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The single-hole states are studied by the exact diagonalization method in two models for strongly
correlated systems: the single-band effective (z-J) model and the Kondo-lattice model. The coherent
mass m* of the quasiparticle and the frequency-dependent conductivity o(w) are calculated for
clusters with 4X4 and 8 X4 sites. In particular, o(w) shows an isolated quasiparticle peak of weak
intensity at small @ and a broad but structured incoherent part at higher w.

I. INTRODUCTION

Strongly correlated systems are at present one of the
most challenging theoretical problems in condensed-
matter physics. Due to their connection with supercon-
ducting (SC) oxides, the main goal is the understanding of
the quasiparticle (hole) interactions and the possibility of
the SC pairing of an entirely electronic origin in these
systems. Properties of a quasiparticle (QP) in a low-
doping regime, i.e., a single hole in the reference antifer-
romagnetic (AFM) system, are much simpler to investi-
gate and yet they are not fully understood.

Several models have been introduced for the descrip-
tion of layered strongly correlated systems, as realized in
CuO, layers in oxide SC. The effective single-band (¢-J)
model' ~? has been shown to represent well a more com-
plete two-band Hubbard model.* ¢ In this prototype
model the properties of a single mobile hole added to the
quantum AFM system have been studied by a number of
authors.”” 13 It has been shown that such a QP has an
essentially different dispersion, as compared to the free
fermion. Although it has only weakly reduced kinetic en-
ergy, i.e., rather small incoherent mass,’ quite enhanced
coherent mass m* shows up in the optical conductivity
response and in other low-frequency transport properties.
m* depends crucially on the transverse exchange cou-
pling J,,%!° which has been used as an expansion param-
eter in analytical approaches yielding the large enhance-
ment p over the bare electron band mass m,
u=m*/my<t/J>>1.In spite of several analytical'
and numerical calculations,®® ™13 the value of u cannot
be considered as settled in the relevant parameter regime
J/t<1.

The optical conductivity o(w), which is at low frequen-
cies closely related to the QP coherent mass, is a quantity
accessible experimentally.'* Measurements show at low
temperatures a narrow Drude peak, having a small spec-
tral weight and a broader part, which could be attributed
to the incoherent motion. So far only the latter part has
been described analytically within the retraceable path
approximation for the limiting case J /t —0."°

An alternative representation of the two-band Hub-
bard model are hole-spin models,'®~!° which describe the
mobile hole, predominantly on O sites in the CuO, layers,

42

and the localized spins on Cu sites as separate, but cou-
pled degrees of freedom. These models have a conceptual
and possibly also a technical advantage, that one can
study the behavior of the system by varying the hole-spin
coupling, the ¢t-J model being a limiting case. Among the
versions of the hole-spin models, the Kondo-lattice model
is the simplest one and has been already studied'®! in
connection with single-hole properties and the possibility
of the SC pairing.

In this paper we study the Kondo-lattice model and
the ¢-J model by the method of numerical diagonalization
of small systems. We use the Lanczos method to deter-
mine both the ground-state dispersion of a single-hole
state, and hence the coherent mass m*, as well as the
frequency-dependent conductivity o(w). Whereas one-
dimensional (d =1) systems of sufficient length can be di-
agonalized exactly, on the square lattice (d =2) one has
to use certain restrictions in the number of allowed states
to reach sufficient system sizes. The idea is to start from
a hole in a Néel state and add in a controlled way the
states with reversed spins. In this procedure, the
Kondo-lattice and the #-J model behave differently.

In Sec. II we present the models and our calculational
procedure for mass enhancement p and for o(w). Sec-
tions III and IV are devoted, respectively, to the presen-
tation of results for 4 and o(w). A summary of our re-
sults and conclusions are given in Sec. V.

