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The two-dimensional decagonal quasicrystal has been found in many Al-M (M= transitional met-

al) alloys, very often coexisting with a large-unit-cell phase of similar composition and local struc-

ture. By introducing phasons in two orthogonal directions in the quasiperiodic plane perpendicular

to the periodic tenfold axis, i.e., approximating the irrational golden mean ~ with rational ratios of
two consecutive Fibonacci numbers F„+]/F the Penrose pattern in this plane gradually becomes

periodic with fairly large unit-cell parameters (1—3 nm). Some giant Al-M crystals with cubic, or-

thorhombic, and monoclinic symmetries have thus been derived as Penrose-tiling approximants of
the decagonal quasicrystal, and their simulated electron diffraction patterns agreed fairly well with

experiments.

I. INTRODUCTION

In a previous paper' we have studied the transforma-
tion of the two-dimensional (2D) decagonal quasicrystal
(QC) to various one-dimensional (1D) QC's (Ref. 2) with
periodicities following the Fibonacci series (13:8:5:3).
The decagonal QC is periodic in the tenfold direction and
aperiodic in the plane perpendicular to it. ' In fact, this
plane is nothing else but the Penrose pattern with two
kinds of rhombus tiles arranged aperiodically along the
ten or five twofold directions according to an infinite Fi-
bonacci series: F0=0,F& =1, . . . , F„+&=F+F
with F„+&/F„~~when n ~~, where the golden mean
~=(1+&5)/2. If a phason or a tiling mistake is intro-
duced in one of these twofold directions (the P direction
after Fund et al. ), the Fibonacci series will terminate at
a certain point, say F„,and then this Fibonacci series will
start anew until a second tiling mistake occurs again at
F„.Such a repetition will produce a periodic sequence of
Fibonacci blocks. This corresponds in fact to the substi-
tution of irrational r by a rational F„+,/F„and therefore
is called a Fibonacci approximant. The higher the den-
sity of tiling mistakes (or phasons), the shorter the
periodicity of this Fibonacci approximant. '

If phasons are also introduced in the second set of two-
fold directions of the decagonal QC (the D direction after
Fung et al. ), then a three-dimensional (3D) periodic
crystal will result. Following Entin-Wohlman, Klein,
and Pavlovitch, this is called a Penrose-tiling approxi-
mant of the decagonal QC in the present paper. We shall
apply such an analysis to the occurrence of the giant Al-
M crystals (lattice parameters in general greater than 1

nm) studied in this laboratory, such as the orthorhombic
A13Pd (Ref. 6) and A1MnCu (Ref. 7), cubic Al»Cr4Si4
(Ref. g), hexagonal A1CrNi and AlMnNi (Ref. 9), and
monoclinic Al»Fe„(Refs.4 and 10).

Earlier Entin-%'ohlman, Kleman, and Pavlovitch,
Ishihara, " and Mosseri, Oguey, and Duneau' have dis-
cussed in details the geometry of the Penrose-tiling ap-
proximants, such as the size of the unit cell and its rela-
tion to some characteristic lattice vectors of the Penrose
tiling, but they did not relate this to any crystal coexist-
ing with the decagonal QC in rapidly solidified alloys.
Ishii' recently has described all possible symmetry
breakings from the icosahedral point group by the action
of phason strains with the help of group theory and dis-
cussed, as Elser and Henley' and Henley' did earlier,
the structures of the cubic a-(A1MnSi), hexagonal A1FeSi,
orthogonal 8'-(Al~Cr), and monoclinic Al»Fe~ as
structural modulations or approximants induced by
phasons in the icosahedral QC. Knowles' and Dmitrien-
ko' have also discussed the cubic approximants with
large unit cells in the Al-Li-Cu and Al-Mn icosahedral
QC, respectively. However, our derivation of the various
giant Al-M crystals is based on the Penrose-tiling approx-
imants of the decagonal QC and is more simple and
straightforward. Moreover, the giant Al-M crystals men-
tioned in the previous paragraph are found experimental-
ly coexisting with the decagonal QC with a definite orien-
tation relationship between them, and their electron
diffraction patterns (EDP's), especially the strong
diffraction spots, resemble the corresponding ones of the
decagonal rather than those of the icosahedral QC.
Furthermore, the effect of phasons is discussed in the
present paper mainly in the reciprocal space, because it is
straightforward to compare the EDP's of the decagonal
QC with its various approximants.

