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The ground-state manifold of double-acceptor impurities in Si and Ge shows small splittings. An
explanation of this fine structure is presented. It is based on a calculation containing tight-binding p
functions at the top of the valence band. The approach takes spin-orbit coupling and hole-hole in-
teraction fully into account. The results indicate that the various experimentally observed orderings
of levels may be explained by a short-range hole-hole nearest-neighbor intersite interaction that, be-
cause of dynamical effects, may in some cases be attractive.

I. INTRODUCTION

Infrared spectra of double-acceptor (DA) impurities in
germanium and silicon show, in general, main features
similar to those of single acceptors. Even though the
double-acceptor levels are much deeper, the (ls)?
—(1s2p) transitions are, for the two-hole case, very simi-
lar to the one-hole (1s)—(2p) transitions not only with
respect to the spacing of the lines but also in what con-
cerns oscillator strengths. This fact indicates that the 1s
hole in the two-hole excited state screens the doubly
charged central cell, but exchange and correlation effects
between holes in the (1s) and (2p) orbitals are negligible
because of their small overlap. Transitions in many-
electron systems that resemble one-electron atoms are
known as the Rydberg limit in atomic physics. Fiorentini
and Baldereschi! described the DA excited states by
means of a semiempirical approach. They modified their
very successful single-acceptor calculations by introduc-
ing an additional Hartree screening potential arising from
the remaining (1s) hole in the (1s2p) states.

However, there is a remarkable difference between
double- and single-acceptor spectra in high resolution.
All DA spectra in germanium”~* and in silicon®® show
small splittings with peak heights which are temperature
dependent. These features and their temperature depen-
dence indicate a split ground-state manifold and excited
states which are split as well.

The purpose of the present contribution is to analyze
the physical factors’ that contribute to the splittings of
the ground-state manifold. The magnitude of the various
effects is paramount here. Table I contains the first and
second ionization potentials of Be and Zn in both Ge and
Si. The ionization potentials of various single acceptors
in both semiconductors are listed for the sake of compar-
ison. Also listed in Table I is the number of semiconduc-
tor atoms enclosed in a sphere of the radius equal to the
Bohr radius of that particular energy. The latter was cal-
culated using values for hydrogen or helium, with the
semiconductor dielectric constant and the ionization po-
tentials as sole input. The numbers in Table I point out
that although double acceptors in Ge can be envisioned
as shallow-level impurities, and treated in the first ap-
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proximation by means of an effective-mass theory,'®!! the
same impurities in Si are much deeper and therefore
atomiclike, i.e., related to the properties of only a few
unit cells.

The observed splittings®>~® of levels in the DA are in
the range of 0.3-0.6 meV. These numbers are 2 orders
of magnitude smaller than the first ionization potential
for the Ge-based impurities, and 3 orders of magnitude
for the Si-based impurities. The understanding of these
disparate numbers has been a puzzlement for several
years, and the central focus of the present work.

Section II provides a cluster calculation for an impuri-
ty surrounded by 16 semiconductor atoms. The ap-
proach includes all one-particle effects capable of split-
ting the ground-state manifold and Sec. III provides a de-
tailed study of hole-hole correlations. The results are an-
alyzed in Sec. IV, and Sec. V contains the conclusions.

II. CLUSTER CALCULATION
FOR DOUBLE ACCEPTORS

As indicated by Table I, the acceptor states of deep im-
purities are confined to a few semiconductor unit cells
surrounding the impurity central cell. The Zn- and Be-
related impurities in Si are examples of this kind. In or-
der to discuss the splitting of their DA ground-state man-
ifold, we calculate two-hole DA states for a cluster with
tetrahedral symmetry that consists of the impurity atom,
four nearest (NN) and 12 next-nearest (NNN) semicon-
ductor atom neighbors.

Our calculation is based on atomic np functions
ia,»j,a) only. The p orbitals are labeled a=x,y,z accord-
ing to the cubic axes of the diamond lattice and o denotes
the spin. The index ij =00 specifies the impurity site.
The four NN are specified by i =1,2,3,4 and j =0. The
12 NNN outer atoms are indicated by i =1,2,3,4 and
j =1,2,3, corresponding to the three j neighbors of the
four i NN’s. (When detailed identification is not neces-
sary the single letter i label is supposed to run over the 17
sites of the cluster.) The top of the semiconductor valence
band, because of symmetry, contains only p states; in-
clusion of other symmetries is not necessary. If we were
interested in the overall position of the ground-state man-
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TABLE I. Ionization energies E, (meV) and the number N
of semiconductor atoms contained in a sphere of the effective
Bohr radius of various acceptors in Ge and Si.
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TABLE II. Two single-particle total angular momenta j,, j,
combined to antisymmetric two-particle states of total angular
momentum F.