II. MODELS AND METHODS

The effective single-band (¢-J) model' 3
Ht-.l =—t 2 (C;st +C};c:s )
(ij)s

+J 3 |sisj+ Listsy+s7sh|,
ij
where y =J, /J, and J =J describes the hopping of elec-
trons in the presence of a finite concentration of empty
sites in a quantum AFM, as represented by (in general) an
anisotropic Heisenberg exchange model for spin opera-
tors §; =2m,c,-";asslc,-s.. c,-];(c,»s) are here projected fermion
operators, taking into account that double occupancy of
sites is not allowed.
The Kondo-lattice model'® '3 1°
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H=—1 3 (cle,+ehe)+V 3 s S,

Jstus
(ij)s

I3 |sis+ Listsy+s7s) @)
4y

treats holes, as represented by operators c,»I(c,-s ), and the
localized spins S; as separate degrees of freedom. On in-
creasing V the model changes its character from an in-
dependent system of free holes in a quantum AFM sys-
tem at ¥V—0, to the t-J model at ¥V >>t with a corre-
sponding effective 7=t /2, representing the matrix ele-
ment for the hopping of a local singlet. The relation be-
tween the generalized hole-spin model (2) and the t-J
model (1) has been established by several authors.>® It
has been shown that single-hole properties agree even
quantitatively,® if one adds to Eq. (2) a spin-dependent nn
hopping term. In the absence of this term there are some
differences in the energy dispersion E(k); i.e., in the ¢-J
model the minimum has been found to be degenerate at
ko=(xm/2,tm/2), kg=(0,7), and (7,0) for a 4X4 and
isotropic ¥ =1 system, while a hole in the model (2) is
stable at k,=(0,0) for ¥ <V,, where V,/t >>1.

We study the lowest branch E(k) of single-hole
(N, =1) states by the exact diagonalization of a finite sys-
tem with N sites and periodic boundary conditions.”!!
We use the Lanczos procedure and basis states expressed
in the real space, taking into account a single representa-
tion among states related by the translation symmetry
and thus directly monitoring k as a good quantum num-
ber. Starting with a hole in a Néel AFM configuration,
we also keep track of the number of reversed spins N,.
Note that in both models the degenerate AFM states ex-
ist, characterized by N, =N in the Kondo-lattice model
and N,=N—1 in the #-J model, respectively. In the
study of larger systems N > 16 one is faced with an enor-
mous number of basis states which have to be taken into
account. Thus, e.g., for the next interesting cluster size
62X 4, the dimension of the relevant basis (for the ¢-J mod-
el) exceeds 3.2X 107. A way out is to restrict the number
of reversed spins to N, <N, or N, >N—N,, where
N.=N /2 for the Kondo-lattice model and N,=N /2—1
for the ¢t-J model. In the anisotropic ¥ =0 case this
amounts to neglecting the configurations with long
strings of overturned spins. Since such configurations are
energetically unfavorable we expect the results for the
ground-state energy E,=E(ky) and the corresponding
wave function |¥,) to be quite reliable. In the isotropic
v =1 case, however, only a small fraction of the available
states assist the hole in its motion. The majority of states
represent configurations where spins are flipped away
(i.e., disconnected) from the neighborhood of a hole and
thus only contribute corrections to the ground-state ener-
gy of the Heisenberg AFM. Since the states involved in
the hopping of a hole are similar as for y =0, supple-
mented by those states which dynamically erase too long
strings of overturned spins appended to a hole, we do not
expect the results to be less reliable than for the ¥ =0
case.

The frequency-dependent conductivity o(w) can be
studied in a finite system as an extrapolation q—0 (Refs.

18-20) of
o(q,w)z—*l—-ImG(a)-HS) , (3)
Tw
G(z)=(\I/Olj_q(z+E0—H)71jq|‘I’o> , 4

where for definiteness we investigate only a component
along one axis (for a d =2 system)

Jq=J(q)

iq-R

iy ' (5)

. t _
_ltz(cuci#—exs Ci+exscis Je
is ’ ’

Here e, denotes neighbors in the positive x direction in
d=2. In order to evaluate G(z) we start the Lanczos
procedure with a new normalized wave function?

