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By taking into account space-charge e8'ects, general expressions for carrier distributions and pho-
tocurrent are derived for the case of a small steady-state photocarrier grating (SSPG) in a finite elec-

tric field. Conditions are specified under which the continuity equations can be linearized and

solved analytically. It is shown that the approach of spatially averaging local resistivity in the pre-

vious treatments of SSPG transport can be flawed. It is argued that the drift motion of electrons
and holes is predominantly bipolar rather than ambipolar as asserted earlier. The prerequisites for

determining the ambipolar diffusion length L by the SSPG technique are identified and compared to
those obtained before. It is demonstrated that under the weak-field condition, L can be evaluated

without the lifetime-regime or ambipolarity restriction, particularly when the recombination life-

time ~ is known. When the dielectric relaxation time is far shorter than ~, the transport equation is

reduced to the familiar formula derived by assuming space-charge neutrality. Also illustrated is the

possibility of deducing the ratio of electron-to-hole drift mobility through the electric field depen-

dence of photocurrent under the strong-field condition.

I. INTRODUCTION

The ambipolar diffusion length L is largely a measure
of the diffusion length of the less mobile type of carriers
(presumably holes) and is an important parameter for bi-
polar semiconductor devices such as transistors and solar
cells. ' Recently, the steady-state photocarrier grating
(SSPG) technique was proposed to measure L in those
semiconductors such as hydrogenated amorphous silicon
(a-Si:H) and its alloys, in which L is on the order of a
fraction of 1 pm. ' For these materials the SSPG tech-
nique is preferable over the more traditional surface pho-
tovoltage technique which tends to overestimate L due
to carrier drift in the built-in electric field near the junc-
tion region. In the original analysis of SSPG, a simple
formula relating photoconductivity to L was obtained un-
der the assumption of space-charge neutrality. ' Subse-
quently, by numerically solving the steady-state continui-
ty equations for photoelectrons and photoholes, it was
recognized that the simple formula is valid only under
the conditions of fast dielectric relaxation and weak elec-
tric field (see discussion below). More recently, an ex-
pression for steady-state photoconductance under the
presence of a small photocarrier grating was obtained for
the case of a negligibly small, externally applied electric
field. This paper, which is based on a conference re-
port, ' presents general formulas for the distributions and
transport of photocarriers in a finite electric field by al-
lowing for space-charge non-neutrality and electric-field
grating. In Sec. II, conditions are stated under which the
continuity equations can be made linear. These equations
are then solved analytically to express the gratings of
photoelectrons, photoholes, and the electric field in terms
of several physically meaningful ratios. Section III
presents an analysis of transport in SSPG using the con-
tinuity equation for electric charge. It is shown that the
earlier approach for SSPG transport by spatially averag-

ing the local conductivity' is inadequate unless the ra-
tio of photocarrier lifetime v. to dielectric relaxation time

~„~ is suSciently high, It will become evident that elec-
tron and hole transport is bipolar rather than ambipolar
as previously believed. Section IV discusses the applica-
tion of the transport formula to the study of the transport
of the less mobile type of carriers (holes). The conditions
under which the general photocurrent formula' can be
reduced to the popular, simple formula' will be specified
and compared to those proposed before. ' It is suggested
that, in principle, L can be determined even if the lifetime
regime or the ambipolarity requirement (r/~„, )) l) is
dissatisfied. This becomes particularly feasible once v. is
known. ' Also discussed is the possibility of deducing the
ratio of electron to hole drift mobility (p„ /p ) by study-

ing the field dependence of photocurrent when diffusion
is negligible compared to drift.

