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In this paper, a systematic derivation of the tunneling matrix elements in three-dimensional space
is presented. Based on a modified Bardeen tunneling theory, explicit expressions for the tunneling
matrix elements for localized tip states are derived with use of the Green's-function method. It is

shown that by expanding the vacuum tail of the tip wave function in terms of spherical harmonics,
the tunneling matrix elements are related to the derivatives of the sample wave functions at the nu-

cleus of the apex atom (taken as the center of the spherical-harmonics expansion), in a simple and

straightforward way. In addition, an independent derivation based on a general sum rule is also

presented, which is valid in a number of curvilinear coordinate systems. In spherical coordinates, a
general form of the derivative rule follows. In parabolic coordinates, similar results are obtained.
Physical meanings of these matrix elements, as well as their implications to the imaging mechanism
of scanning-tunneling microscopy, are discussed.

I. INTRODUCTION

Scanning tunneling microscopy (STM) has developed
into an important field of experimental physics since its
introduction by Binnig and Rohrer in 1982. Its applica-
tions have been extended to chemistry, biology, and vari-
ous engineering sciences. STM routinely resolves indivi-
dual atoms on virtually every kind of solid surface, in-
cluding the smoothest ones on the earth: the close-
packed metal surfaces with atomic distances 2.5 —3 A.
Various authors have developed theories of STM. Garcia
et al. modeled the tip and the sample as corrugated me-
tallic surfaces. Using a direct method to calculate the
tunneling current numerically, a satisfactory agreement
with the observed STM image of Au(111) (1X2) was
achieved. A systematic method for calculating the
current distribution of this model was developed by Stoll
et al. Tersoff and Hamann showed that the STM im-
ages without atomic resolution, such as those on recon-
structed Au surfaces, may have a simple explanation. By
modeling the tip as a spherical potential well of radius
R =9 A, taking the s-wave solution of this macroscopic
Schrodinger equation to represent the electronic state of
the tip, using Bardeen's perturbation theory of tunnel-
ing, at a distance (from the center of the sphere to the
sample surface) 15 A, they showed that the STM image is

approximately the Fermi-level local density of states
(LDOS) contour of the sample at the center of that
sphere. However, for atom-sized features, the corruga-
tion amplitude of the LDOS contour, even at an extreme-
ly short tip-sample distance and with an unrealistically
small R, is still too small to be observable. Therefore,
the Tersoff-Hamann model fails to explain the basic ex-
perimental fact of STM: atomic resolution. Baratoff
suggested that the atomic resolution in STM may arise
from a localized surface state at the tip, in other words, a
dangling bond protruding from the tip. Although this
concept is very attractive, the mathematical problem of
calculating the tunneling current is not trivial. Noguera

et al. pointed out that because of the strong interaction
between the tip and the sample under normal operational
conditions, Bardeen's perturbation theory of tunneling
phenomena, which is the basis of the Tersoff-Hamann
model, is no longer valid. They also show that the s-
wave model of Tersof and Hamann is an
oversimplification. Another important fact known to
every STM experimentalist is the spontaneous switching
of STM instrument resolution during imaging. ' Very
often, the instrument resolution changes all of a sudden
without any external operation. Sometimes the corruga-
tion amplitude switches abruptly by one order of rnagni-
tude under exactly the same tunneling conditions. Based
on this fact, the role of localized surface states at the tip
is again proposed. '

To have a better understanding of STM, two kinds of
knowledge are needed. The first is the knowledge of the
specific states on the tip. The second is a theory elucidat-
ing the interrelation between the tip states and the im-
ages. This paper treats primarily the second issue, i.e.,
the theoretical connection between tip state and observed
image. Such a theory is useful in two ways: to predict
the image using the knowledge of the tip state, and to
infer the tip state from the observed image.