Do) =jq|Wo) /{Wolj_qiql¥o) >
so that for a general term n > 1
H'(Dn>:Bn—I|¢n—l>+an|¢n>+/3nt<pn+l) ’ (6)
a,=(®,|HI®,),
(7)
Bn:<¢)n+llH|¢n> ’

while B,=0. G(z) can be now expressed in terms of
a,,B, as a continued fraction

17 q Woll?
B
B3

z-—al— B

G(z)=

(8)

Z—0ag—

In a finite system fractions, in principle, end up when
one exhausts the number N of basis states ¢,. Then
G(z) shows poles only on the real axis, hence o(w) is a
sum of & functions.!® N, is however very large as com-
pared to n; ~30 Lanczos steps used in the calculation, so
we will adopt the procedure appropriate for an infinite
system. In nearly all cases considered we observe that
a,, 3, converge approximately to fixed values a,f3,
for n >>1, so that higher-order fractions can be summed
analytically and o(w) becomes continuous above a lower
cutoff o > w, > 0.

It is important to note that in order to resolve the un-
damped QP peak at o =¢(q)=E(ky+q)—E(k,) from the
incoherent part connected to magnetic excitations at
>, <J, it is crucial to deal with a system of sufficient
linear dimensions, i.e., ¢ =27 /L <<q,,,,, so that e(q) <J.
Another possibility appropriate also for a smaller system
is to investigate directly the q=0 response. Although the
general f-sum rule'® (derived explicitly for the Kondo-
lattice model) is not satisfied in this case, the interpreta-
tion of such o&(w) is straightforward and has been
checked on the results for the N =8X4 system. The QP
peak is disappearing from the spectra, while the in-
coherent part o > w, seems to represent the correct q—0
extrapolation of the q > 0 spectra.?!

We investigate models both on a chain and on a d =2
square lattice with N=L, XL,. In d=1 a system with
N <18 is diagonalized exactly and allows for a sufficient
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q resolution. On the other hand, in d =2 we investigate
several sizes, in particular an 8 X4 system with N, <6,
where we are limited by the dimension of basis states
N, <200 000.

III. EFFECTIVE MASSES

In a #-J model on a chain we found that the ground
state with a single hole (N=16) corresponds to
ko==*m/2, analogous to the situation in d=2. The
dispersion E(k) appears to be more cusplike than para-
bolic around k =k, hence the effective mass is not well
defined. This behavior is presumably related to typical
d =1 instabilities and seems to be consistent with analyti-
cal findings.!® Note also that the current operator j,
commutes with the Hamiltonian for J=0ind =1."' On
the other hand, the Kondo-lattice model does not show
such phenomena and the dispersion around the minimum
appears to be parabolic.

In d =2 the behavior of E(k) is not anomalous. In an
infinite system the long range AFM order persists even in
the presence of a hole?? and effective masses are well
defined. Since linear dimensions L, are quite small, we
are restricted to approximations or to some special cases:
(a) In both models a single hole in the extreme anisotrop-
ic AFM with y =0 (Ising case) can be studied much more
efficiently. Even in large systems, e.g., for N =8X4, the
hopping hole generates in each Lanczos step only a tract-
able number of new configurations and the convergence
of |W,), and consequently of the effective-mass tensor
m*, is satisfactory. (b) In the isotropic case y =1 the
number of new configurations multiplies in each Lanczos
step, so quite restrictive N, should be used for large sys-
tems, e.g., N,=6 for N=8X4. We still expect that such
effective mass m* is reliable, since the dispersion E(k) is
calculated consistently. In a large (strictly speaking
infinite) system restricting N, amounts to taking into ac-
count only contributions of clusters of reversed spins
satisfying the constraint. Thus in the spirit of cluster ex-
pansion one would even expect that the results for the
larger system should be more reliable since at fixed N, the
phase space available is less affected by the periodic
boundary conditions. (c¢) For a smaller system, i.e.,
N =4X4, we can get exact results for E(k). Due to small
L, we can evaluate m* only by assuming some simple
form for the dispersion and so relate m* to the corre-
sponding bandwidth.* !~ 13

In an isotropic #-J model and an N =4X4 system, a
single-hole ground state is degenerate along the AFM
Brillouin zone boundary.>!! Thus, the effective mass and
hence the mass enhancement tensor y are highly aniso-
tropic quantities. Here, we define the enhancement rela-
tive to the unperturbed band mass my,=1/2¢ as

2
‘u‘lz_l_aE(ko-k-q) . ©)
= 2t 0qdq q=0
For a 4X4 system the enhancement u, is infinite along
the AFM zone boundary, qlk,, and finite u;=u for q|k,.
The same near degeneracy persists for the larger system,
N=8X4, where the state with ky=(x7/2,tm7/2) is

found to have the lowest energy.

