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Binding energies of excitons in quantum wells are calculated including valence-band mixing
and also other important effects, namely Coulomb coupling between excitons belonging to differ-
ent subbands (which is predominantly with the exciton continuum), nonparabolicity of the bulk
conduction band, and the difference in dielectric constants between well and barrier materials.
All these effects are found to be of a comparable size, tend to increase the binding energies, and
taken together result in very high binding energies, particularly in narrow GaAs/A1As quantum
wells. Binding energies can be even higher than the two-dimensional limit of four times the
bulk Rydberg. Theoretical results agree within a few tenths of a milli-electron-volt with avail-
able photoluminescence excitation experiments. Valence-band mixing gives a finite oscillator
strength to some excitons not in s states, but does not change the selection rules based on

parity. Calculated oscillator strengths of the ground-state heavy- and light-hole excitons are
found to be in good agreement with absorption and re8ectivity experiments.

I. INTRODUCTION

Excitons in semiconductor quantum wells (QW's) have
been the subject of numerous investigations since the
first observations by Dingle and co-workers. Excitonic
effects in GaAs-Gay Al As quantum wells grown by
molecular-beam epitaxy are much more prominent than
in bulk samples of comparable quality, both in absorp-
tion and in emission. The photoluminescence is often
dominated by intrinsic emission, and excitons are seen
in optical spectra up to room temperature. Such proper-
ties can be partly understood as arising from the increase
in binding energy and oscillator strength due to confine-
ment of the carriers. Therefore an understanding of the
effects which determine binding energies and oscillator
strengths represents a basic piece of knowledge in this
field.

The overall trends in these properties are determined
by quantum confinement. Binding energies and oscillator
strengths are first increased as the well width is reduced,
due to the smaller electron-hole separation. This holds
as long as the exciton wave function remains confined in
the well region: for narrow wells and finite barrier height,
the wave function starts to leak into the barriers, making
the binding energy decrease towards the value appropri-
ate to the bulk barrier material. However, besides the
effect of quantum confinement, exciton binding energies
and oscillator strengths are also affected by the fourfold
degeneracy of the uppermost bulk valence band at the
I' point. In a QW, this degeneracy is removed, giving

rise to heavy- and light-hole states (HH, LH): heavy and
light holes are mixed at finite values of the in-plane vec-
tor k~),

' giving rise to strong nonparabolicities in the
space-quantized valence-band structure. These features
occur at the same scale of k~~ vectors relevant for the con-
struction of exciton states, and must therefore be taken
into account for the exciton problem.

Exist ing theor ies of quantum-well excitons can be
classified according to whether they neglect valence-
band mixings 7 ~e ~ or include it. ~4 z2 There is general
agreement that valence-band mixing increases the bind-
ing energy and the oscillator strength of the ground-state
HH and LH excitons. However, even restricting oneselves
to the works that include valence-band mixing, published
results for exciton binding energies show a considerable
spread of values. This is due to various reasons. First,
some previous treatments of valence-band mixing
neglected the correct synimetry properties of the exci-
ton envelope function. This resulted in an inaccurate
evaluation of exciton binding energies, as well as in in-
correct selection rules for optical transitions. Second, in
addition to valence-band mixing, there are other effects
which can significantly alter the exciton binding energy:
these are Coulomb coupling between excitons belonging
to different subbands, nonparabolicity of the bulk
conduction band, ' '- and the difference in dielectric con-
stants between well and barrier materials. Each sin-

gle effect has already been studied, but no theory exists
which takes into account all of them together, although
these effects can be of a comparable size. Third, even
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when Coulomb coupling is included, an additional diK-
culty arises for excitons which are degenerate with the
continuum of other exciton series. Coupling with the
continuum is particularly difficult to include, but is also
particularly sizeable.

Our main point here is that all the effects mentioned
above go in the direction of increasing the binding en-

ergy, at least for the ground-state HH and LH excitons
in GaAs-Gaq ~AI~As quantum wells. Hence their com-
bination can yield significantly higher binding energies
than in any of the existent theories.

This work is devoted to an accurate calculation of
binding energies and oscillator strengths for ground-
and excited-state excitons in [001]-grown type-I quantum
wells. In Sec. II we describe the theoretical framework.
We give particular emphasis to the points (selection rules
for excitonic transitions, the treatment of nonparabolic-
ity, the effect of the dielectric mismatch, coupling with
the continuum) which are sometimes controversial in the
existing literature. In Sec. III we present results for bind-

ing energies, and in Sec. IV for the oscillator strengths.
Section V contains concluding remarks. Numerical re-
sults are obtained for GaAs-Gaq Al As quantum wells,

but the theory could be applied to other III-V structures.
Comparison with experiment is emphasized throughout.
The results obtained with this theory were first published
in Ref. 22, but without the effect of the dielectric mis-

match.

