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Employing a Landauer-type picture, the chemical potential at a certain site in a multiply-

connected wire system is expressed in terms of the transmission amplitudes between this site and the

external electron reservoirs. The result is applied to geometries involving rings containing magnetic

flux, in order to derive nonlocal quantum interference effects in the conductance. As an example,

h /e oscillations are obtained in the conductance of a wire with a "dangling ring" and in the conduc-

tance of a resistor in series with a ring. The general form of the scattering matrix of a three-

terminal "fork" governing the transmission of a ring is found and exemplified by an explicit calcula-

tion within the tight-binding model. This example shows that, in general, the scattering matrix is

not real (as assumed in previous studies), but that the qualitative results are not sensitive to the de-

tailed form of the matrix.

I. INTRODUCTION

The purpose of this paper is to study the magnetocon-
ductance of multiply-connected disordered structures
made of one-dimensional (1D) wires. Such geometries in-
volve junctions, wires, and loops' connecting several
terminals. By the term "junction" we mean a part of the
system from which several wires emerge. These junctions
are usually described by scattering matrices, and the ma-
trix elements of those satisfy certain relations dictated by
current conservation and other relevant symmetries.
The simplest example of a junction is a two-terminal one,
described by a 2X2 scattering matrix. In the Landauer-
type picture for the conductance ' the sample itself is
treated as a two-terminal junction, and its conductance is
given in terms of the transmission coefficient T. A three-
terminal junction is described by a 3X3 scattering rna-

trix. In previous studies of transmission through rings'
it was assumed that the scattering matrix of a fork with
two identical arms can be taken to be real. Due to the
current conservation condition, it then turned out that
the scattering matrix was given by a single real parame-
ter. However, the condition of current conservation im-

posed upon the scattering matrix of such a fork yields,
quite generally, that the matrix is given by four real pa-
rameters. It is therefore of interest to construct an expli-

cit example for the scattering matrix in order to check
whether the previously made reality assumption is not
too restrictive.

Using two- and three-terminal junctions as "building
blocks, " it is possible to construct and analyze more com-
plicated geometries, in which quantum-mechanical effects
in the conductance may occur. A simple example is a
junction with three leads, only two of which are connect-
ed to external measurement probes [see Fig. 1(a)]. In
such a system the "dangling" lead' affects the transmis-
sion coefficient, and hence the resistance. This comes
about through interference between the part of the wave
function which passes straight through the junction, and
the part which is reflected back from the dangling lead.
This is a nonlocal effect not expected in classical con-
siderations.

As another example consider two barriers connected in
a series [see Fig. 1(b)]. Using an expression for the local
chemical potential, measured at a certain "site" in a sys-
tem, it wi11 be shown that each barrier can affect the mea-
sured resistance of the other. By the term site we mean a
finite piece of the wire longer than the screening length
and the electron wavelength, e.g., a tight-binding site or
group of sites. One can define a local chemical potential
only on such scales, where averaging over wave-function
phases is possible. An expression for the local chemical
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potential can be given in terms of the site wave func-
tion, ' but its use involves the full wave-function calcula-
tion of the system. In Sec. II we show that in simple
cases the chemical potential at a site can be expressed in
terms of the transmission and reflection amplitudes be-
tween the site and the right and left external electron
reservoirs. Using this expression we can study the mag-
netoconductance of the various parts of our system, pro-
vided that we know the transmission amplitudes of its
constituents.

Other systems of interest are those involving rings. ' '"
Magnetic flux through a ring changes the interference be-
tween the parts of the wave function traversing the two
branches of the ring, bringing about periodic oscillations
in the transmission amplitude. This, in turn, can cause
oscillatory nonlocal effects in other parts of the system.
Two such systems are analyzed in Sec. III.