As realized by many authors, ' because of the short
tip-sample separation, Bardeen's tunneling theory is no
longer valid for treating transmission phenomena occur-
ring in STM. Actually, under normal experimental con-
ditions of STM, the tunneling barrier is often lower than
the Fermi level. In such cases, even the concept of "tun-
neling" becomes questionable. Based on the uncertainty
principle, we have shown" that because the barrier
occurring in STM is very thin, the distinction between
tunneling (classically forbidden transmission) and chan-
neling (classically allowed transmission) disappears. We
have also shown that by considering the distortion of the
sample wave function due to the existence of the tip and
vise versa, a modified Bardeen theory, in terms of distort-
ed wave functions, is accurate throughout the entire re-
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girne of STM operation even if the barrier top becomes
lower than the Fermi level. For metals and individual
atoms, the distortion due to the existence of another par-
ty is a constant, and Bardeen's integral, after such a
modification, is still valid. "

In this paper, based on the modified Bardeen tunneling
theory, " we present a systematic derivation of analytic
expressions for the tunneling matrix elements arising
from localized states commonly found on tips. A brief
description of the general results, the deriuatiUe rule and
the reciprocity principle, was included in an earlier publi-
cation. " Based on the derivative rule, we have made a
quantitative explanation of the observed atom-resolved
images on close-packed metal surfaces. ' In general, us-
ing these tunneling matrix elements, starting with an ana-
lytic form for the surface wave function, analytic expres-
sions for the tunneling current distribution with any tip
state can be obtained. Thus, analytic expressions for the
images can be obtained, which can be conveniently used
for comparison with experimental STM images. '

The organization of this paper is as follows. Section II
is a brief summary of the existing knowledge about tip
states. We show that the evidence for the existence and
importance of localized tip states is ample. In Secs.
III-V, we give a simple derivation of tunneling matrix
elements for nine commonly occurring tip states, using
the Green s-function method. This derivation is straight-
forward, and provides an intuitive interpretation of its
physical meaning. Explicit results are listed up to 1=2.
A simple derivative rule is shown. However, the
Green's-function method derives the expression for each
tunneling matrix element individually, with a lack of gen-
erality. Therefore, a second derivation, which is more
elegant and general, is presented. It is based on a sum
rule for tunneling matrix elements in three-dimensional
space, valid for many curvilinear coordinate systems, as
presented in Sec. VI. As a special case of that sum rule,
in spherical coordinates, a general expression for the tun-
neling matrix elements in terms of spherical-harmonic ex-
pansion follows directly. Here, the derivative rule reap-
pears (Sec. VII). The implication of the derivative rule
for tunneling matrix elements to the imaging mechanism
of scanning tunneling microscopy is presented in Sec.
VIII. In Sec. IX, the consequence of sum rule in the par-
abolic coordinate system is brieAy presented, which gen-
erates similar results as in the spherical coordinate sys-
tems. Finally, in Sec. XI, we show that at the macroscop-
ic 1imit, the microscopic theory presented here reduces to
the s-wave model of Tersoff and Hamann. We conclude
with some ideas to expand our knowledge about the elec-
tronic states on the tip and their role in STM imaging.

TABLE I. Fermi-level DOS of common tip materials (Ref. 13).

Material Pt

s state
d state

3.1%%uo

85%
0.77%%uo

98%
0.94%

96%

Yet there is some doubt about the role of d states in
STM, which arises from the concern that d states decay
much faster than s states. " Indeed, this is true for free
atoms. As an example, in a free tungsten atom, ' the or-
bital exponent of a 6s wave function is (=3.1 A
whereas for a 5d electron, (=6.33 A '. Therefore, even
at a distance 1 A from the center of a tungsten nucleus,
the charge density of a 5d electron is too sma11 to be
effective. Because of the large decay constant, the charge
density of the atomic Sd state at a normal tip-sample dis-
tance is even smaller. '

However, for d-type surface states on top of bulk
tungsten, ' the situation can be completely different.
For example, it is a well-established fact both experimen-
tally and theoretically' that on a W(100) surface
there is a highly localized metallic d 2 surface state at 0.3
eV below the Fermi level (0.4 eV in width). This surface
state was first observed in the 1960s by Swanson and
Crouser in field-emission experiments, ' known as "Swan-
son hump. " These localized surface states were later
studied extensively using angle-resolved photoemission
by Weng et al. ' With angle-resolved photoemission, the
energy level and the angular dependence of the surface
states can be simultaneously determined. For the surface
state 0.3 eV below the Fermi level, angle-resolved photo-
emission experiments identified that its orbital character
is mainly d, . The second one is made of d &, and

z X

d,„,orbitals. The third is made of d &, s, and p, orbitals.

Table II is a brief summary of the measured energy lev-
els' of these three surfaces states on W(100) and
Mo(100).