II. THEORY

A. Expansion of the exciton wave function

The theory of quantum-confined excitons is based
on the effective-mass approximation in the envelope-
function scheme. In this scheme, the difference in the
band edge between well and barrier materials is regarded
as an effective potential for the carriers, which gives rise
to quantized subbands. The envelope-function is required
to satisfy current-conserving boundary conditions at the
interface. 2s Detailed investigations~4 indicate that this
scheme is quite appropriate for GaAs-Gaq Al As het-
erostructures. Experience shows that predictions of the
envelope function theory often maintain quantitative va-

lidity down to well widths of the order of 20 A.25'2s

The situation is likely to be more favorable for the ex-
citon problem, at least in type-I quantum wells, since
the electron-hole interaction tends to confine the exciton
within the well and an inaccurate treatment of the inter-
face region is of little concern. Inaccurate predictions for
narrow wells are likely to be due to the parameters of the
theory, which are strongly renormalized for energies far
from the band edge, rather than to a breakdown of the
theory in itself.

%'e take the z axis as the growth direction. The exciton
Hamiltonian in the effective-mass approximation is a 4 x 4

matrix operator given by

where E,(k) is the nonparabolic conduction-band disper-
sion (see below), T„(k) is the Luttinger Hamiltonian, 27

V„Vj, are square-well confinement potentials for elec-
trons and holes, V~(r) = —e /(e~r~) is the electron-hole
Coulomb potential screened by the low-frequency dielec-
tric constant s of the well material, and V~(r„r~) repre-
sents the potential due to all image charges. An explicit
expression for V~ + Vm is given in Ref. 28 for the analo-
gous case of acceptor impurities.

We do not consider the spin of the conduction band,
and therefore neglect the electron-hole exchange interac-
tion. The spin index s = z, 2, —z, —

z corresponds to the3 1 1 3

angular momentum z of the uppermost I's valence band
at the I' point. Remote bands are not explicitly consid-
ered, but their effect is included in the band parameters
up to second order. The exciton envelope function is a
four-component spinor labeled by the index 8. For zero
exciton wave vector, we represent it as

x c;(z, )v'. k (zI, ),
II

(2)

where k~~ = (k~~, n) is the Bloch vector of the subbands,

p = (p, 8) is the relative coordinate in the zy plane,
c;(z,), v.k (zI, ) are envelope functions of conduction and

II

valence subbands, the index i (j) denotes the principal
quantum number of conduction (valence) subbands, and

G;i(k~~) is the in-plane wave function in k space.
In the Luttinger Hamiltonian, we neglect the small k

linear terms arising from the lack of inversion symme-
try of the zinc-blende lattice. We also adopt the ax-
ial approximation, s as warping of the valence subbands
has been found to have a very small effect on the ex-
citon binding energy:~~ in this approximation, the exci-
ton problem acquires cylindrical symmetry around the
growth direction. The transformation properties of the
valence envelope functions under rotations in the k -k&

plane can be found by applying the rotation operator
exp( —iaJ,), and are

(k~[, )( ) = *"~~~g,0)(z).

It is important to observe that, even if the dispersion
of the valence subbands is taken to be axially symmet-
ric, the spin components of the valence envelope function
depend on the direction of k~~ in the k -k& plane accord-
ing to Eq. (3). This fact was apparently missed in some
previous investigations. Omitting the phase factor
exp( —isn) results in an overestimation of binding ener-
gies, and in selection rules inconsistent with symmetry
properties, as already discussed.

From these transformation properties, it can be shown
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that the in-plane wave function 6;& (kll) can be taken of
the form

TABLE I. Relation between the quantum number m and
the usual quantum numbers (s, p, d states . . . ).

(";~(kll) = g;, (kll)e' (4) hole
level

Values of m for diR'erent symmetries

where I is a conserved quantum number which can be
interpreted as the projection of the total angular momen-
tum along the growth direction. The angular dependence
of the exciton envelope function (2) can be found by in-
serting (3) into (2) and performing the angular integra-
tion, which gives

g )
m-s i(m-s)s

kll dklIx),] g;, (kll)c, (z, )

HHi
LH2

LH&

HH2

5
2

7
2

1
2
1
2

3
2

5
2

1
2

3
2

1
2

xv,' (z )J--.(kllp) (5)

where J~, are Bessel functions and we write for simplic-
ity v'& (z) instead of v'.

(z e) (z). Equation (5) shows that
g k)) ~(x~~,o)

different spin components of the exciton envelope func-
tion have different values of the orbital angular momen-
tum I = m —s. Moreover, a spin component with orbital
angular momentum l behaves like p' for small p. We do
not insist on these symmetry properties, as they have al-

ready been discussed in detail in the literature.
We neglect coupling between different conduction sub-

bands, which are well separated in energy. In this ap-
proximation, spin-degenerate valence subbands are not
coupled by the Coulomb potential, and only one of them
needs to be included in the expansion (2). We choose
to work with valence envelope functions such that the
components 2, —

2 are even in z, and the components
'z, —

z are odd s (our convention is opposite to that of
Ref. '20). Kramers-degenerate excitons can be found by
considering time-reversed valence states, and by letting
m ~ —m. Considering also the electron spin, each ex-
citon state is fourfold degenerate in the neglect of the
exchange interaction.