II. PHOTOCARRIER AND ELECTRIC-FIELD
GRATINGS

The original idea' of the SSPG technique is to observe
the effect on photoconductivity of a small spatial modula-
tion (or grating) of photocarrier concentration whose am-
plitude depends inter alia on L. Photocarrier grating is
produced by an optical excitation grating from two in-
terfering laser beams I, and I2, which satisfy I, &)I2.
This leads to a small grating of optical excitation riding
on a much stronger uniform background generation of
electron-hole pairs. For penetrating illumination, the
generation rate G (x) is given by'

G (x)=Go+ EG(x ) =v[I, + I&+ 2yo+I &Izcos(kx)],

where ~ stands for the optical absorption coefficient
at the laser wavelength k, k = 2m /A, where
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A=A. j[2sin(6/2)] is the optical grating period, 5 is the
angle between the two beams, yo (0(yo~ 1) is the
interference-quality factor, ' x is the coordinate perpen-
dicular to the interference fringes, and Go=x(I'&+I2) is
the generation rate from the uniform background il-
lumination. The excitation grating

EG(x) =2~yo+I, Iicos(kx) =G, cos(kx) (2)

has an amplitude of G, =2m.yo(I, Iz)' . The densities of
electrons and holes, N (x) and P (x), are modulated by b G
to become

and

N(x) =No+bN(x)=NQ+bN (3)

P(x)=PO+AP(x) =Po+AP, (4)

J=—D +PpE,aP

where E is the electric field,

E =E(x)=Eo+b,E(x),

where Np and Pp are the uniform background carrier
densities in the absence of coherence between I, and I2,
AN and AP are density gratings of photoelectrons and
photoholes. It should be emphasized that N and P here
represent the total densities of electrons and holes, rather
than the mobile carriers alone (as is the case in Ref. 4).
For noncrystalline semiconductors (e.g., a-Si:H) with lo-
calized band-tail states, " N (P) is the sum of free and
trapped electrons (holes). For undoped samples or doped
samples with low dark current relative to photocurrent,
Np =Pp as a result of the prevailing local charge neutrali-
ty in the bulk (assuming that Ohmic contacts' ' are
used and that the current is not space-charge limited' ).
Since 6, &&Gp, AN and bP are perturbations to Np and
Pp, respectively. Thus, the following discussion regards
as approximately constant the local drift mobility' and
diffusion coefficient for electrons (holes), p„(pz) and

D„(D ), which generally vary with carrier densi-
ties. ' ' In the present context, p and D refer to the
averaged mobility and diffusion coefficient over all mobile
and trapped carriers. In the unlikely event that the aver-
age mobility of photocarriers differs significantly from
that of dark carriers, the subsequent analysis is applicable
only to the situation when the photocurrent is consider-
ably larger than the dark current.

Let J„and J be, respectively, the fluxes of electrons
and holes in the x direction. J„and J are made up of
diffusion and drift terms:

J„=—D„—Np„E,aw

dE d (hE)
dX dX

(bP 2—!N),
EEp

where e is the dielectric constant of the sample, E'p the
dielectric permittivity of the vacuum, and e the electronic
charge. It will become evident shortly that hE, and
therefore space charge, is nonvanishing unless D„=D
and ED =0 (in which case there is no electric current). In
writing Eqs. (5) and (6), it is assumed that if there is a
high density of dark carriers, these have the same drift
mobility as that of the photocarriers. This assumption
seems reasonable if the majority of the traps (e.g., in non-
crystalline materials" ) are not much deeper than the
thermal energy kz T (where kti is the Boltzmann constant
and T the temperature), such that excess carriers in the
extended states are in near equilibrium with those in the
localized states.

Now let R be the recombination (not deep trapping)
rate of excess electrons and holes. R =Rp+AR, where
R p Gp is the recombination rate in the absence of any
photocarrier grating (bG =0), and hR results from the
variations of local densities of photocarriers. Note that
b,R is the same for photoelectrons and photoholes, since
recombination takes place between the two types of car-
riers. The steady-state continuity equations for hN and
4Pare '

D
d'(bN)+ Ed(~N)+ NdE ~R+b, G=O,n

d 2 Pn d Pn

d (hP) d(b, P) dE
D p, E — ppP —b—R + b, G =0 .