In Fig. 1 we present the values of u, as calculated for
the t-J model and N =4X4, from the energy differences
along the lines A-M (see inset) and A-N, respectively,
where p is shown as a function of the maximum allowed
number of reversed spins N,. In calculating u we assume
the simplest form for the dispersion E(k)=2¢*(cosk,
+cosk, )? having the proper symmetry, i.e., the minimum
along the X-Y line (for a 4X4 lattice). The result indi-
cates that in general an increase of N, leads to a gradual,
but small decrease of u. Another effect of increasing N,
is the splitting of the degeneracy at the points M and N
(as well as at I" and S), which appears (for N=4X4) at
N,=N, due to the coupling between both Néel AFM
configurations. Still an extrapolation of p, y(us s ) from
N, <N, to N,=N,_, would yield a meaningful value, i.e.,
approximately the mean value between both nondegen-
erate pp_y and py p-

These considerations give also a further justification for
the use of N, <N, for the larger 8 X4 system, with the re-
sults presented in Fig. 2. We observe that in the inter-
mediate regime 2 <t /J <6 results for the 4X4 and 8 X4
systems are consistent, while at ¢ /J > 6 the larger system
indicates on a smaller mass, especially in view of the de-
creasing tendency of u with respect to N,.

As seen from Fig. 2, the dependence of pon¢t/Jisin a
broad range of 1 <t /J <10 close to being linear, in par-
ticular for the case N=8X4. Such behavior is in agree-
ment with results obtained by analytical approaches.®!©
For the 4 X4 system and 0.1 <J /t <0.4 a fit of the form
p~'ecJ® for J>0.075 (note that for J<0.075 S>1 in
the ground state’) and a~=0.7 is obtained, in agreement
with the results reported by others.!? For the larger sys-
tem a similar fit over the whole region of ¢ /J considered

g
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FIG. 1. The mass enhancement p vs number of reversed
spins N, in the 7-J model on a 4 X4 lattice for J=0.3, y=1 as
calculated from the bandwidths along the lines in (one quarter
of) the Brillouin zone as indicated in the inset. Here and in
Figs. 2 and 3 the lines are a guide to the eye only.
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FIG. 2. p vs t/J in the t-J model for the 4X4 and 8 X4 sys-
tems.

here results in a=~0.8-0.9. It should be noted that our
analysis becomes less reliable in the J/t <0.1 regime,
since the size of the magnetically perturbed region might
exceed the size of the system, while also larger N, are
needed. In this paper we also do not discuss the regime
J/t > 1, where u is expected to increase again.'’

For the 4 X4 system we have in the same way analyzed
the Ising ¥ =0 case. Here the QP minimum is at ky=0,
while E(k) can be still approximately fitted to the same
functional form with t* <0. As expected, the enhance-
ment pu (isotropic for ky=0), determined by Eq. (9), is
very large in this case. We obtain, for example, by ad-
justing the energy difference between the I'—X points,
the values £=9.5, 17.7, and 45.5 for J /t=0.2, 0.4, and
0.8, respectively.