In this formalism, excitons are classified by two quan-
tum numbers: the index i of the conduction subband,
and the z projection of the total angular momentum,
which we have called m. Trial states belonging to dif-
ferent valence subbands, but with the same value of m,
are coupled by the Coulomb interaction. If an exciton
originates largely from a particular valence subband, it
is possible to relate the quantum number I to the ones
which are usually employed: s, p, d states, . . . . Let s()
be the spin component which is nonvanishing in the ne-

glect of valence band mixing. s-states have zero orbital
angular momentum for that component and correspond
to rn = so, p states correspond to I = so + 1, and so
on. Note that there are two 2p states, and they are not
degenerate in the presence of valence-band mixing, be-
cause they correspond to different values of m: we denote

B. Computational details

In order to find exciton levels, the radial function

g;z(kll) is expanded into a nonorthogonal basis,

g~j (kll) = ) n~j~h~(kll)

The basis functions h„(kll) consist of two-dimensional hy-
drogenic wave functions of the 1s state, which are de-
creasing exponentials in p space, and which in k space
have the form

2Q'

(k2 + ~z)s(z

The parameters a„are chosen in geometrical progression
centered around the inverse exciton radius. We also in-
clude in the basis set some Gaussians in kll space:

(k )
-(kP —k„) /(2e ) (8)

For a small width o, states (8) describe delocalized states
in p space, and are well suited in order to represent states
of the exciton continuum (this point is discussed in more
detail below).

Exciton eigenenergies and eigenfunctions are obtained
by taking Hamiltonian and overlap matrix elements
within the above basis and by solving a generalized eigen-
value equation for the expansion coef5cients. The matrix
elements of the kinetic part of the Hamiltonian have the
form

them by p+ and p . The approximate relation between
the quantum number rn and the orbital syrrimetries of
the exciton is illustrated in Table I for four different hole
levels. For example, the ground-state LH1-CB1 exciton
couples to d states of the HH1-CB1 exciton, and to p+
states of the HH2-CB1 exciton. Ground-state excitons
couple with each other only when the corresponding sub-
bands have the same symmetry, for example HH1-CB1
and HHB-CB1.

(ij v tE, + T„+V, + Vh ~ij 'v') = E"&( Il)j""(kll)""'( ll)»'
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where E„z(k~~) contains the complicated dispersion of the valence subbands due to HH-LH mixing. The matrix
elements of the Coulomb potential have the form

where

2' OO OO

0 0 0
(10)

2 1
V(ijk~~zij'kj~, 8Irn) =—,) e' ' dz, dzi, lc;(z, )l v'i (zi, )"v', „z (zh, )e

2zs Ik((
—k II

Here 8 = n —n' is the angle between k~~ and kjl.
Note that the contribution of different spin components is
weighted with the factor e'~~ 'ls in the 8 integral: this
tends to suppress the contribution of spin components
with orbital angular momentum I g 0.

An important feature of the k-space Coulomb potential
(11) is that the exponential factor exp[—lk~~

—kj l lz, —zh l]
is piecewise separable in the electron and ho. 'ie coordi-
nates. Using the explicit form for the valence envelope
functions given in Ref. 29, we see that the dz, dzg integral
in Eq. (11) reduces to products of one-dimensional inte-
grals which involve combinations of trigonometric and ex-
ponential functions. Hence (11) can be evaluated analyt-
ically, although with a lengthy algebra. This represents a
major simplification in numerical calculations, and is also
a distinct virtue of the present theory, because it allows
an analytical treatment of current-conserving boundary
conditions and different band parameters in well and bar-
rier materials. Moreover, the matrix elements of the im-

age charge potential also depend exponentially on z„zp,
so that the contribution of all image charges reduces to a
geometrical series which can be summed analytically. zs so

The remaining three-dimensional integral over k~~, kj~
and

8 is done numerically by Gaussian integration. A techni-
cal problem has to be solved, since the argument of the |I(

integral in (9) is logarithmically divergent near 8 = 0, al-

though the integral itself is finite. We add and subtract
a function which removes the singularity, but which is
sufBciently simple to be integrated by hand.

The expansion in a large basis set allows us to con-
trol convergence both in the number of subbands and
in the number of trial functions. The number of va-

lence subbands included in the expansion is usually two
or three: the expansion set is smaller than in Ref. 21, as
here the basis already contains valence-band mixing. Nu-

merical convergence is better than 0.2 meV in the range
of well widths considered here (GaAs-Gai ~A1~As quan-
tum wells with L ranging from 30 to 200 A).