(10)

For small photocarrier gratings, AR can be approximated
by

hR = (bN+bP),1

27

where ~ is the photocarrier recombination lifetime, or the
small-signal photocurrent response time from the steady
state, ' ' under a uniform excitation of Gp:

1 BR BR

aNG, aP G,
' (12)

~here the derivatives are to be taken with respect to the
density of photocarriers (excluding dark carriers). Note
that in noncrystalline semiconductors of a high density of
traps ~ can be much greater than the free-carrier lifetime,
as most of the carriers are immobile. ' ' Combining
Eqs. (2), (8), and (ll) with Eqs. (9) and (10), one gets the
coupled equations for hN and AP:

consisting of an externally applied field Ep and a field
grating EE(x). The field grating is brought about by un-
equal diffusion rates and/or opposite drifts of electrons
and holes. AE is related to the space-charge density
e(P N)=e(bP bN) —by the Poisson equat—ion (in ra-
tionalized units)

D + E + N(bP hN)—p„ p„
X 0

1 (hN+bP)+G, cos(kx)=0 (13)
2v

and
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d (bP) d(bP)
P d 2 PP dx p P(hP b—N)

EEp

1 (~N+'P)+G, cos(kx) =0. (14)
27

The exact solutions to Eqs. (13) and (14) are prohibi-
tively complicated because of the nonlinear terms such as
AE d(bN)/dx and AN bP. The problem is enormously
simplified when the above equations are linearized by re-
placing E, N, and P with Ep Np and Pp, respectively.
Then one gets sinusoidal solutions of the following form:

AN=AN cos(kx+P„) =N&cos(kx)+Nzsin(kx), (15)

b,E=[(E ) +(E )~]'~~ (24)

and using the expressions for E& and E2 to be given
below.

Several parameters need to be introduced now. The
ambipolar diffusion length L is defined as

L =~rD, (25)

p Eod(bP)/dx and p bEd(bP)/dx [or

p~ hP d(bE)/dx] in Eq. (10). The self-consistency of the
linearization of Eqs. (13) and (14) can be checked a pos-
teriori using Eq. (22) and/or Eq. (23) by observing

AP =bP cos(kx+P ) =P,cos(kx}+Pzsin(kx), (16)
where D is the ambipolar diffusion coefficient given by '

[note No=PO and Eqs. (20) and(21)]

D k»p AE, (18)

because the amplitudes for D d(b, P)/dx and

@&ATE d(bP)/dx [and p bP d(bE)/dx] in Eq. (10) are

D bPk and p b,Eb,Pk, respectively. A similar rela
tion

D„k »p„hE (19)

can be obtained from Eq. (9). Note the well-known Ein-
stein relation

DE=DE cos(kx+Px)=E, cos(kx)+E~sin(kx), (17)

where the P's are the phases with respect to EG. The
linearization approximation will be justified if the oscilla-
tion amplitudes of the nonlinear terms are much smaller
than those of the linear terms (see a similar discussion in
Ref. 4). When Eo is low, such that carrier distribution is

largely controlled by diffusion rather than drift in an
external field, the linearization requirement is

p„D +p D„2D„Dp
p. +p D. +Dp

(26)

The dielectric relaxation time ~„& of the sample under
photogeneration Gp is related to the conductivity 0. by '

arel

6'6p E'6'p

eN (p„+p )
(27}

or r„,~=8.8X10 ' e/cr (in sec) when o is expressed in
units of(Qcm)

It is straightforward to solve a set of four linear alge-
braic equations for N „N2, P &, and P2 obtained by insert-
ing Eqs. (15) and (16) into the linearized Eqs. (13) and
(14). After lengthy manipulations and rearrangements of
various terms (the tedious bookkeeping details will not be
reproduced here for sake of space), with repeated use of
Eqs. (20) and (21), one gets

eD
PP= k, T

and

eD„
Pn=k T

(20)

(21)