The ground state of a single hole in a Kondo-lattice
model is for N=8X4 and N, <6 still doubly degenerate,
with k,=0 and k,=(m, ), i.e., the degeneracy charac-
teristic of the Néel state is not removed. For N =4 X4,
however, the spectrum can again be computed exactly
and one finds that the degeneracy is lifted, with k of the
ground state at k,=0 for V < V,(J), and at ky=(m,7) for
V > V.. For very large V the ground state should acquire
ko=(xm/2,%m/2) since in that limit the Kondo-lattice
model should become equivalent to the #-J model. Thus,
e.g., for J/t=0.4 we get V,=2.75t, but for V/t=15.0
the ground state is found to be definitely ¢-J-like, i.e., with
ko=(xm/2,+m/2). Here we consider only values of
V =8t for which the gap from E(Eg) to E, is rather
large, so that we expect no significant change in the be-
havior of u due to crossover from ky,=0 to ko=(,7) of
the ground state. As seen from Fig. 3, representing both
the Ising (y =0) case and the isotropic (y=1) case, u
shows a continuous increase with ¥, i.e., a quadratic

FIG. 3. u vs V/t for the 8 X4 Kondo-lattice model for three
different values of J; empty symbols, ¥ =1; solid symbols, y =0.

dependence at small V /¢, consistent with the perturba-
tion expansion result, with p < ¥'2/J1.1%1% Although the
perturbation expansion breaks down for y =2, numerical
results suggest its qualitative validity even beyond that
limit.

IV. FREQUENCY-DEPENDENT CONDUCTIVITY

We have numerically calculated o(w) both in d =1 and
d =2 for the t-J model as well as for the Kondo-lattice
model. Typical examples of such spectra are shown in
Figs. 4-6. Below we consider each of them in some de-

w/t

FIG. 4. Frequency-dependent conductivity o(w) vs o for the
Kondo-lattice model on a chain with N=18, V/t=6.0,
J/t=0.4, and y=0. In the inset the low-frequency part of the
spectrum is shown where the quasiparticle peak is clearly seen.
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0 2 4 6 8
w/t

FIG. 5. o(w) vs w in the Kondo-lattice model for an 8 X4
cluster with N,=6. Here V' /t=6.0,J/t=0.2,and y=1.

tail but here we would like to point to the common
features shared by all of the spectra: (a) an undamped QP
peak, whose position wgp should approach zero as q—0,
and which is expected to broaden into a Drude peak only
at finite temperatures, and (b) a broad and rather struc-
tured incoherent part clearly separated from the QP peak
and extending in some cases to quite large w.

In Fig. 4 o(w) is presented for the Kondo-lattice model
on a chain of N=18 sites for V/t=4.0, J/t=0.3, and

N=8x4&
N;=6
Q,=2m/8

FIG. 6. o(w) vs @ in the t-J model in the isotropic case
J/t=0.2, y=1: (a) N=8X4, N,=6, and q=(27/8,0); (b) ex-
actly calculated o(w) for a 4 X4 cluster at q=0.

the anisotropic case ¥ =0. The ground state in this case
is at k=0 (as for all other J at ¥ =0) and, according to
the criterion mentioned at the end of Sec. II, the
minimum nonzero ¢ =27 /18 is sufficiently small to allow
for the consideration of quite small J =>0.06. The mass
enhancement in this case is u=6.0. As the relative
weight of the QP peak is « 1/u, it follows that the f-sum
rule'® is mainly exhausted by the two incoherent and
rather broad peaks, having origin in the strong coupling
of the hole with spin excitations. Also note that the
second broad peak is centered around w~ V and can be
attributed to excitations of the local singlet to the triplet
state. It takes away approximately half of the spectral
weight, i.e., of ImG(w) [not of o(w)]. Well resolved is
the lower edge of the incoherent part at w,~J /2. This
low-energy excitation is specific to the 1—d model and
can be traced back to the hopping of a hole accompanied
simultaneously by one AFM domain wall with an energy
Ae=J /2. Note also that the incoherent part shows a
trend o(w) = 1/w at o <t, as in fact obtained analytically
for systems with relatively flat density of states and
roughly constant current matrix elements. !>