C. Oscillator strength

The oscillator strength is a dimensionless quantity,
which for excitons in quantum wells is proportional to
the area of the sample. The relevant quantity is thus the
oscillator strength per unit area, which in the effective-

mass approximation is calculated to be

dk/fx ) a;,„(h„(kg)2r32

(12)

where u„u, are Bloch functions of conduction and va-
lence bands at k = 0, and

I;;(kii) = f dzc;(z)v,'z, (z)

is the overlap integral between envelope functions of con-
duction and valence subbands. Expression (12) must be
summed over the fourfold-degenerate excitons.

Different kinds of selection rules come from the inte-
gral over the angle e of k~~, from the momentum matrix
element between Bloch functions, and from the overlap
integral (13). The integral over a is nonzero only for
s = rn, hence at most one spin component can be opti-
cally active, i.e., the one with zero orbital angular rno-
mentum. Note that a spin component with t = 0 exists
only for states with lml & z, and states with lrnl & z are
forbidden in the axial approximation. But even when
there exists a spin component such that s = m, the oscil-
lator strength vanishes when {u,le plu'„} = 0, or when
conduction and valence states in (13) have opposite pari-
ties. The resulting selection rules are summarized in Ta-
ble II (where, for completeness, we consider also the case
of two-photon transitions i) for excitons with lml &
Use of Table II together with Table I allows us to ob-
tain the selection rules for all exciton states with a given
orbital symmetry. We see, for example, that the ground-
state heavy-hole excitons are forbidden for light polarized
along the growth direction. Moreover, ground-state exci-
tons belonging to subbands with opposite parities, such
as HH2-CB1 or LH1-CB2, have zero oscillator strength.
It is important to remark that these selection rules are
valid with full inclusion of valence-band mixing, con-
trary to some statements made in the literature. The
effect of valence-band mixing is to give a finite oscilla-
tor strength to some excitons in excited states, such as



8932 LUCIO CLAUDIO ANDREANI AND ALFREDO PASQUARELLO 42

TABLE II. Selection rules for one- and two-photon tran-
sitions, for excitons labeled by the quantum numbers (con-
duction subband, value of m). The symbols x, y, z denote
the polarizations of the light beam for which the transition
strength does not vanish. 0.1

I I I I I

conduction
subband

CB1

CB1

CB1

CB1

CB2

CB2

CB2

CB2

1
2

3
2

1
2

3
2

one
photon

Xy, Z

Xy, Z

two
photons

Xy) XZ) ZZ

Xy) XZ

Xy) XZ

Xy) XZ) ZZ

0.09—

E

~ 0.08—

0.07—

50 100

well width (A)

150
006 I I I I I I I I I I I I I I I I I I I

200

HH2-CB1 (2p+) or LH1-CB2 (2p ). Another property
which follows from symmetry is that, for excitons with
m = + &, the oscillator strength for light polarized along1

z is four times that for light polarized along z, y.

FIG. 1. In-plane effective mass of the lowest conduction
subband in GaAs-Ga~ Al As quantum wells with different
values of x, in units of the free-electron mass. The dashed
line denotes the conduction-band effective mass in bulk GaAs
(m' = 0.067mo).

D. Conduction-band nonparabolicity

Conduction band (CB) nonparabolicity is included by
using the anisotropic CB dispersion computed in Ref. 32
from a fit to a 14-band k p model. Neglecting the small
spin splitting, and averaging in the k~-k& plane in order
to have an axially symmetric dispersion, we have

h
E(kii, kz) = (kii+k, )+n(kii+k, ) +p(k k +-'kii),

(14)

where the k-dependent parameters n, P are given in Ref.
32. The in-plane dispersion of the conduction subbands
is obtained from (14) by first calculating the subband
energies at k~~

——0, and then considering k, as fixed: the
results are essentially equivalent to those obtained with
the more elaborate method of Ref. 33. It can be seen
that bulk nonparabolicity has a threefold effect.

(1) Confinement energies at k~~
= 0 are determined

by an energy-dependent efFective mass m& = m'/(1
+n2m*kz/h').

(2) The in-plane effective mass m~~ = m'/[I + (2n
+P)2m'k, /h j is different from the bulk efFective mass
m' and from the perpendicular eA'ective mass m~.

(3) The in-plane dispersion is slightly nonparabolic.
Effect (1) changes the energies of optical transitions,

but is of little importance for exciton binding energies.
The important effects are (2) and (3), as the effective
Rydberg is proportional to the reduced parallel eA'ec-

tive mass. The nonparabolicity eA'ect on m~~ is about
three times larger than on my. therefore, including non-
parabolicity using an isotropic and energy-dependent ef-

fective mass would lead to a considerable underestima-
tion of the effect. Our results in this respect are essen-
tially equivalent to those of Refs. 18 and 33.