In this paper we use the cut-and-project method from
the high-dimensional space developed independently by
Kalugin, Kitaev, and Levitov, ' Duneau and Katz, ' and
Elser to describe the Penrose tiling (i.e., the decagonal
quasicrystal). Contrary to the model for the incommens-
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urate structure, the model of Penrose tiling leads to the
discontinuous phason. However, is there any possible
means to obtain continous phasons for Penrose tiling?
According to Kalugin and Levitov ' and Levitov, the
symmetry group of the Penrose tiling belongs to the non-
crystallographic group in the two-dimensional space and
does not satisfy the nontransversality condition. There-
fore, continous phasons cannot exist in it. Ho~ever, the
icosahedral quasicrystal satisfies the nontransversality
condition and can have continuous phason strains. The
phason shift discussed here occurs discontinuously by lo-
cal flip of two different kinds of tiles of the Penrose til-
ing.

vector G by the action of phason strain M,
Gll' =~ll+ M.6&

where M is a second-rank tensor

m ]) m ]p

~2& I z2
(2)

v 5

and Gll and G are the reciprocal vectors in the physical
and complementary (or perpendicular) spaces, respective-
ly,

II. PENROSE-TILING APPROXIMANTS e"= (cos(2jm /5), sin(2jn. /5) ), J=l 1

Figure 1 is the tenforld EDP of the decagonal QC in
which the two sets of twofold directions, P's and D's are
orthogonal to each other. Obviously, the electron
diffraction spots are distributed aperiodically in either the
P's or the D's directions, both at 36' apart. From Fig. 1 it
seems that the ten Pz spots are stronger than Dz spots,
but in reality the D2 spots are stronger than P2 spots in
the tenfold EDP of the decagonal QC. The calculated
EDP (Fig. 1) is the Fourier transform of the 2D quasilat-
tice without decoration, whereas the experimental EDP is
that of the real structure. If the electron diffraction
spots, under the action of the linear phason strain, be-
come gradually periodic in one P and one D direction at
90' with each other, the decagonal QC will transform into
an orthorhombic crystal. On the other hand, if the elec-
tron diffraction spots in two P or two D directions at 36'
or 72' apart become periodic, then a rhombus discussed
earlier by Entin-Wohlman, Kleman, and Pavlovitch will
result. This is in fact a base-centered orthorhombic crys-
tal; see Fig. 2.

According to the linear phason theory of QC (Refs. 24
and 25) as brie(ly outlined in our previous paper, ' the
diffraction spot Gll will occur at the end of the reciprocal

Gt 2a g t
5

e; = (cos(4jm. /5 ),sin(4j m. /5 ) ), J=/ 1

In the case of 2D to 1D QC transformation, '

m, 2=m2) =m22=0 (or b =c =d =0 in Ref. 1). With
the increase of the absolute value of m» (a in Ref. 1), the
quasiperiodic distribution of electron diffraction spots
along the P direction of the decagonal QC (see Fig. 1) be-
comes gradually periodic and its periodicity decreases ac-
cordingly. For instance, as m» changes from —0.02,
0.055, —0.145 to 0.38, the number of equally spaced
diffraction spots between the central one to spot P2 is 13,
8, 5, and 3, respectively. These m&& values were found
then by trial and error, ' but now they can be calculated
according to a simple geometrical analysis. As shown in
Table I, they correspond to —I/r, I/r, —I/r, and
I /r obtained by substituting —', —,', —,', and —'„respective-
ly, for ~. It is interesting to note that the periodicity is al-
most proportional to F„+&.

By a transformation of the coordinated system, formu-
la (2) can be converted to
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FIG. 1. Simulated tenfold electron diffraction pattern of the
2D decagonal quasicrystal. P and D indicate the two sets of
twofold directions orthogonal to each other.