Typical plots of o(w) in d =2 for the N =8X4 system
are presented in Fig. 5, for the Kondo-lattice model with
V/t=6.0, and in Fig. 6(a), for the ¢-J model. In both
cases J/t=0.2, y=1, and N,=6. There is a great deal
of similarity among the #-J and the Kondo-lattice spectra,
apart from the position of the spikes, which for the t-J
model are somewhat shifted towards lower . Thus in
both examples presented, i.e., Fig. 5 (Kondo-lattice) and
Fig. 6(a) (+-J model), the QP peak is well separated from
the broad incoherent part of predominantly magnon
character. Note that at finite J the lower magnon peaks
are rather well pronounced, the lowest being at w~2J.
This contrasts the smooth variation 0 ~1/w expected for
J—0.1% As before, the f-sum rule is mainly exhausted by
the incoherent part. In the Kondo-lattice case there is a
hint of a shallow and broad peak visible in Fig. 5 at
o~ V. Its weight is, unlike in the case of d =1, Fig. 4, al-
most negligible. The reason is that here we deal with the
isotropic spin interaction and since the ground-state wave
function has good spin S=1, the other band, centered
around w~ ¥V cannot carry away any significant part of
the weight due to rather large V.

In Fig. 6(b) we show the corresponding o(w) for q=0,
calculated without approximations, i.e., with N,=N_, for
N=4X4. Clearly the QP peak is missing in the spectra.
In spite of differences between details in the incoherent
parts of spectra, the well pronounced onset o, is equal in
both Figs. 6(a) and 6(b).

Before concluding one final remark should be made.
Our continuation of the continued fraction expression for
G(z) [Eq. (4)] beyond n =n,, as implied by the discussion
in Sec. II, amounts to what is known as the constant-
chain approximation. As a result, the spectral function
A(w) entering Eq. (3) is a superposition of contributions
of poles resulting from the exactly treated part of G(z)
and the square-root-like Ay(w) arising from the
constant-chain part. Since the latter is zero below
o,=—Ey+a,—2B, (abranch point), it is reassuring to
find that o, is always well above the QP peak and just
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slightly below the first pole contributing to the incoherent
part of o(w) in the finite system considered here. Thus,
the asymptotic values a ., and 3, through A4,(w) mimic
the continuous density of states coming from spin excita-
tions of a much larger system.

V. CONCLUSIONS

In the paper we have discussed the properties of a sin-
gle hole in an AFM, as determined by the t-J model and
the Kondo-lattice model. In the d =2 system both mod-
els give several common features for the QP. Although
the QP dispersion is not the same, the effective masses
and the mass enhancement u become comparable in both
models, after assuming that the Kondo coupling is large,
V/t>>1. The o(w) spectra are very similar, consisting
of the undamped QP peak (of small intensity «<1/u) and
the incoherent part at w > w,, with an additional high o
structure in the Kondo-lattice model due to internal exci-
tations of the singlet. In both models the incoherent part
is not smooth but shows rather well-pronounced magnon
resonances. There are also substantial differences. In the
Kondo-lattice model the anisotropy ¥ is not playing such
a role, since even in the extreme anisotropic case y =0
the coherent mass is for ¥/t >>1 governed by a nonvan-
ishing effective next neighbor hopping 7 < ¢t2/V, resulting

in a finite u. This gives the justification for the numerical
study of the Ising case y =0, which yields qualitatively
similar results for u and o(w), whereas the problems en-
countered in the diagonalization are drastically reduced.
Namely, the number of basis states involved increases
only slowly with the number of Lanczos steps, the con-
vergence is better, etc. On the other hand our results
confirm a well-established fact that in the t-J model the
QP properties depend crucially on y-u in particular.

Our results for the conductivity are valid only for
T=0. At T >0 the QP peak is expected to broaden into
the low-frequency Drude with finite, but small width, as
found also experimentally.!* It should be noted that our
results give a consistent intensity < 1/u of this part. We
expect also some smearing of the quite pronounced mag-
non structure in the incoherent part, which is in our cal-
culation enhanced by finite size and finite N, effects.
Since the energy range remains large compared to
characteristic kT, some features should persist in the
spectra. Thus, a quasigap of the appropriate energy
Ae=0.1 eV is observed at low T in Y-Ba-Cu-O,'* which
roughly agrees with our result Ae=2J. An absence of
the structure above this energy can be, however, still a
sign that either J is smaller as currently believed (J ~0. 1
eV), or that additional degrees of freedom contribute to
the formation of the quasiparticle.
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