(&+Ia+ 1 (I+1 )+d
4b

1+b l2+ + 1 bd2
2b 2b

(28)

for electrons and holes; Eqs. (18) and (19) become roughly

k&T&e AE A,

G, ~
P]= 6+Ia+ I (1+1 )+d

4b

E, »AE, (23)

i.e., the thermal energy must be greater than the max-
imum potential energy associated with the oscillating
internal electric field of amplitude b,E and period A. Ob-
viously, this precondition can be satisfied if 6, , and
hence the photocarrier grating, is sufficiently small. Note
that Eq. (22) is analogous to, and more transparent than,
the condition proposed in Ref. 4 [Eq. (3.12)]. When Eo is

strong such that carrier drift is significant in determining
the photocarrier gratings (the weak-field and strong-field
conditions will be spelled out in Sec. IV), an additional
requirement for the linearization of Eqs. (9) and (10), or
Eqs. (13) and (14), arises,

P2=

G) ~d

W~b

1+bi + + b —1d
2

+ 1 (1+1)
4b

+d2+ b 1 l2+ b —1
a

4b 2

(5+1a+ i (1+1')
4b

+d2+ 1 —b l2+ 1 —b

4b 2b

(29)

(30}

(31)

which is derived by comparing the amplitudes of where
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and where l, a, b, and d are given by

l k
2mL

A

and

Pn Dn
b:—

Pp Dp

2% )/pq pp 'rEOd:—k pnpprEO
A

+ (b+1) 12 (1+12)+d2 +(b —I}'d2
4b 4b

(33)

(34)

(35)

(36)

It is evident that the "in-phase" component of bE(E, ) is
caused by the external field Eo while the "out-of-phase"
component of AE (E2) is mainly related to the difference
in electron and hole diffusion coefficients signified by b
(bE2=0 if b =1). The physical origin of hE in the case
of zero Eo is the same as the Dember effect. ' By insert-
ing some trial values for various parameters into Eqs. (37)
and (38} (e.g. , b near 10, 1 and d near unity), one can veri-

fy that the linearization conditions (22) and (23) are
satisfied if a is close to or greater than unity and G]~( 1 X 10 cm ( ((No). If a is far smaller than unity,
however, the space-charge effect can be severe (with a
significant internal field grating) for a finite G, r when nei-

ther I nor d is much greater than unity. In this case, not
to be further examined, the above solutions for photocar-
rier and field gratings become invalid, and photocarrier
diffusion and drift in internal as well as external field are
closely coupled.

E) = —Eo
No W(

a+ 1 (1+1 )
4b

The meanings of the dimensionless ratios l, a, b, and d
are self-evident. The likelihood of blurring the photocar-
rier gratings by diffusion depends on 1. The degree of
blurring the photocarrier gratings by drift in an external
electric field is gauged by d, the ratio of the geometric
mean of the electron and hole drift length to A. The pho-
tocarrier gratings are most pronounced when l and d are
small. When 1 and/or d are large, the photocarrier grat-
ings are smeared out by diffusion and/or drift (b.N and
AP vanish). The tendency of space-charge generation due
to different diffusion coe%cients of electrons and holes is
reAected in b: The bigger the deviation of b from unity,
the stronger the tendency. The material's ability to neu-
tralize photocarrier-related space charge is measured by
a, since fast dielectric relaxation (relative to recombina-
tion) prevents the buildup of local charge and field grat-
ing. Note that due to the symmetry of the continuity
equations, the solution for hP is obtained by substituting
d and b with —d and 1/b, respectively, in the expression
for 5¹The totality of a, b, l, and d determines the am-
plitude and phase of the photocarrier gratings. As ex-
pected, N2 and P2, which are the "out-of-phase" com-
ponents of b,N and bP (with respect to b, G), are induced
by the external field and diminish when ED=0 (d =0).
Space-charge neutrality (hN =AP) is well maintained
only if either a is very large (compared to bl2) or b is uni-

ty, and only for small Eo (d) (see Sec. IV).
The electric-field grating can be computed according to

Eq. (8) using Eqs. (15)—(17) and (28)—(31}. One thereby
obtains

III. PHOTOTRANSPORT

In the previous discussions on phototransport in the
presence of a small SSPG, ' the photoconductivity was
computed, without proof of validity, by averaging the lo-
cal resistivity or inverse conductivity (in a "series resis-
tor" model) according to