(a)

In Sec. II we investigate the scattering matrices of sim-
ple two- and three-terminal scatterers in the tight-binding
(TB) model, ' ' and discuss the number of parameters
necessary to describe these matrices. The TB scattering
matrix obtained for the three-terminal junction is in gen-
eral complex. This shows that the assumption of a real
scattering matrix made in previous ring transmission
studies' is too restrictive, although it does not appear to
affect qualitatively the calculated transmission through
rings. In Sec. III we derive the transfer matrix of a ring
containing magnetic flux, and the transfer matrix of a
junction of a wire with a dangling ring [Fig. 1(c)]. The
effect of these two systems on a barrier connected in a
series to them (see insets to Figs. 4 and 5) is then calculat-
ed. These cases exemplify nonlocal quantum interference
effects in the conductance. Such nonlocal effects have re-
cently been obtained experimentally. ' ' Section IV in-
cludes our conclusions. In the Appendix we discuss for
completeness the scattering matrix which describes a
junction with inequivalent input and output channels.

II. THE CHEMICAL POTENTIAL INSIDE
A CURRENT-CARRYING 1D CONDUCTOR

(b)

FIG. l. (a) Schematic representation of a dangling wire con-
nected to leads. Quantum-mechanical refiections of the electron
wave functions from the end of the wire affect the resistance of
the intersection. (b) Two barriers in a series in the Landauer
picture. Interference effects cause each barrier to affect the
resistance measured across the other. (c) Dangling ring. Flux
through the ring changes the total transmission along the hor-
izontal wire.

In the I.andauer picture for the conductance of a disor-
dered system [see Fig. 1(b)], the sample is connected by
"ideal" wires to two electron reservoirs, of chemical po-
tentials pL and p„, respectively. '

pL and p~ are also
the effective chemical potentials characterizing the chan-
nels flowing out of the reservoirs on the ideal wires.
These reservoirs supply the external current flowing in
the system. The chemical potential at a certain site,
where a site is a piece of the system larger than the ap-
propriate screening length and the electron wavelength,
is defined as follows (at T=O K). We weakly connect
another reservoir to this site and adjust its chemical po-
tential so that no current flows between the reservoir and
the system. The chemical potential of the site under con-
sideration is then defined as that of the measurement
reservoir. In this way the local chemical potential can be
defined for a system which is not in equilibrium. We em-
phasize that the above definition of the local chemical po-
tential involves a "noninvasive" measurement by a probe
which is so weakly coupled to the system that its
influence on the system is negligible. This is different
from ordinary "voltage probes" used in many experi-
ments which do influence the system. ' The recent tech-
nique of the scanning tunneling microscopy voltage mea-
surement' demonstrates that such a procedure is feasi-
ble. In view of the recent emphasis in the literature' on
voltage measurements with "invasive" probes that are
strongly coupled to the system (as is the case in many
current measurements) we stress that the concept of a lo-
cal chemical potential is, ho~ever, well defined and use-
ful. This concept is based on Refs. 8, 9, 17, and 18, where
a local electrochemical potential is defined on scales
much larger than the electron wavelength and the screen-
ing length after self-consistent screening has occurred.
This can be measured by a weakly coupled probe, as first
suggested in Ref. 18. The assumptions involved are
that' '' ' the strength of the coupling to the weak probe
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is proportional to the absolute value squared of the wave
function at the measured site, or to the amplitude
squared of the traveling "channel" waves in the case of
ideal conductors. It then has to be assumed that the
strengths of the coupling to all channels at both direc-
tions are equal. This assumption is valid only after
averaging over the length scales mentioned above, or pos-
sibly over a range of energies. This problem will be more
fully discussed in Refs. 21 and 22. The possibility of such
a measurement will be shown in Ref. 21 rigorously for
the single-channel case and strong arguments for it will
be given in the multichannel case.

For a weakly coupled probe it ean be shown' that the
chemical potential p,„at site n [Fig. 1(b)] is given by

I i& lp'. I'&+pg & lp'. I'&

( /y'/') + ( fy" /')

Here ( P„'
~

) are the averages of the absolute value
squared of the wave functions. The average is carried out
over a wavelength, or a screening length (see below}. The
wave function P„ is defined as follows. Consider the
scattering state of the system defined by a wave emitted
with unit amplitude from the left reservoir towards the
right one. To the left of the system, in the ideal wire, the
wave function has an amplitude of P for the wave mov-
ing to the right, and rP for the reflected wave moving to
the left. To the right of the system, this scattering state is
a wave of amplitude tP, moving to the right. We denote
the amplitude of this scattering state at site n by P„.
Similarly, the amplitude at site n of the scattering state
emanating with unit amplitude from the right reservoir
towards the left one is denoted (()„". This scattering state
has amplitudes P" and r'P" on the right-hand side of the
system (for the waves moving to the left and to the right,
respectively) and r'p" on the left-hand side (for the wave
moving to the left). We emphasize that p„ is a property
of the site, not of the wave functions (() '". The values of
the latter are used to determine p„.