Ge Si
Impurity E, Ng E, Npg
Be’ 25 1120 192 6.9
Be~ 58 717
Zn° 33 487 320 1.5
Zn~ 87 212 620 1.6
Mg? 36 375
cd® 55 105
Hg° 92 22
B 11 13100 46 500
Al 10 17 500 57 263
Ga 11 13100 65 177
In 11 13100 158 12

ifold relative to the semiconductor valence band, we
would have to include at least the s orbitals as well.
However, our goal is to understand small splittings in the
energy range of a few meV, for which the inclusion of
only p functions is sufficient.

For the same reason we may take into account only
those terms of the DA Hamiltonian that are capable of
splitting the two-hole states built up from only the p or-
bitals. We study the influence of spin-orbit coupling, and
intrasite and nearest-neighbor-site Coulomb and ex-
change interactions. All other mechanisms either only
shift the entire manifold or are considered to be negligi-
ble. We mention explicitly the tetrahedral crystal field.
This contribution to the Hamiltonian acts only on the or-
bital degrees of freedom of the states. However, the one-
particle orbital degrees of freedom are all p states that do
not split in the tetrahedral crystal field.

The following six (three a orbital and two o spin de-
grees of freedom) linear combinations:

le,0) =3 cjla;,0) (1)
ij

form the single-particle basis of this approach. The
coeflicients ¢y, g‘0=—c00exp(—\/3/a0) for i#0, and
c;;=cooexp(—2V'2/a,) for i,j#0 model an s-like en-
velope function of these acceptor states. The magnitude
of the effective Bohr radius a, determines the extent of
the acceptor state. We do not make explicit use of the
exponential form of the coefficients given above. The
theory described below is valid for any value of the
coefficients that corresponds to a fully symmetric func-
tion with only three real parameters ¢y, ¢;o= —cyy for
i#0, and ¢; =cyyy for i,j70. Normalization requires
that ¢y +4cin +12cinn =1.

Based on these single-particle states, we construct a
convenient antisymmetrized (Pauli principle) two-particle
basis in three steps.

(1) Taking spin-orbit coupling into account requires the
one-particle basis to be written in terms of the total angu-

lar momentum of the single-hole state j=3,
m;=3,...,—3and j=1, ,=*4. This is at the same

time the proper symmetry classification of the single-hole

Ji J2 F
3 3 =3 g 2 el
0 r,
3 4 el 1 r,
2 el
4 1 rer; 0 r,

states: The symmetry group of the 17-atom cluster is 7.
States with j =3 (j =1) transform according to the rep-
resentation I'g (I';) of the double group T,.

(2) The six single-hole states are now combined to yield
15 antisymmetrized two-particle states with total
angular-momentum quantum numbers F and M. They
are listed in Table II together with their point-group sym-
metries.

(3) The tetrahedral symmetry splits the F =2 states
into I'; and I's components. These components may be
calculated by the usual projection-operator technique:

VI12IF =2, Mp=2)+V1/2|F=2, M,=—2)

1“3: |F=2, MF:0> , (2a)

VI1/2|F =2, Mp=2)—V1/2|F =2, My=—2)
L {|F=2, Mz=1) 2b)
|F=2, Mp=—1) .

These successive steps provide the unitary transforma-
tion between the 15 antisymmetric states |a,0;8,0’) and
the basis with proper symmetry quantum numbers.

The Hamiltonian matrix written in this basis has a very
simple structure: The spin-orbit coupling matrix is diago-
nal. It has a sixfold eigenvalue equal to O (both particles
have j=3), an eightfold eigenvalue A (one particle has

3

J =3, the other j=1), and a nondegenerate eigenvalue

2A (both particles have j =1). The spin-orbit coupling
parameter is given by

16
A= 3 c2A, (3)
i=0

where A, is the atomiclike spin-orbit splitting of an (np )
configuration of atom i. The Coulomb interaction only
mixes two-hole states with identical symmetry, with a re-
sulting 2 X2 matrix for the I'; states, two identical 2 X2
matrices for the I'; states, and three identical 2 X2 ma-
trices for the I's states. The I', states occur only once and
do not couple to any other state.