1 p& dx
A "0 cr(x)

(39)

where

o (x)=o 0+e[p,„bN(x)+@~ bP(x)] (40)

and where cro=e(Nop„+P01L ) =. eNO(p, „+p, ). It will be
shown in the analysis to fo11ow that, unless a is much
greater than 1 [rim„, »(2mL/A) ], this recipe of relat-

ing o„,to the measured photocurrent is incorrect.
The current density j will be written as j(I, ,Iz) and

j(I, +Iz) =jo, respectively, for the two cases when I,
and I2 do and do not interfere with each other. The con-
tinuity equation for electric charge is

~Q + (3J
()

Bt Bx
(41)

where Q is the charge density. In the steady state,
BQ/dt =0; consequently j (I, , Iz) must be constant at all

x. This occurs because the spatially varying diffusion-
related current [D„d(bN)/dx&D d(bP)/dx] is locally
offset by a spatially varying component of the drift
current of equal magnitude and opposite direction. From
Eqs. (5) and (6), one has

and

eGiw
E =

eeok8 2b

(b —1) l~
4b

b+1)
a + 1 ( 1+1')1'+d

4b

(37)

(38)

j(I„I,) =e (J~ —J„)

=e D„D+E(p„N+—p P) =const,dX dP
dx dx

(42)

where N, P, and E are given by Eqs. (3), (4), and (7). In
view of the fact that AX, AP, and AE are sinusoidal func-



PHOTOTRANSPORT UNDER THE PRESENCE OF A SMALL. . .

j(I, , I2 ) =jo+—f b E(p„bN+ p bP)dx

where

=Jp+~J ~ (43)

jo:j(I,—+I&)=e()J,„NO+@ Po)EO

=eNO(p„+p )Eo (44)

is the background current density (when b, G =0). The
change in current density resulting from an illumination
grating is governed by the photocarrier and electric field

gratings

tions given by Eqs. (15)—(17), the average (or integration)
on both sides of Eq. (42) over a period A eliminates those
terms linear in hN, b,P, and hE to yield'

bE= [(Ni P2)—cos(kx)+(P, N, —)sin(kx)] . (46)
EEpk

Inserting Eqs. (15), (16), and (46) into Eq. (45), one finds

2

bj = (iLt„+p )(N2P, N, P—i) .
2EEpk

(47)

Inserting Eqs. (28) —(31) into Eq. (47), one finally arrives
at the general transport formula, '

bj =j(Ii,Ii)—jo=—f bE(p„bN+p, bP)dx . (45)
p

Equation (45) shows that, strictly speaking, the field grat-
ing is never negligible (and space charge must exist) for
nonvanishing hj. The second-order terms are critical for
transport analysis. From Eqs. (8) and (15)—(17), the field

grating can be written as

'2
jo Gir a (a + li) Jo

2 Xp 8' 2

(G, r/No) a(a+1 )

+ 1 (1+1 )+d + d
4b 4b

(48)

Aj a+I Aj (49)

where bj, given by Eq. (48), is the correct expression for
[j(I,, Iz) —j(I, +I&)] derived earlier from the principle
of current continuity in the steady state. Equation (49)
reveals that j(I, ,Iz)=cr+o+bj Wo,„,Eo. Clearly, the
approach adopted by earlier workers' to equate cr,„,Ep
and j(I, , I2) is appropriate only if a )&1 (or in practical
terms a )) 1 because bj vanishes when 1 &) 1), in which
case cr„,Eo =jo+ b j according to Eq. (49). The failure of
the "series resistor" model may occur because the SSPG
is not a passive system, and carrier diffusion (in addition
to drift) can play a role in the macroscopic transport in

response to an external field.

where the quantities 1, a, b, d, and jo=j(Ii+Ii) are
given by Eqs. (33)—(36) and (44). The negative sign for b j
indicates that the photocurrent under an excitation grat-
ing, j(I„I2),is always less than or equal to j(I, +I2) un-

der a uniform illumination. Intuitively this makes sense
because the current flow is limited by regions of lower
density of carriers under nonuniform photoexcitation.
As expected, bj vanishes if 1 and/or d are much greater
than unity (smearout of photocarrier gratings due to
diffusion and/or drift). It is worth noting that bj varies
linearly with the applied field Ep only at low Ep because
d and jp are both proportional to Ep.