This general form for the chemical potential has been
previously' ' exploited to study the Hall-type voltage of
a small disordered sample. Ho~ever, its use involves the
full quantum solution of the system. But for the simple
geometries of the type portrayed in Fig. 1(b) and in the
insets of Figs. 4 and 5, one is able to express the local
chemical potential in terms of transmission and reflection
amplitudes.

Let us denote the transfer matrix of a scatterer by ~,
and the scattering matrix by o.. In general, o and ~ have
the forms

(4a)

AL
0 ~z B (4b)

Using Eq. (2) we then find

I
&g I'+

I B, I' = ', , (1+ lr,' I'}

and

plitudes" instead of wave functions, are discussed in the
Appendrx.

We now derive an expression for the local chemical po-
tential in terms of the scattering parameters of the sys-
tem. We take the wave functions entering the system of
scatterers from the left and right in Fig. 1(b) to have unit

amplitudes and take the wires connecting the system to
the reservoirs to be equivalent. We denote the transfer
matrix to the left of the site considered by ~L, and that of
the part to its right by ~z. Clearly, the transmission ma-
trix of the whole system, ~, is equal to ~z ~L, but note that
the determinants det~L and det~z do not necessarily have
unit magnitude when the central wire is different from
the external leads. A specific example is considered in
Sec. III. It shows that when the transfer integrals in the
tight-binding (TB) model are J, on the two external leads
and J~ on the central wire, then deter =(detiz }
=(J,sinq, /J2sinq~), q, and qz being the electron wave
numbers in the external and central wires, respectively.

The wave function P„at site n can be written as the
linear combination ALe'" +BL e '", where q is the wave
number of the scattering states and we take the lattice
distance to be unity. The absolute value squared of the
wave function contains cross terms which may not be
completely eliminated by averaging over a wavelength,
causing oscillations in the measured chemical potential.
In the following we will assume that such effects are rela-
tively small and ignore the cross terms. This could be re-
garded as using a "phase-insensitive" probe. The
averaging procedure involved in the chemical-potential
measurements' then implies that

& lp'. I'& =
I &~ I'+ l&~ ',

& I p". I"
&
=

I
& I'+ I& I' .

Having averaged over these quantities, no further averag-
ing process is required. To find (~P„~ ) and (~P„t ) in
terms of the scattering parameters, we note that

(2)

Current conservation implies that o is unitary and that
~det~~ =1 when the input and output channels are
equivalent. But when, for example, the channels have
different electron velocities, the elements of e have to be
modified by factors depending on these velocities, to
make cr unitary (as well as to make ~detr~= 1). These
modifications, which amount to considering "current am-

1 rgrL
t=t R p

1 rLrR

The local electron density, obtained from Eqs. (5) and

Here we have used the total transmission amplitudes
from the right (t') and from the left (t), obtained by mul-
tiplying two transfer matrices of the form (2),
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If the two leads to the system are equivalent then
t

I

= It' and we are left with'

pLlr I (1+Ir~ I )+p,~ Ital (1+IrLI

I &L I'(1+ Ira I')+ IrR I'(1+ rL I')
(9)

We now exploit this expression to derive the conduc-
tance of parts of our structures. Consider two barriers in
a series [see Fig. 1(b)]. For simplicity we assume that the
central wire in Fig. 1(b) is identical to the external leads.
The local chemical potential at site n' can be derived
from Eq. (9) by considering the system as a whole to be
the left scatterer, and the right scatterer to have unit
transmission amplitude. The chemical-potential dif-
ference across the right barrier is then

(6), can be very low for certain wave numbers, but
averaging over all the wave numbers will yield a density
close to the average electron density of the material. This
can be easily understood by considering the case of two
high and narrow barriers separated by a distance L. We
take all the wires in the system to be identical. If the bar-
riers are taken to be high enough, the scattering ampli-
tudes wi11 depend on the wave number of an incident
electron through the phase factors e' and e ' for tztz
and rLrz, respectively. The density (6) will have a maxi-
mal value between the barriers at the resonances, i.e.,
whenever tI is maximal (ll r„rr'

I

—is at a minimum).
Altogether, this occurs qF(L lm ) times for E (EF, which
is just the number of electrons expected to be in the wire
between the barriers.