III. THE COULOMB INTERACTION

Some remarks on the calculation of the Coulomb con-
tribution are in order. The matrix elements of the
Coulomb repulsion P are a linear combination of matrix
elements of the following type:
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(a,0;8,0'|Ply,0";8,0"")
16

= 2

i, j,l,m=0

crefeen,(a,058;,0' | Ply,,08,,0") .

4)

They contain a complicated fourfold sum over all sites.
However, only two types of terms contribute significantly

J
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to this sum:

(1) The intrasite correlation matrix elements consist of
those terms of Eq. (4) with i =j =/ =m. They reduce to
a simple site sum of expressions I,:

16
(a,0;B8,0'|VIy,0";:80" Ninra= S ¢'I; (5)
i=0

with

L,=8, 48y o [ At A, P(ry —1,)0% /(1))85 (1), (1))$5 ()
"50,0'”50',0“fdrldrzﬁ("l_"2 )$5,i(11)dp i (12)ds (1), ;(13) . (6)

[¢,.,(r) denotes a p function of the atom at site i, @=x,y,z.] The integrals in I, are well known in atomic physics. They

take three different nonvanishing values:

U, ifa=B=y=35
fdrlerIA/(rl—rz)¢;,,(r1)¢,§',(rz)¢w(rl)¢5,l«(r2)= U—2J, ifa=y#B=5 (7
J, if a=8#B=y or a=BF*y=8 .

The largest of these integrals, U, appears in all the diago-
nal elements of the Hamiltonian matrix and therefore
contributes only a uniform shift, but not to the splitting
of the energy levels. Hence all splittings due to intra-
atomic correlations depend on one single parameter

16
J=3clJ; (8)
i=0

which may be estimated from atomic J, values
(Jge=Js=380 meV). It is worth mentioning that re-
stricting ourselves to the study of only intrasite correla-
tions, the Hamiltonian matrix becomes exactly equivalent
to the problem of two electrons in an atomic p shell. The
resulting splittings satisfy Hund’s rule: Nine states in the
triplet *P term with energy (—J), five states in the singlet
D term with energy (+J) and one state in the singlet 'S
term with energy (+4J). The splitting parameter for
intra-atomic correlations may be interpreted in the fol-
lowing way: ¢ is the probability for the two holes both
being at the particular site i. For extended states where

J

( <a’U;BvU'1 I//\'ly,o'";ﬁ,o"" > )mterz(aa,a'”so"a”—60,0

=0 otherwise.

The quantity W, which depends on the explicit form of
the p orbitals, on their overlap, and on the Cjs is defined
in the Appendix. [Generalization of these results to
larger clusters is, once again, straightforward. This gen-
eralization changes the parameter W only, and not the
structure of (9). The parameter W scales like Nl;l, i.e.,

[

the c,’s are not too different, J scales like N !, where Ny
is the number of atoms involved in the single-particle
state (see Table I). It is obvious that our approach for the
17-atom cluster may be easily generalized to systems of
any size. Every additional “‘shell”” of outer atoms adds an
additional term to (8), which defines the parameter J.

(2) The nearest-neighbor intersite correlations consist
of those terms of Eq. (4) where two of the indices i,j,/,m
correspond to the 00 site (impurity) and the remaining
two to one of the four NN /O sites, and the four analog
(i0-ij)-pair sum for the NN and NNN atoms. We consid-
er only contributions of bonding neighboring orbitals
with large overlap. These states are projections onto the
p-state manifold of the four bonding sp hybrids which
make up the valence band of the tetrahedrally coordinat-
ed semiconductors. Further details may be found in the
Appendix, where we discuss briefly the details of the cal-
culation for the impurity site and one of its NN’s. Gen-
eralization to the bonds between NN and NNN sites is
straightforward.

The intersite contributions of the Coulomb interaction
are

a=p=y=58

) a=pB+y==5

oo VW if a=y#B=58
a=0#p=y

9)

f

with the probability of finding both particles on the same
bond.]

IV. RESULTS AND DISCUSSION

The diagonalization of the 15X 15 Hamiltonian matrix
is straightforward. It has a block structure of six 2X2
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matrices (only three different ones, corresponding to the
three symmetries I'j, I'3, and I's), and three (identical, I'y)
diagonal eigenvalues. The eigenvalues and multiplicities
are listed in Table III. The last two columns list the
values of the two limiting cases, where either the spin-
orbit coupling or the hole-hole Coulomb interaction van-
ishes. These two limits correspond, respectively, to very
deep and very shallow acceptors.