Using Eq. (40) and noting Eqs. (15), (16), and (28) —(31),
it can be readily shown that the spatially averaged con-
ductivity o,„„in Eq. (39) is

2

cr =0'0 [(p Ni+p Pi) +(ict N~+ppPi) ]
20p

In an earlier publication, ambipolar mobility ' was
supposedly determined for a-Si:H through the analysis of
field dependence of j(I„Iz) under the erroneous assump-
tion of space-charge neutrality (b,N= b,P). It was argued
subsequently that ambipolar mobility would not be van-

ishing if the small-signal drift mobilities for electrons and
holes differ in dissimilar ways from p„and p under a
uniform excitation. However, the preceding analysis in
this manuscript shows that the effect of Ep is to pull pho-
toelectrons and photoholes in opposite directions so that
space charge is produced. Thus the drift motion of elec-
trons and holes, signified by d, is bipolar, not ambipolar
(electrons and holes drift together to keep charge neutral-
ity), even if a is large and space-charge density is low (un-
like the argument in Ref. 2). Since there is no physical
reason for the small-signal mobilities ascribed to b,N and
AP to differ greatly from those of the background carriers
No and Po, the derivation of Eq. (48) in this article ought
to be principally valid. Therefore, contrary to the reason-
ing in Ref. 2, the field dependence of bj (even at low Eo)
must be mainly through d or the geometric average of
electron and hole mobilities, rather than some speculated
ambipolar mobility. '

To conclude this section, it should be noted that Aj,
which can be written as

bj =—j (I, ,I, )
—j(I, +I, )

=[j(Ii,I2) —j(I1 )]—[j(I1+I2) j(I1)]—
is an experimentally measurable quantity because

[j (I, +Ii ) —j(I, ) ] and [j ( I, , I2 ) j(I, ) ] can be detec—t-
ed, respectively, by chopping the light beam I2 when I,
and Iz do not and do interfere with each other (see Refs.
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and 3). Also note that while j(I i +Iz ) j—(I, ) is always
positive, j (I„Iz)—j(I, ) can be positive or negative de-
pending on 1 and d. Hence the phase of [j(I„Iz )

—j(Ii ) ]
with respect to that of [j(I,+Iz) —j(I, )] needs to be
monitored.

IV. DISCUSSION

A. The weak-field condition

Previous investigations' established that L could be
deduced from the variation of j(Ii,Iz} (or hj in this Pa-
per) with 1 by adjusting the grating period A. In this kind
of experiment, the applied field Eo should be small to
prevent any drift blurring of the photocarrier gratings.
An inspection of Eq. (48) suggests that, for any finite b, if
the following conditions

d «a, d « I (51)

are fulfilled, Eq. (48) can be simplified by dropping the d
terms to become

Information about transport of the less mobile type of
photocarriers (holes) is embodied in L and b, which can
be probed using Eq. (48). To avoid the difficulties associ-
ated with severe space-charge effect, only the situation of
a & 1 will be discussed.

~(p„+p )keT
(55)

in Eq. (52) can be readily computed from the mobility-
lifetime' ' product, (p~) „derived from the steady-
state photocurrent j,=jo —jd„k (jd,„k is the dark
current) according to'

j,.=eN,.(1 .+1,}Eo=e(1r),.GoEo (56)

where N, is the photocarrier density. Equation (56) as-
sumes that the illumination is nearly uniform over the
volume of the sample, and that the quantum eSciency of
photogeneration of electron-hole pairs' ' is unity for
photons of near-band-gap energies. Since the photo-
current usually shows a power-law dependence on the
photon flux or the generation rate Go, j, o- Go, where a
is a constant typically between 0.5 and 1, one has from
Eq. (56)