Inserting Eqs. (5) and (6) into Eq. (1) we obtain the
chemical potential at site n [see (Fig. 1(b)] in terms of the
scattering parameters of the various parts of the system

p Itl It'
I

( 1 + Ir„ I ) +pa It'I tz I
( 1 + /r'

I )

I&l' I&' I'( 1 + Iran
I') + I&'I' &R I'( 1 + I'LL I')

plied by the number of electrons participating in the con-
duction per unit length and by the electron velocity. In a
one-dimensional system the density of states per unit en-

ergy is 1/~AU, where U is the electron velocity. Thus, the
total current, including spin degeneracy, is '

Dividing the current by the voltage drop across a part of
the system gives the conductance of that part. The con-
ductance of the right barrier is thus

—1+ +1 1

Tg Tz2e 2

1 1
1 ———

T Tz

1 2

Tg Tg T

(12)

The results obtained in this way are different from the
classical conductances. The conductance of an element
in a system can be larger than the conductance of that
element alone. The conductance of a part of a system can
be negative, although the conductance of the system as a
whole, given by the usual Landauer formula, ' is always
positive. Since the whole system is coherent and electron
thermalization and energy dissipation occur in the reser-
voirs alone, ' only the total conductance must be posi-
tive. ' In general, the conductances of the various ele-
ments of a system are affected by the scattering properties
of all the other elements. The relative effects will be
greatest when the scattering coefficients of the various
elements are of similar magnitude. Oscillations (e.g. , of
the Aharonov-Bohm type) in the scattering amplitudes of
one of the elements will cause oscillations, to a varying
degree, in the conductances of the other elements.

An example of the use of Eq. (12) is given in Sec. III.
We emphasize that these nonlocal effects are intrinsic to
the system and have nothing to do with the measurement
probes.

1 1+ —1
TR Tz

(10) III. THE TRANSFER AND SCATTERING MATRICES
IN PARTICULAR CASES

Here T, TL, and Tz are the transmission coefficients of
the entire system, the left and the right scatterers, respec-
tively. A similar expression gives the potential drop
across the left barrier. In reality, the potential drop
across a barrier is brought about by a piling up of charges
to its left and right, and by the electrostatic fields of these
charges. These static charges do not participate in the
conduction, and they disturb the constant potentials in
the wires only within a screening length of the barriers.
Further away charge neutrality is conserved because of
the strong electrostatic forces, leading to self-consistent
screening. '

The local chemical potential between the two scatter-
ers may be lower than the local chemical potentials on
the leads connecting the system to the external reservoirs,
but will always be between pz and p&. The current
through the system is equal to the electron charge multi-

A. General treatment of the scattering and transfer matrices

n'
(13)

where the sum runs over the nearest neighbors of n, c.„ is

the site energy, J is the transfer integral between nearest
neighbors, and E is the single electron energy.

Consider first the solution of Eq. (13) for a system com-
posed of two semi-infinite, ordered chains of site energies
c] and cz and transfer integrals J] and J2, respectively,
connected at site M of site energy E~ [see Fig. 2(a)].

In this section we calculate the 2 X 2 and 3 X 3 scatter-
ing matrices in the TB model for specific configurations.
We start by looking at a discontinuity along a TB chain
[see Fig. 2(a)]. Denoting the wave function at site n by P„,
the TB equations are
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Choosing J, and J2 to be real, Eq. (13) yields

o:, —1
On+1

1 0

J2
J2

E'2

c, —E
J,

for n&M, and

i =1,2,

cM —E
Jq

0

(14)

(15)

(bj +2 ~

for n =M. We seek the traveling wave solutions of these
equations. To this end we write

2
0

Ae ' +Be ', n~M (16a)

(16b)

Equation (14) then implies a& =2cosq& and a2=2cosq2,
which relates q, to the energy E of the electron, while Eq.
(15) yields the transfer matrix at site M:

FIG. 2. (a) Simple barrier in the tight-binding model. The
wires to the left and right have site energies cl and c&, and
transfer integrals Jl and J„respectively. The site energy at the
barrier site M is cM. (b) Ring in the tight-binding model. The
ring junctions are situated at sites X and L. The leads have site
energies c, and transfer integrals J, . The wires in the ring have
parameters c& and J2.