FIG. 2. (a) Monociinic unit cell of Al»Fe4 (P=72') and (b)

the (110) projection of a face-centered-cubic unit cell of
Al»Cr4Si4 can be described approximately as base-centered or-
thorhombic cells. They can also be visualized as 2D thin (36')
and thick (72 ) Penrose rhombi.
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TABLE I. Phason strain tensors m„,m» and lattice parameters of some Penrose-tiling approxi-
mants (az =0.40 nm).

F„+I /F„
2/1
3/2
5/3
8/5
13/8

ml&

—1

1/2
—1/~

1/~
—1/w

ap (nm)

0.89
1.45
2.34
3.79
6.13

Pl »

1/w

1 /~3

1/w
—1/~
1/~

aD (nm)

0.76
1.23
1.99
3.23
5.22

with the new coordinated axes lying along the main axes
of the second-rank tensor and in this case m» and mzz
are independent. In the following we discuss the trans-
formation of the decagonal quasicrystal by the action of
phasons to a related orthorhombic crystalline phase be-
longing to one of the subgroups of the decagonal group
10/mmm. The crystalline phase will inherit the ortho-
rhombic symmetry of the decagonal quasicrystal (i.e., two
perpendicular twofold axes P and D in Fig. 1). From (1)
and (2'), the x coordinate of G" along the P direction will
depend only on m

& &
and y along the D direction only on

m zz. Thus, we can treat the phason strain independently
along these two perpendicular directions.

From Fig. 1 it is obvious that Gp2/Gp)=w. After in-

troducing linear phason strain, it can be approximated by
the rational ratio F„+,/F„. Since the indices of these
two spots are 102 20 and 101 10 (see Ref. 19), respective-
ly, one obtains from Eqs. (3) and (4)

GII'(P ) =(v'2a "/v'5)[1+2r+m, )(3—2~)],
Gll'(P )=(V 2a "/V'5)[1+ +rm11(2 —r)],

where a' is the reciprocal-lattice constant in 5D space.
Equating the ratio of G" (P2)/G" (P, ) to F„+,/F„and
after some manipulation, we find (for a detailed deriva-
tion, see the Appendix)

m1, = ( rF„2 F„1)/(F„3—+rF„2)

m 22
= (wF„) F„)l(F—„3+rF„2)

1 )n
—2(n 2)/r— (7)

and

n —1/[(1+ 2)]1/2

Obviously, ~m22 ~
also varies with n or F„+,/F„in a I/r

relation and aD in a ~ relation as their counterparts in the
P direction. Moreover, for the same n or F„+,/F„ratio,
m22/m)1= —1/~and ap/aD =2sin36'=[(I+2)]' /r.

Combinations of these az and aD in two orthogonal
directions will give a series of orthorhombic Penrose-
tiling approximants. For certain special cases, centered
orthorhombic unit cells can be approximated as face cen-
tered cubic or monoclinic unit cells. As discussed in con-
nection with Fig. 2, these are equivalent to substituting
F„+,/F„for ~ along two P or two D directions at 72' and
36', respectively. These will be illustrated in the follow-
ing.

I. Between two successive F„'sthe phason strain reverses
its direction, therefore m» also changes its sign.

If the phason is also introduced in the D direction in
Fig. 1, the electron diffraction spots in this direction also
become periodic. Now the indices of spots Dz and D,
are, respectively, 02112 and 10022, and similarly we ob-
tain

1 )n + 1 —2(n —2) (5) III. GIANT A1-M CRYSTALS
In the 1D case, ' substituting F„+1/F„for w will yield

F„+&
equally spaced spots between the transmitted beam

and spot p2, therefore ap=F„+1/G"(P2). But in the 2D
case, a factor of 2 has to be added into this relationship.
Looking at the base-centered orthorhombic unit cell in
Fig. 2(a), the reciprocal unit cell will also be a base-
centered one. In other words, if there are F„+&

spots ap-
pearing up to spot Pz, an equal number of spots will be
extinct due to base centering. Therefore, there will be al-
together 2F„+