In the deep-impurity limit, where J and W are much
larger than A, W is probably the largest parameter in the
system. It contains direct Coulomb integrals in addition
to exchange terms, whereas J consists of exchange terms
only. However, screening and dynamic effects may have
a significant impact on the magnitude, and even on the
sign of W.

If the intersite interaction and the spin-orbit coupling
are assumed to vanish (W =0 and A=0), then, as men-
tioned above, the problem is atomiclike, and the states
may be labeled according to the energy levels of an atom-
ic (np)? configuration. The eigenvalues E; and E; corre-
spond to *P,; E, corresponds to *P,; E, corresponds to
3P,. These are the nine lowest states, which satisfy
Hund’s rules and constitute the 3P term. The energy lev-
els E} and E of Table III correspond to the term'D,,
and E | constitutes the nondegenerate 'S, term.

Other interactions produce additional splittings.

(1) A crystal field of tetrahedral symmetry acting on the
one-particle orbitals. It does not, contrary to expecta-
tions, split the F =2 levels into their I'; and I's com-
ponents.

(2) Interatomic hole-hole interactions. On the one hand
these are very important since they are a major contribu-
tion to the hole-hole interaction. On the other hand,
these interatomic Coulomb interactions yield a coupling
mechanism of tetrahedral symmetry. This is important
as well because, as seen above, the crystal field acting on
the single-particle orbitals does not change the fine struc-
ture of the states. In contrast to the crystal field, the in-
teratomic interaction is a fwo-particle term. But, similar-
ly to the crystal field, this two-particle interaction acts
only on the orbital degrees of freedom. As a result the
ID, states are split by an energy 2W. The *P, manifold,
however, remains degenerate because the orbital degrees
of freedom are still P-like, and the spin degrees of free-
dom are not affected by this interaction.

(3) Spin-oprbit coupling. The *P, manifold splits, but

only through a combined effect of intersite interactions
and spin-orbit coupling. Only when A and W are both
nonvanishing are the P, states split. This is a remark-
able effect which explains the large discrepancies in or-
ders of magnitude of the splittings. The intersite interac-
tion W is, for deep impurities, most likely to be the larg-
est parameter in the problem. It represents the major
contribution with tetrahedral, i.e., nonspherical symme-
try. Nevertheless the splitting that it causes on the F =2,
P (ground state) manifold can be very small, because it
needs a nonvanishing spin-orbit coupling. For reason-
ably deep impurities in Si the combined effect of large W
and small A result in a I';-I'5 splitting which is neither
too large nor too small, i.e., a few tenths of a meV. This
mechanism may answer the puzzling question of how an
interaction of the order of 10> meV might cause a split-
ting of less than 1 meV.

It is important to discuss the value (or at least the or-
der of magnitude) of the parameters. For DA in silicon,
A =44 meV if the contribution arises mostly from the sil-
icon host. It should be smaller for the Be impurity, and
considerably larger for Zn and Cd impurities. The values
of J and W are much more difficult to estimate, since they
depend on a variety of factors: the extent and shape of
the impurity p orbitals, the overlap between adjacent
Wannier functions, and the extent of the s-like envelope
function (the values of the c,; coefficients). An arbitrary
but reasonable choice is J =100 meV, and W=300 meV.
This choice yields the following energies (relative to the
lowest-energy  eigenvalue): E;=0.000, E;=1.458,
E,=31.319, E,=44.731, E;=218.638, E5=817.180,
and E|; =1417.907 meV.

The only levels which can be thermally populated at
the low temperatures of the experiments are the two
lowest ones, one twofold I'; level and a threefold I'5 level,
separated, in this example, by 1.458 meV. It should be
possible to study some of the higher levels (I', and I';) by
far-infrared spectroscopy. The present theory is, howev-
er, only applicable to the energy range below the free-
hole continuum. Therefore the values for the higher-
energy states (resonances in fact, not hydrogenic bound
states) are not meaningful in the framework of this ap-
proach.