A~
~M

2 1

1

2iJ, stnqz (E E~+J, e '+ Jze '-)e iq
1 iq& i(q& —

q& jM(g —eM+ J)e +J2e )e
(17)

As detailed in the Appendix, multiplying ~M by velocity-
dependent factors will yield a transfer matrix which re-
lates the "current amplitudes" scattered by the system.
Let U, and Uz be the electron velocities in the wires to the
left and right of the scatterer, u, = (2/A') J, sinq „
vz =(2/A')J2sinq2, respectively. The matrix
=(u2/u, )' rM can be shown to have a unit determinant.
For M =0, 5'o is given by four real parameters, which is

the minimal number of parameters needed to describe a
general transfer matrix.

We now construct a unitary scattering matrix in the
TB model' for a three-terminal splitter, for the case in
which the scattering into and from two of the branches,
numbered 2 and 3, is the same (see left-hand side of Fig.
2(b). We start by reviewing the general properties of
3 X 3 unitary scattering matrices with two equivalent
branches,

C +K +K

tarity of 4',

lc I'+2IKI =1,
IKI+ Ia I'+ Ib I'=1,
c+ +K( a+b*)& KIKI+ab*+a*b =0 .

(19)

—B'
I

The solution of these equations yields that, in general, 4

a

where all four parameters are, in general, complex. The
parameters are related by equations arising from the uni-

FIG. 3. Schematic model of a ring with scattering in the
branches. Ideal leads are joined by splitters to a ring with two
scat terers.
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is given by four independent real parameters,

+'P& 1
—2, & = 'Pie~

P

Referring to Fig. 3, the traveling wave solutions are

(21a)

1 1
a = —(e'r&1 —2p+e' ), b = —(e'~'&I —2p —e' ),

(20)
0 & p (—,', 0 & a, P, y (2' .

P'„' =C&e ' +D, e ' n ~N,

P' '=C e '+D e ' n~N.
(21b)

(21c)

One of these parameters can be chosen as an overall
phase factor of the matrix.

We now derive the scattering matrix of a junction con-
necting three TB ordered chains, of which two are identi-
cal and are described by site energies c2 and transfer in-
tegrals J2. The third chain is different and has site ener-
gies e, and transfer integrals J, [see Fig. 2(b)]. This
scattering matrix and the scattering matrix for a mirror
image junction, will be used to obtain the transmission
and reflectance of a TB ring threaded by a magnetic flux
(Fig. 2(b).

Inserting these into the TB equation (13), we find

E —c, t
= —2J]cosq „E—c.2= —2J2cosq2, (22)

B)
C] =ON D

where

which relates the electron wave number to the wire pa-
rameters and electron energy, and

2iJ, sinq, 2iq~N—1 e
2~J2»nq2 i(q& —q&)N

D
2iJ2sinq2 i(q

1

—q~)N

D

2iJ&sinq] i(q —
q )N

D
2iJ2sinq2 —2iq, N—1 e

D
2iJ2sinq2 2;q N

D

2iJ, sinq»(q —
q )N

D

iq l lq2D =E—pN+ J)e '+2J2e

2iJ2sinq2 —2iq2N

D
2iJ2sinq2

1 e

(23)

In the Appendix it is shown that a unitary scattering ma-
trix S~ may be obtained from (23), using Eq. (A8), there-
by giving a specific example of the general form (18). For
N =0, So can be described by three real parameters, one
less than is necessary for the general 3X3 scattering rna-
trix obtained above [see Eq. (20)]. This means that there
are three-terminal junctions which cannot be described
by the simple TB scatterer we have analyzed.