An extensive first-principles calculation of the W(100)
surface using the linearized- augmented-plane-wave
(LAPW) method including relativistic corrections was ex-
ecuted by Posternak et al. ' The orbital character of the
surface state near the Fermi level was identified to be
essentially a d & state, ' in good agreement with the re-

sults of photoemission experiments. ' Their calculation
was repeated by Mattheis and Hamann using an in-
dependent LAPW program, which yields essentially the
same conclusion. The absolute value of the electron den-
sity of this state can be found from Fig. 8 of Ref. 19. At a

II. LOCALIZED SURFACE STATES ON THE TIP

Tungsten and platinum-iridium alloys are almost ex-
clusively used in STM as tip materials. These elements
are d-band metals. ' At the Fermi level, most of the den-
sity of states (DOS) is from d states. Therefore, it is natu-
ral to consider the role of d tip states in STM. ' '
Table I shows the Fermi-level DOS of three common tip
materials W, Pt, and Ir.

Material first second

Mo
0.3
0.2

0.8
0.6

4.2
3.3

TABLE II. Energy level of surface states (Ref. 18) (eV below
)
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FIG. 1. A comparison of the charge-density contour of a sur-
face state (Ref. 19) with a 6s state and a 5d state of a tungsten

0

atom (Ref. 16). As shown, at a distance about 2 A from the nu-

cleus, the charge density of the surface state is already much
higher than the atomic 6s and 5d states. Since the decay con-

0
stant of the surface state, K = 1 A ', is much smaller than those
of the 6s and 5d atomic states, at larger distances, the charge
density of this surface state is many orders of magnitudes larger
than those of the atomic 6s and 5d states.

0

distance 2.3 A from the tungsten nucleus on the vacuum
side, its charge density is 0.4 electrons per unit cell (31.6
A'), or 1.26X10 A, which is substantially higher
than that of a 6s electron in a free tungsten atom at the
same distance, ' 1.94X 10 A, and several orders of
magnitude greater than that of the atomic 5d electrons.
Because of its shallow energy level, it decays much slower
than the atomic 5d states. Actually, from Fig. 8 of Ref.
19, the decay constant is estimated to be about 1.0 A
This value agrees well with the measured work function,
=4 eV. Because of the relatively small decay constant,
that charge density of that d & surface state extends much

further into the vacuum than the atomic 6s and 5d
states. ' Figure 1 shows a comparison of the charge-
density contour of a surface state' with a 6s state and a
Sd state of a tungsten atom. ' As shown, at a distance
about 2 A from the nucleus, the charge density of the sur-
face state is already much higher than the atomic 6s and
5d states. As we have mentioned, the decay length of the
surface state, ~ '=1 A, is much longer than those of the
6s and 5d atomic states. Hence, at large distances, the
charge density of this surface state is many orders of

magnitude larger than those of the atomic 6s and 5d
states. (Notice that this is only true on the vacuum side,
see Fig. 1. In the bulk, the localized surface state decays
even faster than the atomic 6s and 5d states. Actually, in
the angle-resolved photoemission experiment, the mea-
sured quantity is determined by the vacuum tail of the
surface states. Therefore, the values of the surface state
inside the bulk is irrelevant. Similarly, in STM, the
effective part of the surface state is its vacuum tail, not
the part inside the tip body. )

An independent evidence of the existence of d & tip

state on tungsten tips was shown by Ohnishi et al. ' To
understand the role of surface states on a tungsten tip in
STM, they performed a first-principles calculation of
electronic states of several kinds of W clusters. ' Their
results show clearly that at the apex atom of both W4 and

W5 clusters, there is a dangling-bond state near the Fermi
level which can be accurately described as a d 2 state. '

Using these W clusters as the tip, they calculated the tun-
neling current to a silicon sample using the Green's-
function method. They find that the tunneling current is
primarily generated by this d & dangling-bond tip state. '

Another important example of localized surface states
on the tip is the dangling-bond state of silicon, as pro-
posed by Demuth et al. for interpreting the observed
atomic resolution and the spontaneous resolution switch-
ing on silicon surfaces. ' Direct experimental evidence
showed that by mildly colliding the tip with the silicon
surface, the tip picks up a silicon cluster, and the atomic
resolution is frequently resumed. ' Evidently, a silicon
cluster is formed at the apex of the tip. ' On silicon sur-
faces, there is no pure s-wave state. Oriented sp
dangling-bond states exist on a variety of silicon sur-
faces. ' Demuth et al. proposed' that the sp tip state
may generate much greater atomic corrugation than the
Fermi-level LDOS.