In contrast to Si, the DA’s in Ge have a strong spin-
orbit coupling. If the magnitude of the effective spin-
orbit parameter comes mostly from the Ge atoms, A will

TABLE III. Eigenvalues of the 15X 15 Hamiltonian matrix as a function of the intrasite correlation parameter J, the intersite
correlation parameter W, and the spin-orbit coupling parameter A. The first column lists the symmetry of the states and their degen-
eracy, the third and fourth column list the eigenvalues for two limiting cases.

w=0
Symmetry Eigenvalue A=0 J=0
Oy E\=3(J+W)+A+[(3J+W =24 +23J +W)]'? 4J +3W 24
I's(3) Es=WH+IA+H{[;(J+ W+ 1AV + 3T +W)}2 J+2w A
[3(2) E{=3A+[(3J +3A)+ 477 +J A
(1) E\=3(J+W)+A— [T+ W =24 +23] + W] —J 0
['s(3) Es=W+3A—{[3(J+ W+ 1AV+ 2T + W)} —J 0
r3(2) E;=1a—[(1J+1a)+ 5272 -J 0
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take an approximate value of 290 meV. Additionally DA
states in Ge are very extended (except for Hg, see Table
I). As a result, the Coulomb interaction parameters are
much smaller than A. The limiting case of vanishing J
and W leads to the well-known analogy between very
shallow DA states and a “helium atom” with a negatively
charged nucleus and two spin-2 holes bound to it. Such a
very shallow system may be treated in a spherical approx-
imation, because the ground-state splitting due to
tetrahedral symmetry can only be observed if the
Coulomb interaction is not negligible. However, DA
states in Ge show a fine structure, thus they belong to a
regime somewhere in between deep and very shallow heli-
umlike acceptors. As an arbitrary choice, based on atom-
ic properties, the following parameters were chosen:
J=0.4 meV, W=0.6 meV, and A=290 meV. They
yield the following energies: E;=0.000, E;=0.397,
E,=2.262, E,=289.734, E;=290.268, E;=291.070,
E’'=581.006 meV. Here, as observed experimentally,’
the three lowest levels are very closely spaced (less than 3
meV from each other) and may be thermally populated at
the low temperatures of the experiments.

So far, the discussion of the DA-ground-state manifold
is based on the assumption that the parameters J and W
are essentially determined by single-particle atomic orbit-
als. This assumption provides the correct order of mag-
nitude in general. However, it is certainly not correct if
dynamical many-body and screening effects become im-
portant. It is well known that screening effects may
change the particle-particle interaction parameters drast-
ically. For shallow DA systems, where the average dis-
tance between the quasiparticles is very large, their mutu-
al interaction may be well described by a 1/r-Coulomb
potential screened by a static dielectric function of the
host material. At short distances, however, the static
“host” screening is no longer effective, and the carriers
interact via a bare Coulomb repulsion. At intermediate
distances, the details of the dielectric function are more
difficult to assess.'>!3 For DA holes it is possible that the
nearest-neighbor Coulomb repulsion may be overcom-
pensated by dynamic many-body effects, i.e., the rear-
rangement of the lattice when two holes are in nearest-
neighbor sites (a covalent bond) results in a decrease of
the total energy, an effective attraction between same-
charge carriers. Therefore it might be justified to consid-
er the parameter W as variable not only in magnitude,
but also in sign. An attractive nearest-neighbor interac-
tion (negative W values) on the DA ground-state
configuration results in a reversed ordering of the energy
levels close to the ground state. The regions in the pa-
rameter space with various orderings of the energy levels
E;, Es, and E, are shown in Fig. 1. The particular situa-
tions described above for Si and Ge DA corresponding to
region (a).

The set of parameters A=44 meV, J =100 meV, and
W = —25 meV corresponds to region (b) in Fig. 1 and
leads to the following energies: E5=0.000, E;=0.587,
E,=31.906, E,=42.270, E5=169.812, E};=219.225,
and E};=446.542 meV. For this set of parameters the
ground-state level is the lowest threefold I'5 state. This
ordering seems to be the one observed experimentally’ in
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FIG. 1. Various orderings of the two lowest-energy levels
corresponding to the symmetries I';, I's, and I'; in the
J/A-W /A parameter plane. The regions (a)—(d) correspond to
the following orderings of the two lowest levels: (a) E; <Ejs; (b)
E;<E;;(c) Es<E|;(d E, <Es.

Si:Be by analysis of the intensity ratios of the various
lines at different temperatures, extrapolated to T — oo.
This method is based on the premise that all transitions
have similar oscillator strengths.

