s;(k)s (k))

and

2
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here k~ 2(l —b)/(2, and we have assumed that s(r)
spe'"', k (kd. ,k, ).
The s-dependent portion of the phase of the linearized

solution is given by

y(=, zp (Vxs).bx2. (6)
kd

Then from Eqs. (5) and (6) we find the phase of the wave
function Eq. (3) to be

4)t+xg= z (Vxs).bx (7)

Correlation functions of 4i can now be calculated readily
using the nonlocal harmonic elastic Hamiltonian derived

by Brandt. For the triangular FLL this energy takes the
form
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where PT (b;~ —k;ki/k ~), PL =k;kj/k&, and c~~ =cL
+cs6. The second term on the right-hand side of Eq. (13)
will not contribute to the integrand of Eq. (12) and we
find
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Since e44(k) and esp(k) are both finite and k 0, it is
clear that the integral in Eq. (14) will diverge in the in-

frared (k 0) regime. Power counting indicates that this
divergence will be linear in the size of the system, suggest-
ing that/our is the lower critical dimensionality. Previous
authors 7' have evaluated Eq. (14) using the form for
c44(k) valid at large k, i.e., k +&tzip), in which case
c44- (B /42r)&rpp)/k . This is incorrect, as the divergence
of &p ) clearly is governed by the behavior as k 0. In

any event were we to use this form for c44 in Eq. (14), we
would find
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where the elastic moduli are given by
z
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The integral in Eq. (15) is logarithmically divergent with
the system size, suggesting that three is the lower critical
dimensionality for superconducting long-range order.

We now demonstrate that these divergences have no

physical significance by considering the gauge-invariant
phase of the wave function which, in our dimensionless
units, is given by

&rap) &
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and P 1.16 for the triangular FLL.
The thermal average of iiy within the ensemble of elastic

fluctuations governed by the quadratic Hamiltonian Eq.
(8) is readily calculated. The contribution from the am-
plitude modulation 8 will be ignored as it is innocuous
(i.e., finite). We then have
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where using Eq. (7)

dk, mAz dkd (ixk);(zxk)~
&iIy2) -b 'x-4

4p 4x «2x k'
x &s;(k)s, ( —k)) . (i 2)

Here & ) denotes a thermal average with respect to the
Hamiltonian Eq. (8). In Eq. (12) we have assumed, for
simplicity, a circular Brillouin zone, in the plane perpen-
dicular to the fields, of radius A, where A -2b/(

Vxh = —tpQ. (i 7)

Here hazy=
~ tiy~, and Q is the super velocity given by

Q=A —(1/x)V&. The field h, after local averaging
(which will suffice for our calculation of long-wavelength
pr~~o. rties) has the form
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Using Eqs. (17) and (7), and the definition of Q, we then

where we have chosen p(0) p(0) 0. The vector poten-
tial A is given by Brandt's solution of the nonlinear GL
equations. The result is stated in terms of the correspond-
ing magnetic field h H —Bi which satisfies the second
GL equation
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find
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(19)

clear from power counting that the second motnent (p )
will be finite in three dimensions because of the removal of
this singularity at k=0. We see then that the apparent
breakdown of long-range order given by Eq. (14) is an ar-
tifact of the choice of gauge, whether it is the symmetric
one used here or the asymmetric gauge used by previous
authors.

From Eq. (16) we find [the last term of Eq. (19) makes no
contribution to the integral in Eq. (16)) that

(z Vxs)-, (V'»z) y1.bet
k '+ &cup) k~+(NQ) "o

(20)

Unlike p, p has no singularity at k 0. Furthermore, it is

We acknowledge helpful discussions with J. M. Koster-
litz and P. A. Lee. One of us (A.S.) acknowledges sup-
port from the Norges Teknisk-Naturvitenskapelige
Forskningsrad, the Corinna-Borden Keen Foundation,
and National Science Foundation (NSF) Grant No.
DMR87-17817. R.A.P. was supported by NSF Grant
No. DMR86-03536.

'Present address: Forsvarets Forsknings-Institutt, 2007 Kjeller,
Norway.

'P. L. Gammel, D. J. Bishop, G. J. Dolan, J. R. Kwo, C. A.
Murray, L. F. Schneemeyer, and J. V. Waszczak, Phys. Rev.
Lett. 59, 2592 (1987).

P. L. Gammel, L. F. Schneemeyer, J. V. Waszczak, and D. J.
Bishop, Phys. Rev, Lett. 61, 1666 (1988).

3D. R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D. R. Nelson
and S. Seung, Phys. Rev. B 39, 9153 (1989).

4M. A. Moore, Phys. Rev. B 39, 136 (1989).
5A. Houghton, R. A. Pe)covits, and A. Sudb, Phys. Rev. B 40,

6763 (1989).
sE. H. Brandt, Phys. Rev. Lett. 63, 1106 (1989).
K. Maki and H. Takayama, Prog. Theor. Phys. 26, 1651

(1971).
sR. Ikeda, T. Ohmi, and T. Tsuneto (unpublished).
sE. H. Brandt, J. Low Temp. Phys. 26, 709 (1977); 26, 735

(1977);28, 263 (1977); 28, 291 (1977).