N, O-GO, (57)

If a =~/~„, is estimated by measuring ~ in the small
signal photoconductivity decay experiment, ' Eq. (52)
can be employed to deduce L. This is feasible because the
factor

(1+1) (b+1) ~(D +D }

4b 4b 2
1= (kL}= k

hjm, „a(a+1 )

b+1
a + lz (1+lz)

4b

2 (52)
provided that lz„and pz are insensitive to Go (i.e., only 7

varies with carrier density). Using Eq. (57) to compute
the small-signal 7. according to Eq. (12), one finds

where bj,„=(G,z/No) jo/2 is a Positive constant (with
a fixed Eo) derivable in the limit of 1 «a. For semicon-
ductors with low defect density, a & 1 can be expected as
~„~ can be made small relative to ~ under moderate il-

lumination. Note that Aj is most sensitive to the change
of I when 1 is in the neighborhood of unity (1—1). Thus,
in practical terms, the weak-jteld conditions in Eq. (51)
can be approximately stated as d &&I or simply d &(I
for samples with a & 1 and with a finite b (e.g. , b &20).
According to Eqs. (33) and (36), this condition stipulates

L
Ep (( L

rid v'b
L

rD, v'b
(53}

where Eq. (20) is used. For b » 1, Eq. (26) gives
D =2D, and from Eq. (25) one obtains L =2~D . Thus
Eq. (53) becomes

k~T
Eo «

bL
(54)

For b & 4, the above requirement is stricter than the one
suggested by earlier analyses, ' which specify
Eo &kzi T/(eL) (Refs. 2 and 3) and Eo «2zrkeT/(eA)
(Ref. 4, where A=2mL is considered) to justify the nu-
merical and analytical solutions of the continuity equa-
tions obtained by neglecting Eo. Experimentally, the
weak-field condition is met if Eo is well below the onset
of sublinearity in the relation of Aj versus Eo for all the
A used.

B(Np, )

aG,
aN,

(58)

or N, =rGo/ct. Inserting this into Eq. (56), one gets

Gjpc
r(p.„+@~) =a(pr)~, =

eGoEo
(59)

i.e., (pr)z, as conventionally defined' in Eq. (56) differs

by a factor of a from the product of (p„+p ) and w used
in Eqs. (13) and (14), because ~ is not the same quantity in

(ized), unless a= l. One concludes from the procedure

outlined above that L can be determined even if the life-
time regime or ambipolarity requirement (a & b) is not
met. Note that bj,„ in Eq. (52) can be eliminated in the
analysis of 5j versus 1 by taking the ratios of 6j measured
at different A under a fixed Eo. In this way, L can be
sought even if the dark current is high. ' This is different
from the standard routine' (best suited for photocon-
ductive insulators) of taking the ratio of
[j (I„Iz) —j(I, )] to [j(I,+Iz)—j(I, )]. In Passing, it is
worth remarking that, if r (and hence a) is unknown, one
may still be able to use Eq. (52) to explore both a and L.
In this scheme, one would search for a best fit to the data
of Aj versus A by adjusting the two parameters a and
L (1=2nL/A) in Eq. (52). The uniqueness of such a fit
needs to be tested.

In the so-called lifetime regime, r»r„, i (e.g., for de-
vice quality a-Si:H ), such that a »bl /4. For 1 near
unity, ifa )bor
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)
~rei Pp

(6O)

holds, space-charge neutrality is well kept (hN =dP, the
gratings of photoelectrons and photoholes essentially
overlap) and b,E is negligible, as can be demonstrated by
examining Eqs. (28)—(31), (37), and (38). In the lifetime
regiine, Eq. (52) can be reduced to show a simple depen-
dence of Aj on l,

jo G
bj= —bj (1+1 )

2 N 0

'2

(1+1 ) (61)