In Fig. 1 we show the in-plane mass rn~~ for the first con-
duction subbands in GaAs-Gat Al As quantum wells of
different well widths and barrier heights. It can be seen
that nonparabolicity considerably increases the parallel
effective mass, particularly in GaAs/A1As quantum wells.
Formula (14) is quoted to be accurate for energies within
0.2 eV from the band edge. When the energy of the first
conduction subband is higher than 0.2 eV, which hap-
pens in GaAs/A1As quantum wells narrower than about
35 A. , formula (14) has only qualitative validity. The re-
sults reported in Fig. 1 are useful in order to understand
the origin of the high exciton binding energies reported
in the next section.

E. Dielectric mismatch

As said before, the dielectric mismatch is taken into ac-
count by considering an infinite series of image charges.
We emphasize that we take into account the whole se-
ries of image charges for all possible positions of electron
and hole in the well and barrier materials. In GaAs-
Gat AlzAs QW's, this efFect tends to increase the bind-
ing energy, as the dielectric constant in the barrier is
smaller than in the well. It is important to remark
that the eR'ect of the dielectric mismatch is a purely elec-
trostatic one, which depends marginally on the amount
of wave function in the barriers. As such, it would exist
even if the barriers were infinitely high from the elec-
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tronic point of view. In fact, the effect is largest for
GaAs/A1As QW's, where the barriers are higher but the
dielectric mismatch is maximized.

We have neglected the contribution to the image-
charge potential coming from the electron and hole self-
energies. The effect of these terms on the exciton bind-
ing energy vanishes for the separable wave function of
Ref. 6, as the self-energy shift of electron and hole sub-
bands exactly compensates for the shift of the exciton
energy: since the separable wave function gives a good
approximation to the binding energy for a well width
L a~, the self-energy effect to the exciton binding en-

ergy is expected to be very small. In fact, we have verified
using first-order perturbation theory that the self-energy
correction to the exciton binding energy is ( 0.1 meV
even for a 30-A. -wide GaAs/A1As quantum well.

The effect of the dielectric mismatch can be estimated
in a two-band model with a separable wave function and
infinite barriers, by treating the potential of the first im-

age charge in first-order perturbation theory. This yields
the following expression for the increase in binding en-

ergy:

AE = 2,—I(aL),E+ E'EL (15)

where c, t.' are the dielectric constants of well and barrier
materials respectively, o. is the inverse exciton radius, and
where

(2nL)s e

o [z& + (2crL)&]s/& [I + (z/2/)&]&

t'sinh(z/2)

z/2
(16)

is a quantity of order unity. The energy shift depends
on the well width essentially like 1/L. For example, in a
100-A-wide GaAs-Gao sA10 4As QW, the binding energy
is expected to increase by 0.7 meV, in fair agreement with
the results of the complete theory.

F. Coupling with the continuum

Coulomb coupling is included in this theory via the ex-
pansion (2) over different valence subbands. For discrete
exciton states (like the ground state HH1-CB1 exciton,
which is always the lowest state), coupling with discrete
and continuum states belonging to other exciton series
is automatically taken into account. However, an annoy-
ing difficulty arises in this theory (as in any other one
which explicitly considers valence-band mixing) when an
exciton state is degenerate with the continuum of other
excitons. This is the case, for example, for the LH ex-
citon in GaAs-Gay Al As QW's narrower than about
130 A. When this happens, the discrete exciton state be-
comes a Fano resonance. We are not aware of any first-
principles treatment of excitons degenerate with the con-
tinuum. The procedure we follow here corresponds to
a calculation of the absorption coeKcient within the vari-
ational basis. We take the variational eigenstates which

happen to lie near the energy position of the resonance,
and compute the average energy weighted with the oscil-
lator strength. The oscillator strength of the resonance
is defined to be the sum of the oscillator strengths of the
individual states. Both quantities are seen to converge
rapidly on increasing the density of variational eigen-
states in the energy region of the resonance, which can be
done by carefully choosing the parameters of the Gaus-
sian trial functions (8).

This method is well suited in order to study states
with a large oscillator strength, superimposed on a weak
continuum background [as is the case for the LH1-CB1
(1s) exciton, which couples with the weak d -like contin-
uum of HH1-CB1]. It fails for states with an oscillator
strength comparable to that of the continuum: however,
such states will also be difFicult to observe experimentally.
Altogether, this procedure has the advantage of empha-
sizing the quantity of experimental interest, namely the
absorption coefficient. Our procedure is similar to that
used in Ref. 21, but we do not discretize the continuum
in a larger box.

The procedure used here receives support from a study
of a simple one-dimensional model, where the varia-
tional solution can be compared to the exact solution
and also to the results of the Fano theory. The three
methods of solution are found to yield the same result
for the energy shift. Furthermore, the one-dimensional
model shows that the Fano width can also be obtained
within the variational method. 5

III. RESULTS FOR BINDING ENERCIES

TABLE III. Material parameters.

parameter

y1

y2

y3

GaAs

0.067
6.85
2.10
2.90

12.53
25.7 eV

AlAs

0.15
3.45
0.68
1.29

10.06
25.7 eV

In this section we present numerical results for exciton
binding energies referring to GaAs-Gaq Al As quantum
wells. The band parameters used in the calculation
are given in Table III for GaAs and A1As: those of
Gaq Al As are obtained by linear interpolation. For the
band-gap difference, we take the Casey-Panish formula

AEz —— 1.247m eV for z ( 0.45 and LE& —1.247m

+1.147 (z —0.45)~ eV for 0.45 & z & 1. The valence-band
offset is taken to be 35%%uo of the total band-gap difference.

