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Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases
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We report on calculations of intrasubband and intersubband phonon scattering in quantum-
confined electron gases based on lattice-matched In„oa&,As/InP quantum wells. Dimensionality
e6'ects on the emission of acoustic phonons are studied comparing the scattering times of two-, one-,
and zero-dimensional electron gases as a function of the lateral confinement. Optical phonon
scattering in quantum wells and wires is discussed using a phenomenological broadening of the
one-dimensional density of states. The energy relaxation rates of heated electron gases due to pho-
non emission and absorption have been calculated for lattice temperatures TI between 0.3 and 20 K.
For a given heating power per electron, the electron temperature T, in a quantum wire can be
greater or smaller than that in the corresponding quantum well, depending on the electron density
n„while the energy relaxation in quantum dots with significant quantization energies is always
slower than in the corresponding wells and wires.

The investigation of two-dimensional electron gases
(2DEG) in semiconductors (quantum wells, heterostruc-
tures, metal oxide semiconductors, etc.) and the improve-
ment of growth techniques have given rise to a lot of new
physical effects as well as device applications. Progress in
nanofabrication makes it possible to reduce further the
dimensionality by laterally structuring the 2DEG and
realizing a quantum confinement in two (quantum wire)
or even all three (quantum dot) directions of space. With
these exists at least the potential for new interesting
quantum eft'ects comparable to the transition from three
to two dimensions.

The electronic states in all solid structures are subject
to different scattering mechanisms. While the influence
of imperfections (impurities, layer-width fiuctuations)
can, at least in principle, be controlled by improved tech-
nology, phonon scattering is inherent to the solid state of
matter. Concerning the hot carriers, the emission of pho-
nons is often the only important nonradiative relaxation
mechanism because impurity scattering is mostly elastic.
The scattering of a 2DEG by longitudinal-acoustic (LA)
and -optical (LO) phonons has already been studied
theoretically by several groups (see, e.g. , Refs. 1 —5). The
investigation of one-dimensional structures has focused
on the LO phonons that are important for device ap-
plications at room temperatures, while LA phono n

scattering ' has received less attention. To our
knowledge the phonon scattering in quantum dots has
not yet been calculated. We have calculated the interac-
tion of LA and LO phonons with electron gases of re-
duced dimensionality and compare the two-, one-, and
zero-dimensional (2D, 1D, and OD, respectively) struc-
tures systematically.

In order to be quantitative in view of possible future
experiments we have used the parameters of the following

semiconductor system. A rectangular InQ 47GaQ 53As
quantum well with a width of 100 A embedded in InP
serves as the two-dimensional basis. The lateral
confinement is modeled by potential barriers of infinite
height outside the wire or dot region. This particular
choice of the confinement potential results in a complete
separation of the carrier motion in the three spatial direc-
tions. The wave functions in the growth direction (z) are
the solutions of the finite-barrier Ben Daniel —Duke
quantum-well problem, ' which are harmonic functions
[sin(k z), cos(k„.z)] inside the well matched to exponen-
tial decreasing tails [exp( —kbz)] in the barriers. In the
lateral directions we have used either harmonic wave
functions restricted to the confined region or plane waves
to describe the propagation along the unconfined
direction(s). It is assumed that the spectrum of longitudi-
nal phonons consists of one isotropical acoustic (LA) and
two dispersionless optical (LO) branches since
In, ,Ga As is a two LO mode alloy. In using the bulk
phonons of InQ 47GaQ 53As we neglect any change of the
phonon spectrum due to the presence of the InP barriers
or lateral structure. This approach is based on the large
ratio of electron and phonon quantum-confinement ener-
gies" which scale like m;,„im, .

Electron-phonon scattering times ~ are calculated in
first-order perturbation theory using the Fermi golden
rule,

X5(Ef E;+E )[n(((E,T(—)+ {Oj] .

The upper (lower) signs account for emission (absorption)
of phonons by an electron in the initial quantum state i.
The sum extends over all possible final-electron quantum
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numbers f (i and f comprise subband and wave-vector
coordinates) and phonon wave vectors q. The electron
energies E, and Ef are always measured from the bottom
of the respective OD, 1D, or 2D ground subbands.
stands for the Bose distribution function
ns(E, T)=(e' ' —1) '. E is the energy of a phonon
with wave vector q and TI is the lattice temperature.