B. A tight-binding ring

We calculate the transmission of the ring in Fig. 2(b)
using current amplitudes. To take the magnetic field into
account, we have to replace the transfer integrals on the
upper arm by J„„+,~J„„+,e', and on the lower arm

by J, „+,~J„„+,e ' . Here the phase 0 is chosen such
that the total phase change in going once around the ring
is equal to the total flux through the ring divided by
+o=ch /e. We also have to multiply the traveling wave
solutions of the upper and lower branches [Eq. (20)] by
e'" and e '", respectively. This leads to a scattering
matrix of the general form

K e
—iNO

K eiNO

The dependence of the parameters cN, KN, aN, and bN on
N is given by

—2Iqz N —2Iqz N
QN=e Q, &N=e

IqlN - I ql qr)Nc,=e 'c, ~'~, =V'~e

For the mirror image fork on the right-hand side of the
ring, situated at site L, the scattering matrix can be ob-
tained from Eqs. (24) and (25) by making the following
exchanges [see Fig. 2(b)]: DI ~Dz, CIVIC&, A I ~B, ,
Dz~D„Cz~C, , B', ~A, . The general form obtained
for SL is the same as (24), with Lexchanging ¹-

The transmission amplitude of a ring is found by solv-
ing the linear equations given by the scattering matrices
(24) of the ring junctions and the scattering matrices
describing the arms of the ring. In other words, there is a
dependence of A ', and B', on A

&
and B, . In this calcula-

tion, the amplitudes 3, B, C, and D, as well as the ma-
trices, refer to current amplitudes (see the Appendix).

The scattering matrix (24) can be used to find the
transfer amplitudes between the two arms of the ring,
with an additional term due to the external left branch

Q~„e'~' a 2iNO
Ne (24)

D2 . C)—2iNO —iNOg=e $N D e )vN
2

(26)

—iNO —2iNO
bNe where
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Q g-

Qp; bp; Qy

In addition, Eq. (24) gives

(27)

X.
Assuming scattering along the arms of the ring, the

waves along the upper and lower branches are related by
transfer matrices ~, and ~2, respectively,

B]= Ky —,~ocx A1+e Ux Db„ 1

(28)
These relations give

r

D,' C,
D2. 2

(31)

b —a~) .

D2

C2

—2IL0
C',
Dt

1

+e B1v (29)

The left-hand side of the ring is described by analogous
equations

B1= A1 c~ e Q~Pv~
Kp

bx

0 1
i PI2 —1+B1e u&P

1 0 ~2 v

where

(32)

s I and v L are defined in the same manner as (27), but
with —L replacing X there, and similarly, P= e sy

0 1 0 1

1 0 2 L 1 0 (33)

K
—L

r

—,LOB1+e &—L D
1

(30)

where u I is given by u~ [Eq. (28)] with Lreplac—ing

and /=2(L N)6. T—his relates three of the current am-
plitudes entering and leaving the ring. Similarly, Eqs.
(26)—(30) give

I L
A, =B, c

—L

K 0 1 0 1 —
1

0 1
i $/2+ L 1 0 rP

1 0 v2 v I —A]u I 1 0 ~1Pv~e' (34)

From Eqs. (33) and (34) one obtains the scattering am-
plitudes of the ring. Consider for simplicity the case in
which the scattering matrices of the two junctions of the
ring are described by the same TB parameters, apart
from the phases related to their locations. Then the pa-
rameters a, b, c, and a [Eq. (25)] describing the left junc-
tion are the same as those used to describe the right junc-
tion. We calculate the reflection and transmission ampli-
tudes of the ring for the case of no scattering along the
branches, i.e., ~, and ~2 being unit matrices. From the

symmetry of such a ring it is clear that the reflection and
transmission amplitudes of the whole ring will be the
same, for waves coming from the left- and from the
right-hand sides. Under these conditions the reflection
and transmission amplitudes of the ring are

K,y
r =c

W
Ib—e u~Pv~

= e ' c — b cosP+ a —e'~(b a)(b —a)—
d

«q, —q, jl &' —I. ~ cos(P/2),
t =2Ke

d
[(b —a )

—e

(35)

where d=2b cosP —e '~' —(b a) e'~+2 a an—d

$=2q2(L —X). Since the wires on both sides of the ring
were chosen to be identical, the reflection and transmis-
sion coefficients obtained for the current amplitudes are
the coefficients for the wave functions as well. Equations

(35) are generalizations of the expressions obtained by
Buttiker et al. for a simpler ring, and has the same gen-
eral properties. We make use of these expressions in the
following subsections. Expressions for the transmission
and reflection amplitudes of rings with scattering along
the arms appear in Ref. 25.