In Fig. 2 we show the binding energy of the ground-
state heavy-hole exciton in GaAs-Gap s Alp 4As quantum
wells of various widths, as a function of the approxima-
tions used in the calculation; in Fig. 3 we present sim-
ilar results for the ground-state light-hole exciton. The
dotted lines represent the results obtained by keeping
only one conduction and one valence subband (two band-
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100 150

well width (A)

approzitttation), with a parabolic conduction-band, and
taking the dielectric constant of Gat ~A1 As to be the
same as for GaAs. The dashed-dotted line is calculated
including conduction band nonparabolicity. The dashed
line includes also the effect of Coulomb coupling, besides
that of nonparabolicity. The solid line includes also the

FIG. 2. Binding energy of the ground-state HH1-CB1 ex-
citon in GaAs-Gap. 6Alo. &As quantum wells. Dashed line: two-
band approximation, parabolic CB, equal dielectric constants.
Dashed-dotted line: including CB nonparabolicity. Dashed
line: including nonparabolicity and Coulomb coupling. Solid
line: full calculation, including also the dielectric mismatch.

dielectric mismatch, and therefore represents the full cal-
culation. All three effects are seen to increase the bind-
ing energy by comparable amounts, particularly for nar-
row wells. Nonparabolicity is negligible for large wells,
but becomes rapidly important for narrow wells. The ef-
fect of Coulomb coupling grows for thicker wells, as the
subband separation becomes smaller, and is particularly
important for the light-hole exciton, where it increases
the binding energy by more than 2 meV. For the HH1-
CB1 (1s) exciton, only coupling to LH1-CB1 is kept, as
the remaining subbands give a contribution of the or-
der of 0.1 meV; for the LH1-CB1 (ls) exciton, instead,
it is necessary to include coupling to both HH1-CB1 and
HH2-CB1. It should be remarked that coupling is mainly
with the continuum of other exciton series, and is in fact
much larger than found in Ref. 20, where coupling with
the continuum was neglected. The effect of the dielectric
mismatch is seen to be large, similar for both excitons,
and to decrease slowly with the well width according to
the approximate formula (15).

In Figs. 4 and 5 we present the binding energies of the
ground-state heavy- and light-hole excitons for the full
calculation, for three different values of the aluminum
concentration. The case z = 1 refers to A1As barriers:
the crossover from direct to indirect gap, which takes
place at a well width of about 35 A, ss should not change
the results reported in Figs. 4 and 5 (even if the lowest
exciton becomes indirect), as the effect of I'-X mixing
is small. ~4 It can be seen that the binding energy of the
ground-state HH and LH excitons depends very markedly
on the aluminum concentration. It is important to ob-

servee

that this dependence is not an effect of confinement,
as the exciton is already largely confined within the well.
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FIG. 3. Binding energy of the ground-state LH1-CB1 ex-
citon in GaAs-Gap 6Alp gAs quantum wells. The meaning of
the difFerent curves is the same as in Fig. 2.

FIG. 4. Binding energy of the ground-state HH1-CB1 ex-
citon in GaAs-Ga~ Al As quantum wells for difFerent values
of x.
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of x.

FIG. 6. Binding energies of the 2s states of the HH1-CB1
and LH1-CB1 excitons in GaAs-Ga& Al As quantum wells

for different values of x.

Rather, it is a result of conduction-band nonparabolicity
(which acts via the parallel effective masses shown in Fig.
1) and the dielectric mismatch, which is obviously largest
for AlAs barriers. The change in band parameters is also
responsible for the fact that the binding energy can be-
come higher than the two-dimensional limit EgD ——4E3D,
i.e. , about 17 meV. The high binding energies for narrow
GaAs/A1As quantum wells are therefore a peculiar result
of the present theory.

In Fig. 6 we show the binding energies of the 2s ex-
cited states of the HH1-CB1 and LH1-CB1 excitons for
three different aluminum concentrations. For simplicity,
the two-band approximation has been adopted, which for
the 2s states imply an error smaller than 0.2 meV. The
energies of the 2s states follow similar trends as the cor-
responding 1s states, on a reduced energy scale. They
can be much larger than reported in the literature,
particularly for the light-hole exciton. Here, again, the
dependence on the concentration comes mainly from non-
parabolicity and the dielectric mismatch.