&
spots along the P or D direction in the 2D

case. This can be proved rigorously either in the real or
reciprocal space, but it is too lengthy to be given here.
Thus (see also the Appendix),

ap =2F„+,/GI' (P, ) =v'5a

where az is the edge length of the Penrose rhombus.
Thus it is clear that ~m)1~ varies with n in a 1/2 rela-
tionship and a~ with a v. relationship, as shown in Table

Many binary and ternary Al-rich Al-M intermetallic
compounds with large unit cells were known and the
crystal structure of a number of them has been solved.
They have many common characteristic features. The
most striking feature among these crystal structures is
the icosahedral cluster with the smaller M atom located
at its center and the larger Al atoms at its vertices. These
icosahedral clusters, somewhat deformed to conform to
the symmetry of the crystal lattice, form complicated
skeletons in three dimensions. Their x-ray diffraction
pattern showed characteristic fivefold and tenfold ro-
tational symmetries which were noted already in the be-
ginning of the 1950s. Another feature is the large lattice
parameters, generally 1 —3 nm, which are not common in
intermetallic compounds. In Table II we have listed a
few of them which have been studied before in this labo-
ratory in connection with the decagonal QC and now as
examples of its Penrose-tiling approximants. It is to be
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TABLE II. Giant Al-M crystals coexisting with the decagonal quasicrystal (the lattice parameter in
bold is that parallel to the tenfold axis and those in parentheses are the az and aD of the Penrose ap-
proximants in Table I).

Symmetry

Cubic

Orthorhombic

Monoclinic

Crystal

Al»Cr&Si4

All &Mn4

AlMnCu

"A13Pd"

A1MnNi, C3I

Al»Fe4

Reference
No. '

30

31

10

1.092
(1.23)
1.479

(1.45)
1.48

(1.45)
2.34

(2.34)
1.24

0.7745
(0.76)

Lattice parameters (nm)
b

1.242

1.26
(1.23)
1.67

2.40
(2.34)
0.8083

C

1.259
(1.23)
1.24

1.23
(1.23)
3.27

(3.22)
2.377

(2.34)

'The references given here deal with the crystalline phase coexisting with the decagonal QC and their
structural relationship. Original references concerning the crystal data of these Al-M compounds can
be found there.
The lattice parameters given here for Al»Fe4 are those of a centered orthorhombic unit cell calculated,

with slight deformation, from the monoclinic cell with a =1.5489, b =0.8083, c =1.2476 nm, and

P= 107.71'.

noted that all these Al-M compounds, except the cubic
Al)3Cr4Si~, have a lattice parameter roughly equal to
0.81, 1.23, or 1.64 nm, which are known to be the period-
icity along the tenfold axis of the 2D decagonal QC. In
the case of this cubic crystal, it was found that the [110]
direction is parallel to this axis and if a =1.15 nm,
d[,O=0. 82 nm. What we need to do now is to find the
2D Penrose-tiling approximants perpendicular to this
direction.

A. Orthorhombic crystals

Figure 3(b) shows the [010] EDP of the metastable
"A13Pd" and its strong difFraction spots forming concen-
tric decagons are quite similar to those of the tenfold
EDP of the coexisting 2D decagonal QC. Its b parame-
ter is 1.62 nm, the same as the periodicity of the Al-Pd
decagonal QC and its a and c parameters are 2.34 and
1.23, nm, respectively. Using these values and the
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FIG. 3. {a)Simulated and {b) experimental {Ref.6) [010]electron diffraction patterns of the orthorhombic "Al,Pd."
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FIG. 4. (a) Simulated and (b) experimental (Ref. 7) [001]electron diffraction patterns of orthorhombic A16,Mn2oCu„ isostructural
With All ]Mn4.

F + I /F„ratios given in Table II, the calibrated edge
length of the 2D Penrose rhombi az is 0.40 nm, similar
to the value 0.39 nm given earlier in the Al-Mn decagonal
QC. The phason strain tensor is now M =(1/
r )[—1,0/0, —r] and the simulated EDP is shown in Fig.
3(a) which matches well the experimental EDP in Fig.
3(b). Comparing with Fig. 1, the ten strong spots marked
with arrowheads in Fig. 3(a) can still be seen but there are
less spots because several spots in Fig. 1, under the
inAuence of the linear phason strain M, have moved to
the same spot in Fig. 3(a), as shown by the concentric cir-
cles in it.