C. A dangling ring

=A1Z . (36)

As an example of a nonlocal effect, consider the case of
a dangling ring with no scattering inside it [see Fig. 1(c)].
Here one is interested in the conduction along the hor-
izontal wire. The ring at the end of the vertical wire
brings about a phase shift between the waves entering
and those leaving this wire. This relationship, together
with the 3X3 scattering matrix of the junction to the
ring, leads to an equivalent 2 X2 scattering matrix for the
waves on the main wire. In order to calculate the phase
shift at the main junction we need to know how the ring
affects the phase of the reflected wave at the entrance to
the ring. This is found by eliminating the wire leaving
the ring of Fig. 3 from the right. For a scattering-free
ring we obtain

2iq
1

A' cosP e'~(b —a)—B1=A ie ' c —2K
2b cosP —e ' e'~(b —a )—
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Using the relationships (19), the absolute value of Z can
be shown to be 1, as expected. Its phase can be interpret-
ed as that of the reAection amplitude at the junction of
the wire and the ring in Fig. 1(c). We now calculate the
effect of the dangling ring on the transfer matrix of the
junction on the main wire. For simplicity, all the wires
are taken to be identical. Therefore the scattering and
transfer matrices for wave functions and current ampli-
tudes are identical. For an intersection at E, which is
symmetrical with respect to the two branches lying on
the main wire, the relationships between incoming and
outgoing waves are

Z Kg~
B,= (D, +D~),

c~Z

Z Kp.
C3 =D3 a~ +

1 —cx'Z

ZKg
+D4 ~"'+

1 — .Z1 —c~Z
=rD3+ t'D4, (37)

ZK~
C4 D3 bx'+

1 —c~Z

ZKg
+D4 a~ +

1 —c~.Z
= tD3+ r'D4 .

It is seen that t =t' and r =r'. The wave functions along
the main wire are related by a transfer matrix ~, whose
matrix elements are

QN +Z(KX QXCN')
'T —712 21 7b~+Z(ax. bv cx )—

4L

lV

z
cf

C)
Z'.
O

2 — I'

j~

I—
/--

7
i

0
0 T/ /2

|')

li
tI '

)I'

Tr 37T/2

magnitude of the effective scattering coeScients of the
barrier on the main wire and the junction with the verti-
cal wire. Sample results are shown in Fig. 5. These re-
sults demonstrate the variety of behaviors possible for
this nonlocal effect. Oscillations in similar systems have
been observed experimentally by Umbach et al. ,

' and by

FLUX THROLIGH RING ($,)

FIG. 4. A barrier in a series with a ring (see inset) in the
tight-binding model. The conductance plotted is that of the
barrier alone, defined as the ratio of the current to the voltage
across the barrier. The ring is situated at site 0 and has
branches of length 2. The barrier is situated at site 5. J, =1 for
all lines. Solid line: E=1; J&=1; E&„„„,=1. Dashed line:
E= 1; J, =2; E„a„„,„,=5. Dotted line: E=0 5; J,=2;
Ebarr)er

1 c~z
+22 +11

bjv +Z(&w bjv &Jv )—
(38)

40-

These results effectively replace the dangling ring by a
Aux sensitive barrier.

30— ay/

D. A barrier in a series with a ring

%e now consider a further example for a nonlocal
effect, namely, a barrier in a series with a ring (see inset of
Fig. 4). Using the expressions derived in Sec. II for the
conductances of parts of complex systems, we can find
the conductance of the barrier itself. Examples of the re-
sults thus obtained are sho~n in Fig. 4. The oscillations
of the scattering amplitudes of the ring, as a function of
the magnetic fIux through it, cause oscillations in the
conductance of the barrier.

E. A barrier in series with a dangling ring

io-
Z.'