The work of Ref. 7 first called attention to the fact
that the exciton binding energy should reach a maximum
at a critical well width, when the exciton wave function
starts to spread into the barriers. We have found no ev-
idence for a decrease in binding energy in the range of
well widths we have studied. This is due in part to the
fact that we have considered higher aluminum concen-
trations than in Ref. 7, and in part to conduction-band
nonparabolicity and the dielectric mismatch, whose ef-
fect grows for narrow wells and tends to push the criti-
cal width down to smaller values. Our expansion set is
clearly not adequate in the limit L —+ 0 (apart from the
fact that the effective-mass approximation itself breaks

down), as the contribution of the subband continuum can
no longer be neglected: however, the subband continuum
is not expected to be important before the first conduc-
tion level is within a few exciton binding energies from
the top of the well, which is never the case for L & 30 A.
The conclusion which follows from our calculation is that
the expected decrease in exciton binding energy does not
occur for L & 30 A and z & 0.25.

The most reliable measurements of the exciton binding
energy come from photoluminescence excitation (PLE)
experiments in high-quality samples, where the 2s state
is seen as a well-defined peak. In Table IV we compare
some experimentally measured values ~ of the dif-
ference Et, (ls) —Et,(2s) with our theoretical predictions.
Agreement is at the level of 0.5 meV in the whole range of
well widths. Comparison with other experiments40 leads
to similar conclusions. In particular, the underestimation
of binding energies noted in Ref. 21 is resolved by the in-
clusion of nonparabolicity and the dielectric mismatch.
Note that the binding energy is considerably higher in
the GaAs/A1As QW with L = 82 A, and still in agree-
ment with theory: according to the above discussion, this
can be taken as an indication for the effect of the dielec-
tric mismatch. Unfortunately, we are not aware of any
other PLE data on GaAs/A1As quantum wells.

Magneto-optical data are less straightforward to an-
alyze, as the determination of the continuum edge re-
quires using a model in order to extrapolate the exper-
imental data to zero field. When we compare our the-
oretical predictions with the results of magneto-optical
experiments4t 44 we find larger discrepancies ( 1-2
meV), which, however, are not systematic. Consider-
ing the excellent agreement with PLE experiments, we
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TAB LE IV. Comparison of theoretically calculated values
of the energy difference EEb = Eb(ls) —Eb(2s) with PLE
experiments, for excitons associated with the first conduction
subband. Energies are in meV.

I. (A)

75

82

92

112
225

76
71

0.40

1.00

0.35

0.35
0.35

0.33
0.33

hole

HH1
LH1
HH1
LH1
HH1
LH1
LH1
HH1
HH1
LH1
LH1
HH1
HH1

theory

9.2
11.1
10.3
12.7
8.3
9.9
9.0
5.5
6.3'
6.0
7.0'
8.9
9.1

expt.

9.5
10.3'
10.9'
12.5'
8.5'

10.2'
9.1'
6.0
6.5 "
6.2
7 3b,c

8.6
8.6

Reference 11.
Reference 38.

'Eb(1 s) —Eb(3s)
Reference 39.

IV. OSCILLATOR STRENGTH

The study of oscillator strengths of quantum-well ex-
citons has two aspects. The first is an accurate evalua-
tion of the oscillator strength of the dominant transitions,
particularly the ground-state HH and LH excitons. The
second is the effect of valence-band mixing on the oscil-
lator strength of otherwise forbidden transitions and the
validity of the selection rules derived in Sec. II. This sec-
ond aspect has been treated in detail in Refs. 20 and 22
and will not, be repeated here. There is now mounting

are led to conclude that the models used in analyzing
magneto-optical data still have some uncertainty.

No other serious sources of error should affect theoret-
ical predictions. Convergence is under control, the effect
of nonaxial terms is very small, and the dynamical po-
laronic effect4s has about the same size ( 0.2 meV) as in
the bulk. ER'ects of spatially dependent screening should
be slightly smaller than for donors, where they increase
the binding energy by 0.3 meV in a QW with L = 50
A and infinite barrier height. 4s Effects of the exchange
interaction are calculated to be small, except for the
z-polarized light-hole exciton, which is shifted upwards

by a non-negligible amount. 47 48 For wells narrower than
about 50 A. , and for the highest values of z, corrections
are likely to arise from a renormalization of material pa-
rameters and (which is actually the same thing) from the
way in which nonparabolicity is taken into account. For
wider wells (L ) 300 A.), Coulomb coupling with higher
subbands becomes essential, and the physics gradually
changes from a regime dominated by quantization of the
subbands to a regime characterized by quantization of
the center-of-mass motion of the exciton.

evidence for the validity of the parity selection rule: ob-
servation of ground-state excitons such as HH2-CB1 or
LH1-CB2 is possible only when an electric field is present
in the sample, otherwise these excitons can only be ob-
served in p-like excited states.