For the coupling of the electron to LA phonons by
means of a deformation potential D, the expression

g) 2

a (q)= Pic, q
2pc, 0

is used with D =7.2 eV, a density p=5500 kg/m, and a
longitudinal velocity of sound c, =3400 m/s. Piezoelec-
tric coupling to acoustic phonons is expected to be weak-
er than the deformation-potential coupling by about a
factor of 10 (Refs. 3 and 12) in the range of our calcula-

I

tions. The strength of the (Frohlich) interaction between
the electron and the two LO branches is described' by

c,
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For the energies of the two longitudinal- (ficol „Picnic)
and transverse- (iiicoT„iricoTi) optical branches we use
28 9, 33 6, 28 2, and 31 9 meV, respectively. The
electron-phonon matrix element in Eq. (1) separates in
the x,y, z coordinates and has been calculated analytical-
ly. For a confined lateral direction (for instance, x) the
following expression holds:

1&@"I& '""ly„"'&I'=M„"'"'(q )

f + I f + i f j f»n(Q+K;+K ) sin(Q+K, —K ) sin(Q —K, +K ) sin(Q —K, —K )

4 Q+K;+Kf Q+K; Kf —
Q

—K;+Kf Q —K, —Kf
(4)

with Q=q„L„/2, K, =nor/2, Kf=n'ir/2. The upper
signs stand for the band index n and n

' both even or odd,
the lower signs are for one of them even and the other
odd. Concerning the z direction we have obtained an ex-
pression similar to Eq. (4) with a small additional contri-
bution caused by the leakage of the wave function into
the finite barriers. As seen from Eq. (4) M„""(q„)de-
creases rapidly with increasing q„L„))1[the increasing
number of oscillations of exp(iq„x) inside the well of
width L„results in a decreasing interaction]. For small

q„ it approaches zero and unity for interband (nAn')
and intraband (n =n') transitions, respectively. In free
directions the matrix element reduces to the conservation
of the crystal momentum [5(k;—kf +q )].

After taking advantage of the 5 functions, which stand
for the conservation of the crystal momentum in the
nonconfined directions and the total energy, we have
evaluated Eq. (1) numerically for LA phonon scattering.
Figure 1 shows the rates ~ ' for LA phonon emission by
an electron at a lattice temperature TI of 4 K. We have
chosen the same energy difference E; between the initial
and the lowest electron state for the quantum dot (OD),
the quantum wire (1D), and the quantum well (2D), as il-

lustrated in the inset. The initial electron states are the
first excited level and the edge of the first excited subband
of the dot and the wire, respectively. The corresponding
2D situation is an electron of energy
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crease monotonously and become very close. This
demonstrates the disappearance of any physical
diff'erence between the zero-, one-, and two-dimensional
systems when the lateral confinement becomes weak. In
this range the deformation-potential interaction weakens
due to the decreasing phonon wave vector q [Eq. (2)]. In

E, =Pi /2m*(ir/L ) (2 —1 )
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in the ground quantum-well subband. Consequently, we
deal with intersubband scattering in OD and 1D and in-
trasubband scattering in the 2D structure. When the la-
teral size L exceeds 2000 A the three scattering rates de-

FIG. 1. Emission rates of LA phonons from zero- (OD), one-
(1D), and two- (2D) dimensional electron gases. L (lower scale)
indicates the lateral layer width(s) and defines the initial energy
E, (upper scale). The OD scattering rates plotted below 1300 A
are multiplied by a factor of 30. T& =4 K.
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addition for 1D and 2D the number of available final
electron states decreases.

Phonon scattering in a quantum well conserves the to-
tal energy and the in-plane crystal momentum. For a
given phonon energy an increase of the in-plane momen-
turn transfer results in a decrease of the phonon impul-
sion in the confined direction and hence an increase of
the scattering probability. Final states with kf =——k, ex-
hibit the greatest contribution. Thus, increasing E, in-
creases k; and consequently the phonon scattering rate

'. The decrease of r, ~' (1D) with L below 600 A has a
similar shape and can be explained along the same line as
before. The maximum at L = 1600 A indicates the
enhanced density of states for energies at the 1D subband
edges. The maximum appears at that initial energy E,. for
that it is most probable that the electron ends up at the
ground subband edge. In the 1D and 2D cases there al-
ways exists a continuum of final electron states and possi-
ble phonon energies. The quantum dot system has only
the ground state available below E, . Thus, the emitted
LA phonon spectrum consists of a single line with

q =E, /A'c, . For L below —1300 A (E; above -2 meV)

happ is smaller than ~,D and v.z~ by more than one order
of magnitude and exhibits strong oscillations. The
relevant quantity of the electron-phonon interaction in a
confined direction i is q; L; [Eq. (4)]. For a given

q »L, ' a quantum dot emits LA phonons preferentially
in the direction with the strongest confinement (here z).
The same holds for a quantum wire concerning the LA
phonon interaction in the two confined (x,z) directions.
Consequently, the oscillations in vpD are governed by the
factor sin (q, L, ) from Eq. (4) and have a constant period
in L -E; -q =-q, .