0—
C)
Z.'
O -lo—

-20— I

l

I

J

Tr/2

FLUX THROUGH RING ($, )

In a completely analogous way we can find the conduc-
tance of the barrier when the ring is replaced by a dan-
gling ring (see inset of Fig. 5), by inserting values from
Eq. (38). The oscillations in the barrier's conductance
will not necessarily be greatest when there is no scatter-
ing between the ring and the junction on the main wire.
As stated in Sec. II, such effects depend on the relative

FIG. 5. A barrier in a series with a dangling ring in the
tight-binding model (see inset}. The conductance is of the bar-
rier alone. The junction on the main wire is at site 0, the ring is
three sites away with branches of length 2 and the barrier is at
site 3. E=1, Jl =1, and Eb,,„„,=1 for all lines. Solid line:
J,=1. Dashed line: J2=2, chosen to represent a case where
the inverse conductance vanishes and changes signs at a point.
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Webb et al. ' In the experiments of Umbach et al. the
resistance of a piece of wire oscillated when in a series
with a dangling ring. Webb et al. found the resistances
of two rings in a series to be affected by each other.

IU. DISCUSSION

Two main points were demonstrated in this paper.
The first is that one may construct scattering matrices of
a multiply-connected wire system in a systematic way,
making use of the TB Hamiltonian. The second is that
chemical-potential differences can be expressed in terms
of scattering matrix elements. These were used to derive
two nonlocal effects in composite conductors, namely, the
resistance of a dangling ring, and the effect of a ring on a
resistor series connected to it. These nonlocal effects are
intrinsic to the system itself and are not related to mea-
surement probes. Chemical-potential differences between
various sites in a sample expressed in terms of scattering
matrix elements could turn out to be useful for studying
Hall conductances. In Sec. II we considered a simple ex-
ample, in which we exploited 2X2 scattering matrices.
Similar methods can be used for studying more compli-
cated geometries, using, for example, 3 X 3 scattering ma-
trices. We hope to pursue this point in the future.
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APPENDIX: CURRENT CONSERVATION
CONSIDERATIQNS

win (A2)

The current leaving the scatterer at the same energy is

j,„,=e[ u(E)(~p (E)r+p (E)t'~ )

+ zu(E)(~P (E)t+P (E)r'~ )] . (A3)

This can be written as e times the squared absolute value
of

When the scattering in the sample is taken to be elas-
tic, the current in any energy interval is conserved. The
current entering the scatterer from both sides at a given
energy is

j;,=e[(,'l4 (E)l'~u, (E)+(lP"(E) ')u, (E)], (Al)

where U, and U2 are the Fermi velocities in the wires on
the left and right of the system, respectively, and PL and

Pz are as defined in Sec. II. Equation (Al) can be written
as the electron charge, e, times the squared absolute value
of the vector

wout=
Qu, (E)

P (E)
Qu, (E) P"(E)

Qu, (E) 0

V u&(E)

Qu, (E)

Qu~(E)

Qu, (E) y'(E)
PB(E)

(A4)

Defining a matrix eV as

S=Vo V ', V=
Qv, (E) 0

0 Qv2(E)
(A5)

The transfer matrix associated with 4 is given by
1/2

U2

U1
(A7)

Eq. (A4) becomes
A similar matrix can be derived for a three-terminal junc-
tion. If o 3 is the S matrix for the wave functions, then

w.„,=Zw, „. (A6) 1/2
1

0 0
—1/2

U1

The requirement of current conservation implies that 4 is
unitary, and can therefore be more convenient to use
than the original matrix 0. relating the wave-function am-
plitudes. Since the squared magnitude of the vectors w, „
and w, „, are proportional to the current, we term them
current amplitudes. The unitarity of 4 leads to the rela-
tionship fr/=/r'/.

O U'" O

o 1/2
U3

—1/2
U2

—1/2
V3

(A8)

is a unitary matrix. In practice, the wave-function
scattering and transfer matrices of the various scatterers
and splitters of a system are found from the Schrodinger
equation. The unitary matrices obtained from them can
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then be used to calculate the conductance of the system
as a whole. The &U factors between elements inside the
system cancel out. Therefore, calculations made with the
unitary matrices are equivalent to those made with the
original matrices (relating wave-function amplitudes) ex-
cept that the final result can be used to calculate the

currents directly. The wave-function scat tering and
transfer matrices of the entire system can be obtained us-

ing Eqs. (A5) and (A7) in reverse. Note that when u& is

equal to U2, 4' is equal to o. The unitarity of 4 implies
that ~detV

~

=1. This can be interpreted as a change in
the normalization (see Fisher and Lee ).
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