For a photoconductiue insulator whose dark carrier
density is low, one has No =N, =rGO/a by virtue of Eq.
(58). Inserting this into Eq. (61) one finds

bj= ——a (1+1 )
jo 2 —2 (62)
2 G0

which can easily be shown to be identical to the formula
derived earlier' under the assumption of space-charge
neutrality in a weak field. Formula (62) has been much
used in extracting L from a-Si:H and its alloys. ' The va-
lidity condition (a ) b) for Eq. (61) or (62) was previously
indicated by numerical solutions of the continuity equa-
tions. It has been established by numerical simulations
and by comparing L derived from Eqs. (52) and (62) using
wide-ranging values for a and b that, if a & b, an overesti-
mate of L will result' by adopting Eq. (62).

B. The strong-field condition

There exists the possibility that b can be inferred from
the field dependence of 5j when the diffusion terms in Eq,
(48) are negligible, i.e., when a ))bl /4 and d ))i . The
first condition is easily satisfied for the case of a ) 1 by
choosing large A so that i «1. The second strong jteld
condition is just the case opposite to the previously dis-
cussed weak-field condition (d « I ) expressed in Eq.
(54). Hence when

k~T
Ep ))

bL

holds, Eq. (48) can be written as (recall jo 0:Eo)

(63)

E0

b cr,„a

(b —1(a+d )+ d
4b

(64)

where Ao. ,„=Aj,„/E0 is a constant that can be estab-
lished at sufficiently low E0 such that d &(a. Because of
the following relation

k b
d =k (reap„p Eo) = [r(p„+p )Eo]n P 0 (b+1)2 n P 0 (65)

where (p„+p )r can be calculated using Eq. (59) from
the background photocurrent, Eq. (64) contains only two
independent unknowns, a and b. Should a be determined
through the measurements of ~, b can be deduced by
analyzing the variation of hj/E0 with E0 under strong
Eo (e.g. , d near a) with a fixed grating period A. Once b

is obtained, the hole diffusion length can be estimated
from the electron diffusion length (the two differ by a fac-
tor of b' ) attainable from steady-state photoresponse
(}us.),. It appears that the problem of deducing b be-
comes much more challenging when a is not known (the
photocurrent initial-decay experiment ' for determining
~ is by no means trivial). It is of interest to find out
whether or not both a and b can be found simultaneously
by using a and b as adjustable parameters in Eq. (64) to
search for the best fit to the data of Aj /Eo versus Eo.
An answer of yes to this question would prove useful for
semiconductors with small L that may not be measurable
using the weak-field procedure outlined earlier, as there
exists an empirical detection limit for L to about a few
hundred A using the SSPG technique. '

V. SUMMARY

This paper has shown that, under the presence of a
small optical excitation grating in a finite electric field,
the continuity equations can be linearized and solved
analytically provided that the electric field grating is
small compared with the thermal voltage divided- by the
illumination grating period A. The general formulas for
photocarrier densities and transport can be expressed in
terms of several dimensionless, physically meaningful ra-
tios: the photocarrier recombination lifetime ~ to dielec-
tric relaxation time r„,~(a =rlr„,~), the electron mobility
to hole mobility (b =p„/}Lt ), the ambipolar diffusion
length L to A (i =2rrL/A), and the mean drift length
of electrons and holes (}M„p )' rEO to A [d

m2(p„p )p' rEO/A]. Charge continuity analysis has
revealed that the series-resistor model in computing pho-
toconductivity' is appropriate only if a))l . For the
SSPG technique to be usable for determining L or b, a
should be near to or greater than unity so that space-
charge effect is not too severe to satisfy the linearization
condition for a finite excitation grating. In the weak-field
case, the lifetime regime or ambipolarity (a ) b) re-
quirement is shown to be favorable but unnecessary for
the determination of L, especially when ~ is measured.
Only when a is quite high can the SSPG problem be
treated by assuming space-charge neutrality, ' in which
case the general transport formula derived here is re-
duced to the more familiar, much used simple formula. '

The possibility exists that, by studying the dependence of
photocurrent on the applied field, one may be able to
deduce b and get an idea about hole transport.
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