The orthorhombic phase found in a rapidly solidified
A165MnzoCu» alloy is isostructural with Al»Mn4 (space
group Pnma) and both were found to occur together with
the decagonal QC. Moreover, one of their lattice param-
eters is about 1.24 nm and this axis is found to be parallel
to the tenfold axis of the decagonal QC. The a and b pa-
rameters for the A16~Mn2OCu&5 phase are 1.48 and 1.26
nm, respectively, which compare favorably with the a~
and aD of 1.45 and 1.23 nm, respectively, in Table I.
Now the I'„+( /I'„ for the P and D directions is the same
and M=(1/r )[r,0/0, —1]. Again the simulated EDP
matches well the experimental one, as shown in Fig. 4.
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FIG. 5. (a) Simulated and (b) experimental (Refs. 4 and 10) [010]electron diffraction patterns of monoclinic A1, 3Fe4.
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FIG. 6. (a) Simulated and (b) experimental (Ref. 8) [010]electron diffraction pattern of face-centered-cubic Al„Cr4Si~.

The agreement between the calculated and experimental
lattice parameters is fairly good too for Al»Mn4 (see
Table II).

Another orthorhombic crystal of interest is
A16oMn»Ni4 (C3I) (Ref. 30) whose lattice parameters
also agree with the Penrose-tiling approximant as shown
in Table II. This giant crystal gives EDP's of various
orientations quite similar to those of the decagonal QC
coexisting with it. ' However, this Penrose-tiling ap-
proximant is base-centered orthorhombic whereas the
crystalline phase actually found is simple orthorhombic,
though its structure is still unknown. The disappearance
of centering can either be due to a slight deformation or
to a change in the distribution of atoms during the QC—
crystal transformation.

B. Cubic Al»Cr4Si4 and monoclinic Al&3Fe4

As mentioned above, under certain conditions we can
even get cubic and monoclinic crystals as Penrose-tiling
approximants of the decagonal QC, see Table II. For the

monoclinic A1, 3Fe~, its /3=107.71' is very close to the
108' belonging to the tenfold symmetry of the decagonal
QC. This can be treated either as a 36' rhombus or as a
centered rectangular lattice with an axial ratio of tan72',
as shown in Fig. 2(a). In Table I, the ratio of
2.34/0. 76=2' sin36'=tan72', and the lattice parameter
ratio of the centered rectangular cell calculated from
those of the monoclinic cell, 2.377/0. 7745, is fairly close
to it. Figure 5 shows the simulated and experimental '
EDP's.

In the case of a 72' rhombus, the unit cell can be visu-
lalized as a centered rectangular cell close to that of the
(110) of a face-centered-cubic cell [the corresponding an-
gle is 54.7' compared with 54' shown in Fig. 2(b)]. The
axial ratio in Fig. 2(b) is equal to tan36', roughly the same
as the ratio of 0.894/1.23=2sin36'/~. Our calculated
parameter a =1.23 nm is about 10% larger than the ex-
perimental 1.09 nm, but this is obtained from an
aR =0.40 nm of Al, Pd. With some modification of this
value, a better agreement can be arrived. Figure 6 gives
the simulated and experimental [110]EDP's.

Entin-Wohlman, Kleman, and Pavlovitch have dis-

TABLE III. Some Al-M compounds with giant unit cells.

Compounds

A16pMn» Ni4

A12pMn3Cu2
AlMnZn(T3)

Reference
No.