Figure 2 shows the rate ~ ' and the mean phonon en-

ergy (E~i, ) for the emission of LA phonons by a quan-
tum wire as a function of its lateral width L. Here the in-
itial electron is located 5 meV above the edge in the
ground subband. The corresponding 2D values do not
depend on L and are indicated by long bars. Multiplying
by E =Ac, q before the summations are performed in Eq.
(1) gives the energy-loss rate P of the electron gas. The
plotted mean phonon energy results from (E „)=Pr.
For L below 750 A only intrasubband scattering in the
ground subband is possible. With increasing L the ener-

gy separations between different subbands decrease and
more and more subband edges move below E„opening
additional intersubband scattering channels. Any ap-
pearance of a new subband is clearly observable because
its density of states is enhanced in comparison with the
other subbands due to the peaked density of states at the
band edge [g&o(E)—(E E,d, )

' ]. Th—ere r ' in-

creases rapidly but continuously, reaching a maximum
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FIG. 2. Emission rate ~ ' (lower curve, left scale) and mean
energy (E„&) (upper curve, right scale) of LA phonons emitted
by an electron in the ground 1D subband with an initial energy
of 5 meV as a function of the lateral wire width L. The long
bars mark the corresponding 2D results. TI =4 K.

when E, is about 0.6 meV above the edge of the new sub-
band. (E~z) exhibits a sharp minimum followed by a
weak maximum because the energy difference E; —E,d,
increases from zero to values that are larger than the
mean phonon energy for scattering into the other avail-
able final subbands. The influence of a new subband
weakens with a growing number of occupied subbands.
As before the 1D curves approach the 2D values with in-
creasing L.

In contrast to the acoustic phonons discussed up to
now, the optical phonons have no continuous-energy
spectrum in our dispersionless approach. For the OD sys-
tern the discrete electrons and LO phonon energies
prevent any first-order (Frohlich) interaction, except for
the special cases E, —E =A'co„o. A finite scattering time
can result from broadening of the electron and phonon
spectra, renormalization of the phonons due to the
confinement, and higher-order interaction terms (for in-

stance, the simultaneous interaction with a LA and a LO
phonon). The following calculations are restricted to
one- and two-dimensional systems. The assumption that

Epp does not depend on q allows us to analytically calcu-
late Eq. (1) for LO phonons to a greater extent. For emis-
sion of phonons of the jth (j =1,2) branch, we obtain
(kT, « Picots, )

1, I'r&~(E, )=c dq q + dyM„"'" (q cosy)M, ' (q sing),
4~2A3 kf 0 q2+{k kf)2 q2+(k, +kf)—2 0

MP '(q)
[(k'+k + 2) —4k k ]'r2o'(E, ) =c dq

(Sa)

(5b)
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a similar shaPe as g&ri(E; —iricoi o), exhibiting singularities
at the 1D subband edges. In real 1D systems g,~ is
smooth due to broadening effects. The formula

—n /no
gin(E)=gpi) 1+2 y JQ(2irny)e

describes phenomenologically the broadened density of
states of all subbands' where
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FIG. 3. Scattering rates ~ ' of 1D E,'solid) and 2D (dashed)
electron gases due to the emission of phonons of the lowest LO
branch (Rco& I =28.9 meV). Above the 1D curve the relevant 1D
subband transitions are indicated. The lateral wire width L„ is
1000 A and TI =0 K.

where k; (kf ) is the modulus of the wave vector for an
electron with the energy E; (Ef ) in the respective 1D or
2D initial (final) subband. Here i.,~ exhibits singularities
when kf equals zero in contrast to the smooth curves ob-
tained for the deformation potential coupling to LA pho-
nons. The ratio of the unbroadened density of states of
one subband in 1D and 2D is

gin/gin =2/(L„k ) .

From this point of view it becomes clear that bio (E; ) has

y = j I+E[fi ir /(2 I'I. )]

and Jo is a Bessel function of the first kind (here no=5
results in a broadening I of about 1 meV). Instead of
adding the individual scattering rates for all possible
transitions between broadened initial and final 1D sub-
bands, we calculate ~,~ approximately as follows. By
means of Eq. (6) we introduce the broadened density of
states [Eq. (7)] into Eq. (Sa) and calculate the matrix ele-
ment between the initial and final subbands, which exhib-
it the greatest density of states at a given E;. Each time
the relevant initial or final 1D subband changes we match
the scattering rates continuously over the range of the
broadening using a cubic polynom. Figure 3 shows the
resulting rates for emission of LO phonons as a function
of E; for the 1D (solid) and the 2D (dashed) systems.