Thewalt et al.? report an inverse level ordering for
DA’s in Ge, with the I'; level being the ground state.
This inversion may be explained in a similar fashion. For
J=0.4 meV, W=—1.2 meV, and A=290 meV [region
(d) in Fig. 1] the energies take the values E,=0.000,
E;=0.532, E;=1.334, E{=290.003, E,=291.068,
E{=291.601, and E}| =580.535 meV, in agreement with
the observations.

The situation for Si:Zn is not completely clear.
Doérnen et al.® report that the ground state of this DA
has 'y symmetry. However, recent measurements by
Merk et al.>'* show that the ground state of Si:Zn splits
under (100) uniaxial stresses, a fact that is not possible
for the nondegenerate I'; level. These authors also ob-
serve no splitting for stresses along (111) directions,
which seems to indicate that the ground state has I';
symmetry, which exhibits these characteristics, and not
I's symmetry, which splits under any uniaxial stress. A
', ground state would correspond to region (d); a I’y
ground state, to region (a) of Fig. 1.

V. SUMMARY AND CONCLUSIONS

This paper provides a simple calculation of double-
acceptor ground-state configurations that is capable of
explaining the fine structure of many DA states, both
deep and shallow. The approach is based on a two-hole
calculation in a cluster of arbitrary extent. The one-
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particle orbitals are taken to be a proper linear combina-
tion of atomiclike p states, i.e., the tight-binding p states
at the top of the group-IV semiconductor valence band
(the fourfold I'y symmetry and the twofold I'; split-off
band). This linear combination contains, in its approxi-
mately exponentially decaying coefficients, the s-like en-
velope characteristic of the ground state of these impuri-
ties.

The qualitative results of the calculation are very gen-
eral and revealing.

(a) The particle-particle repulsion decreases in impor-
tance as the impurities become shallower; the effect de-
creases proportionally to the number of host atoms en-
compassed in the impurity envelopes.

(b) Without inclusion of spin-orbit interaction the
particle-particle interaction leaves the ninefold *P ground
level unsplit.

(c) When the spin-orbit interaction is included, the
particle-particle intrasite interaction only splits the six-
fold ground-state manifold into an unsplit (“‘accidentally”
degenerate) quintet I';& I's and a singlet ;.

(d) The single-particle effects of the tetrahedral crystal
field cannot, under any circumstances, split the I'; and T’
levels; this fact can be easily understood based on the fact
that the tetrahedral crystal field does not split the T’y
quartet at the top of the valence band.

(e) The combined effect of the spin-orbit coupling and
the intersite particle-particle interaction do split the I'y
and the [’ levels; the ordering of the levels depends on
the signs of the parameters, but the effect is very small,
with splittings of the order of 0.5 meV for interaction and
spin-orbit parameters of the order of 50 meV.

Quantitative analysis indicates that for normal, repul-
sive intersite particle-particle interaction, the phenome-
nological Hund’s rules apply, and the higher multiplicity
and higher-angular-momentum I';®I'5 manifold should
be lower in energy than the I'| level. Reversed level or-
dering might be explained by many-body lattice effects,
leading to an attractive hole-hole intersite interaction W.
The attractive character would result from a displace-
ment of the nuclei when the two holes are in neighboring
sites, so as to produce a lowering of the total energy.
This effect, a net attractive interaction mediated by lat-
tice distortions, is the main cause of superconductivity in
metals'> and has been explored in semiconductors under
the name of negative-U centers.'®!” This phenomenon of
inverted level ordering deserves further investigation,
both theoretical and experimental.

It should be emphasized that the analysis presented
here for an attractive W neither explains nor justifies the
existence of such an attractive interaction. It has simply
been assumed, for the current purposes, that such a sign
reversal may take place, and thereafter its consequences
explored. The sign and the explicit value of W must de-
pend on the details of the electronic structure of the im-
purity center, on the local vibrational modes of the sys-
tem, and on the dynamics of the electron-phonon interac-
tion. Such study is beyond the scope of the present pa-
per. It is nonetheless important to realize that such
effective attraction is possible, that it has been proposed
before in a variety of contexts, and that it explains in a
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natural way the reverse ordering of levels reported exper-
imentally. It is also possible (although neither necessary
nor likely) that the same strong electron-lattice interac-
tion that is responsible for the sign reversal of W may
produce a lattice distortion with a consequent lowering of
the point symmetry; if such is the case the problem
should be reexamined taking into account the new
group-theoretical properties of the system.