32
27
33

Space group

Bbmm

Bbmm'

2.38
2.42
2.38

Lattice parameters (nm)
b

1.25
1.25
1.26

0.755
0.772
0.778

A124Mn5Zn
A17Cr

27
34

2.51
2.48

2.48
2.47

3.03
3.02

'Originally reported as Cmcm with a =0.778, b =2.38, c = 1.26 nm (Ref. 33).
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FIG. 7. The first Brillouin zone of A16pMn»Ni4 showing al-
most tenfold rotational symmetry around the [010] direction
[Robinson (Ref. 27)].

cause their lattice parameters are almost the double of
those of A1»Mn4 or the A165Mn»Cu2p compound dis-
cussed in Sec. III. This can possibly occur if there is
some ordering in these ternary compounds so that their
parameters have to be doubled. As a matter of fact, Ro-
binson has already noticed that all reflections with h
and k odd are very weak indeed. It would be of interest
to see whether these compounds will occur together with
the decagonal QC or not in rapidly solidified alloys.

This lattice correspondence between the decagonal QC
and the relevant gian Al-M crystals is of course valuable
for the study of the formation of this group of large unit-
cell Al-M crystals as well as the occurrence of the decag-
onal QC in the Al-M alloys. A detailed study of the tiling
or even better the atomic decoration of the tiles in these
two categories of structures will greatly advance our
knowledge of them. This will be further pursued in this
laboratory.

ACKNOWLEDGMENTS

cussed earlier the Penrose-tiling approximants from the
36' and 72' rhombi by introducing periodically phasons
to their deflated patterns. Our centered rectangular cell
treatment is in principle equivalent to their rhombic ap-
proximants.

The authors thank D. Yashusi Ishii of the Institute of
Solid State Physics, University of Tokyo, for many inspir-
ing discussions and the improvements of the first draft of
this paper. This project was supported partly by the Na-
tional Natural Science Foundation of China.

IV. DISCUSSION

Evidently, the above derivation of various crystal lat-
tices from the 2D quasilattice is a rather naive one, since
it has neither touched the arrangement of Penrose tiles
nor the atomic decoration of them. Nevertheless, it ac-
counts fairly well for the lattice relationship between
these large unit cell Al-M compounds and the 2D decago-
nal QC as well as for the ten strong spots forming de-
cagons in their EDP s. In addition to these giant Al-M
compounds coexisting with the 2D decagonal QC, there
are still some others which have not yet been found to-
gether with this QC, such as those studied mainly by Ro-
binson ' (see Table III).

It is to be noted that the first group of Al-Mn-M com-
pounds have a and c parameters quite close to the 2.34
and 0.76 nm given in Table I or those of A1,3Fe4 in Table
II. Their b parameter of 1.25 —1.26 nm agrees well with
the periodicity of 1.24 nm of the Al-Mn decagonal QC.
Furthermore, their h Ol reflections are strong and show a
tenfold distribution from which Robinson drew the first
Brillouin zone displaying an approximate tenfold syrnme-
try along the k axis, as shown in Fig. 7. In other words,
these Al-M compounds can very well be described by the
same scheme as those presented in Table II. Their com-
position can be written as A14(Mn, M), the same as the
A14Mn decagonal QC. All these facts point to the possi-
bility of finding these compounds together with the de-
cagonal QC in rapidly solidified alloys.

The second group of giant orthorhombic Al-M com-
pounds listed in Table III are also of interest simply be-

APPENDIX

The Fibonacci series can be written as
F& + &

=Fn +Fn && Fp =0& F]= 1. Since ~ = 1 +~, we
have

rF„+,+F„=(1+r)F„+rF„
=r(rF„+F„,)

=r"(rF, +Fo)
n+1

Similarly,

F„+) rF„=(
—~)—

and

These relationships will be used in deriving Eqs. (5) and
(6) as follows. For Eq. (5),

m» =(wF„2 F„,)/(F„3+zF—„2)
~

—(n —2)y (n —2)

( 1)n+lr —2In —2)

and for Eq. (6),
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ap 2—F +, /Gll (P~) =2V'5F„+,/I V'2a *[1+2r+m„(3—2r)]I

=V 2V 5aF„+,/[r +m „(—r )]

=Sa~F„+,/[r +( —1) ' ]
&n

—1F /[& n+1+1+( 1)n+1 —
1&

—(n+1 —1)]R+ n+1

=Sa ~" 'F„,/[(r + 1 )F„,]=v'5a„(r+1/~)~" '/(r + 1)=V'5a

Equations (7) and (8) can be derived accordingly.
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