To know about the energy relaxation of heated carriers
at low temperatures is important, in particular for the in-
terpretation of optical experiments. The energy-loss rates
P of the 2DEG in GaAs/Al, „Ga„As heterostructures
have been extracted from Shubnikov —de Haas measure-
ments' ' at electron temperatures below 20 K and agree
well with calculations for LA phonons interacting by
means of a deformation potential. To calculate the ener-

gy loss in the In, Ga„As/Inp system we add the rates
of emission (P„~, ) and absorption (Pi «) of LA phonons
and the emission of the two different types of LO pho-
nons (Pi o„Pioi ),

P(p, T„Tr ) =I dE g(E, )nF(E, , T„p)[P. i«(E;, Tr. , T«p) Pi.«(E(~Tr ~
—Te) p)+PLol(Ei~Te~)u)+PLO2(Ei~Te~P)]

0

Here nF is the Fermi-Dirac distribution function of the
electron gas

(E T IJ ) (e[(E &)lkT)+1)—

For the energy-loss rates of the two types of LO phonons
there is

Pi oj ( E T iu ) = 7 i oj (E )flcoI J [ 1 nF ( E; Amor ~, T—„—p ) ]

with ito(E, ) as in Fig. 3. The term [1—nF( )] de-
scribes the occupation and therefore suppression of final
states by the other electrons. Pi ~, and P«, result from
Eq. (1) when the term under the sum is multiplied by
A'c, q[1 nF(E; Pic, q, T„p)].—If an ele—ctron gas is heat-
ed (for example, by an applied electric field) its tempera-
ture T, increases above the lattice temperature Tt until

I

the heating power equals the overall energy-loss rate
P(p, T„Ti). The use of the Fermi-Dirac distribution
function excludes strong electric fields and supposes that
the electron-electron scattering rate exceeds the
electron-phonon scattering rate in order to establish the
thermal equilibrium of the heated electron gas.

Figure 4 presents T, for 1D (solid) and 2D (dashed)
electron gases with the same area1 density n, as a func-
tion of the heating power per electron P for several values
of TI. The 1D and 2D curves are similar, showing the ex-
pected increase of T, with P. The LO phonon emission is
negligible below 20 K, but dominates the relaxation
above about 30 K. The onset of significant electron heat-
ing shifts to higher P with increasing TI because the re-
laxation strengthens with the growing number of LA
phonons. Nevertheless, T, increases with TI for any
heating power P.

Figure 5 shows the density dependence of the energy-
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FIG. 4. Electron temperature T, of 1D (solid) and 2D

(dashed) electron gases as a function of the heating power per
electron P for different lattice temperatures TI. The lateral wire
width L, is 1000 A and the areal electron density n,. is 2.5 X 10"
cm ' (the corresponding 1D density is 2.5 X 10 cm ').
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FIG. 5. Energy-loss rates P per electron of 1D (solid) and 2D
(dashed) electron gases as a function of the areal electron densi-

ty n, at a lattice temperature TI of 4 K and an electron tempera-
ture T, of 6 K. The lateral wire width L is 1000 A.

loss rates for fixed electron and lattice temperatures. The
energy-loss rate per electron P decreases with increasing
n, because the number of states in the energy shell of
width kT, around p that are available for scattering in a
degenerate electron gas does not grow proportionally to
n, . The 1D energy-loss rate oscillates around the 2D
curve exhibiting maxima when p lies slightly above a 1D
subband edge. Consequently, the relaxation in 1D can be
faster or slower than in the corresponding 2D structure.
Figure 4 is an example for the first situation.

Finally, the energy relaxation of a single electron in a
quantum dot can be compared to that in quantum wires
and wells using Figs. 1 and 2. For L below —1300 A
(E; ~ 2 meV) the energy-loss rate of an electron in OD

~ODE, is smaller than 10 meV/s (Fig. 1), while the order
of magnitude of the corresponding quantity r (E h ) is
10 meV/s for 1D and 2D systems (Fig. 2). Thus, for
quantization energies above -2 meV the energy relaxa-
tion by LA phonons is generally slower in the OD than in

the 1D and 2D structures.
In conclusion, we have discussed LA and LO phonon

scattering and the associated relaxation properties of
two-, one-, and zero-dimensional electron gases. A sim-
ple approximation to the LO phonon-scattering rates of a
multisubband 1D system, including broadening effects,
has been presented. In the 1D systems the calculated
quantities of the phonon scattering (scattering rates w

mean LA phonon energies (E h ), energy-loss rates P) ex-
hibit oscillations around their corresponding 2D values,
which are characteristic of the 1D density of states. On
the other hand, the LA phonon scattering in OD systems
becomes increasingly quenched with increasing quantiza-
tion energies.
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