The study of DA spectra under uniaxial stress is a very
powerful experimental tool. The theoretical analysis of
spectra under uniaxial stress requires a further extension
of this approach. Some general results can be stated.

(i) Under uniaxial stress all levels are nondegenerate,
with the possible exception of stresses along symmetry
directions, where a maximum degeneracy of 2 is allowed
for some representations.

(i) As a consequence of (i) all levels with I'y and T
symmetry should split under any stress.

(iii) The I';-symmetry levels should split in general, ex-
cept for uniaxial stresses along {111).

(iv) The T'y- and I's-symmetry levels should split in
general into three nondegenerate levels, except for uniaxi-
al stresses along (100) and 111), where they split into
a singlet and a doublet.

It should be emphasized that, in any case, the maximum
number of lines is the dimension of the space under con-
sideration, i.e., 15. The problem is therefore always sus-
ceptible to easy numerical handling, assuming that the
relevant parameters (spin-orbit coupling, particle-particle
interactions, and stress-induced energies) are known.

In addition, in order to understand the spectra of DA
states fully, a more detailed analysis of the excited states
is required. The Si:Be and Si:Zn double-acceptor®>714
spectra clearly indicate additional splittings of the excited
states. These splittings are most likely caused by the in-
teraction between the outer hole with the remaining 1s
hole, which cannot be explained by the single-particle ap-
proach of Fiorentini and Baldereschi.’
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APPENDIX

This appendix provides some brief remarks on the cal-
culation of the important intersite contributions to the
matrix elements (4). To determine the importance of the
various contributions, the atomic p functions are written
in terms of directed orbitals, which are simpler to inter-
pret. For each (00-i0) site pair, the p functions on each
site are expressed as linear combinations of the directed p
orbitals, i.e., one p function which lies along the bond and
two perpendicular p functions. For example, for the sites
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00 at the origin (the impurity) and the host site 10 along
the [1, —1, —1] direction, the directed orbitals at the
host atom 10 are @,y 0 0=V'1/3(—¢, o+ b, 10Fd, 10
which points toward the center of the cluster, and

W10 .00= ‘/T/—Z(iﬁx, 10T, 10)
and

O10 .00= V1/6( — 10T 9,107 20,10

which are orthogonal to ®,,__ o, and to each other. No-
tice that the functions @ ; ;, are just the p component of
the familiar sp hybrids, commonly used in building the
group-IV element valence states. Since the s components
are neglected—only the top of the valence band contrib-
utes to the studied effects—it is not possible to build four
orthogonal tetrahedral lobes at once. Thus each [00-i0]
pair has to be expressed in terms of a different set of
linear combinations of the same three functions.

For the three central atomic function ¢, o, four trans-
formations are used. In considering the (00-10) pair

— 8,2 .2
W = 5cooc NN

8981

the  three linear  combinations are Dy, g
=V'1/3(d,.00— ;00— .00 which points toward the 10
site, and Voo .10=V'1/2(d, 00t )00 and
O09_.10=V 1/6(d, 00—, 001264, 00) Which are orthogo-
nal to @y, _. o and to each other.

For every integral corresponding to a (00-i0) pair [and
similarly to (i0-ij) pairs] the Cartesian p functions are ex-
pressed in terms of these new rotated p functions. This
procedure yields in principle 81 “new” integrals for each
Cartesian term. However, only one single term is kept in
the calculations: that contains only two ®;; ,; functions
and two @, ,,; functions. These are the only states hav-
ing a significant overlap; all other integrals may be
neglected.

The sum over the four bonds (12 bonds for the outer
“shell”) simplifies the matrix elements significantly: for
all cases a,f3,7,6 except those listed in (9), the signs of
the terms alternate and the sum over sites cancels exact-
ly. The result (9) contains a constant W, which is given
by

fdrldrzl?'(rl_rz)|¢)00_,10(r1)Izi(blo_,oo(rz_Rlo)lz

+2fdrldr2f>(rl =)0 10(T1 )10 00(T2 = Ryg)P g 00T} —Ryg)Pgo_. 10(13)

8 .2 2
+ FCNNCNNN

+2fdr1dr2f/(r1 —ry)) @Y (1

fdrldrzf}(rl_1'2)|¢10H11(1'1"R10)|2\(D11—.10(r2_R11)‘2

—R)PT) Loty =R NPy oty =Ry )Py, 1y (r,—Ryo) | -

(A1)

This parameter W, as is obvious from (A1), contains both direct Coulomb integrals and exchange terms.
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