In Fig. 7 we show the oscillator strength per unit area
for in-plane polarization of the ground-state heavy- and
light-hole excitons in GaAs-Gap sAlp 4As quantum wells

of various widths. Nonparabolicity and the dielectric mis-

match have a negligible eff'ect on the oscillator strengths,
which also depend little on the aluminum concentration
in the barriers. The ratio of the oscillator strengths of
heavy- to light-hole exciton, which would be 3 in the
absence of valence-band mixing, becomes about 2 when
valence-band mixing is included. It has been shown in
Ref. 22 that inclusion of Coulomb coupling is essential
in order to obtain not only the correct values, but also
the correct ratio for the oscillator strengths. Concerning
the dependence on the well width, the oscillator strengths
calculated here grow more rapidly than calculated in Ref.
21 as the well width is reduced. We do not know the rea-
son for this discrepancy.

Also shown in Fig. 7 are experimentally measured val-

ues for the oscillator strengths. ' The values of Ref.
51 (taken on GaAs/Gap 75Alp zsAs quantum wells) were

directly obtained from absorption measurements. In or-
der to obtain the oscillator strength from the reflectivity
data of Ref. 52 (taken on GaAs/Gap 7Alp sAs quantum
wells) it is necessary to calculate the reflectivity from a
quantum well within a microscopic approach which re-
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FIG. 7. Oscillator strength per unit area for in-plane po-
larization for the ground-state HH1-CB1 and LH1-CB1 exci-
tons in GaAs-Gat Al As QW's of varying width. Experi-
mental points: circles, HH exciton; squares, LH exciton; open
symbols, Ref. 51 (with x = 0.25); solid symbols, Ref. 52 (with
x = 0.30).
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lates the oscillator strength per unit area to experimen-
tally measured parameters. Such a calculation, which
will be the subject of a subsequent publication, shows
that the relation between the parameter A defined in
Ref. 52 and the oscillator strength per unit area f is

f = (muLA)/(4xh e ). This relation was used in order
to obtain the data reported in Fig. 7. Experiment and
theory are in reasonable agreement, and this agreement
can only be obtained if Coulomb coupling is included.
For L & 200 A, the accuracy of the calculation is ex-
pected to deteriorate rapidly, as the oscillator strength is

very sensitive to coupling to higher subbands.

V. CONCLUSIONS

Exciton binding energies have been calculated includ-
ing valence-band mixing and also other important effects,
namely Coulomb coupling between excitons associated to
different valence subbands, nonparabolicity of the bulk
conduction band, and the difference in dielectric con-
stants between GaAs and Gat AlsAs. Coupling with
other exciton series is predominantly with the exciton
continuum. Binding energies are predicted to increase
monotonically as the well width is reduced for L & 30 A
and z & 0.25.

The effects of Coulomb coupling, nonparabolicity, and
the dielectric mismatch are of similar importance, go in
the direction of increasing the binding energy, and taken
together result in much higher binding energies than pre-
viously suspected. This is true for the ground state as
well as for the excited states. Binding energies can be
even higher than the two-dimensional limit E2D ——4E3D,
due to the change in the conduction-band effective mass
and in the dielectric constant. In particular, the effect of
the dielectric mismatch does not depend on the amount
of the exciton wave function in the barriers, but rather on
the strength and the position of the first image charges:
therefore it is particularly sizeable in GaAs/A1As quan-
tum wells. Calculated binding energies agree at the level
of 0.5 meV with photoluminescence excitation data which
measure the 1s-2s splitting. It would be interesting to
have more data on narrow ( 30—70-A-wide) GaAs/AIAs
quantum wells, where the effect of the dielectric mis-

match is largest and where the present theory mostly
differs from existing ones. The high binding energy of
the exciton in GaAs/AlAs QW's (where the barriers can
also be AIAs/GaAs superlattices) might be of importance
for the stability of the exciton, also in view of device ap-
plications.

It is interesting to pose the question as to which extent
the results obtained in this paper for GaAs-Gaq Al As
QW's remain qualitatively valid for other III-V materi-
als. The effect of Coulomb coupling always goes in the
direction of increasing the binding energy for the low-
est exciton state, which is coupled to higher-lying states.
For the light-hole exciton, however, the sign of the effect
cannot be predicted by simple arguments. The effect of
CB nonparabolicity should generally go in the direction
of increasing the binding energy, as the increase of the
CB effective mass for energies above the band edge is a
common feature of direct-gap III-V semiconductors. This
effect should be larger in materials with smaller gap, as
for the InAs/GaSb quantum well. The effect of the di-
electric mismatch depends on the relative size of the di-
electric constants in the well and barrier materials. A
thorough investigation of this eA'ect for several materials
has been given in Ref. 13.

Concerning the oscillator strengths, valence-band mix-
ing is found to have both a quantitative effect (as ev-
idenced for example from the ratio of the oscillator
strengths of HHl-CB1 to LH1-CBI) and a qualitative
effect, as some excitons become allowed in excited states.
However, valence-band mixing does not change selection
rules based on parity and polarization properties. Calcu-
lated oscillator strengths of the ground-state heavy- and
light-hole excitons agree well with absorption and reQec-
tivity measurements.
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