In order to understand the effect of different localized
tip states, the corresponding tunneling matrix elements
arising from these tip states have to be evaluated explicit-
ly. In the following, we present derivations and results
for these tunneling matrix elements. Explicit forms for
nine important cases are given. As shown, the final re-
sults are extremely simple. '

III. TIP WAVE FUNCTIONS

In the 1982 paper of Binnig and Rohrer, ' the tunneling
current is attributed to the overlap of the wave functions
of the tip and the sample near the Fermi level at a separa-
tion surface located roughly in the middle of the gap. We
have shown that the Bardeen tunneling theory, after
proper modification, is appropriate for evaluating the
tunneling (transmission) matrix elements even when the
barrier becomes classically allowed. " For metals and in-
dividual atoms, the correction to the Bardeen integral is
simply a constant independent of relative tip-sample posi-
tion. " A schematic for the perturbation calculation of
the tunneling matrix elements is shown in Fig. 2. For the
free tip state, the potential on and beyond the separation
surface is equal to that of the vacuum. Therefore, on and
beyond the separation surface, i.e., on the sample side
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SAMPLE &s TIP QT d zd (u) —[u +l(1+1)]f(u)=0.
du du

(3.3}

0 The functions only depend on I. There are two standard
linearly independent solutions for Eq. (3.3): the spherical
modified Bessel function of the first kind,

1//2

i, (u)=
2u

II+ 1 /2( u } (3.4)

0 2
k, (u)=

7Tu
+I+ }/2(u )

and of the second kind,
1//2

(3.5)

SEPARATION

SURFACE X

These special functions are actually elementary
functions Exp. licitly, these are

r
1

FIG. 2. Schematics for calculating tunneling matrix ele-

ments. The z axis is de6ned by the surface of the sample, with

the positive z direction pointing out from the sample. A separa-
tion surface is drawn between the tip and the sample, roughly in
the middle of the gap. The precise position is not critical.

and

i{(u)=u' sinhu

k{(u)=( —1)'u'1 1

u du

exp( —u )

u

(3.6)

(3.7)

(see Fig. 2), the tip wave function satisfies Schrodinger s
equation in the vacuum,

(V' —
K )y(r)=0, (3.1)

y(r)=g C, f, (Kp)Y, (0, tt), {3.2)

where p= ~r —ro~, ro is the center of the apex atom, and
YI is spherical harmonics. ' Substituting Eq. (3.2)
into Eq. (3.1), we obtain the difFerential equation for the
functions fI (u):

where K=(2m, {t)' i}l ' is the decay constant, deter-
mined by the work function P. Equation (3.1) is also
known as the modified Helmholtz equation. Inside the
tip, including the vicinity of the apex atom, Eq. (3.1) is
not valid for the tip wave function. This is not a concern
because we are not interested in the tip wave function in-
side the tip body. Similarly, for the free sample state, on
and beyond the separation surface, i.e., on the tip side
(see Fig. 2), the sample wave function satisfies Eq. (3.1).
Inside the sample body, Eq. (3.1) is not valid for the sam-
ple wave function. Again, in order to calculate the tun-
neling matrix element, we only need the sample wave
function on and beyond the separation surface, which al-
ways satisfies Eq. (3.1). Within the framework of the
modified Bardeen tunneling theory, " the above condition
is valid by definition

In the fo11owing, we will derive a general expression for
the tip wave function on and beyond the separation sur-
face. Because the solution of Dirichlet's problem of Eq.
(3.1) is unique, the values of tip wave function in the en-
tire region beyond the separation surface (i.e., the sample
side) are determined by the values of the tip wave func-
tion on the separation surface. %e expand the tip wave
function on and beyond the separation surface into
spherical-harmonic components:

In the absence of magnetic field, it is convenient to
write those tip wave functions in real form, as listed in
Table III. The constant C1 is to be determined by com-
parison with the results of first-principles calculations of
actual tip states. For convenience, we eliminate the rath-
er complicated normalization factors of the spherical har-
monics in these expressions by redefining the constant
C1

It is clear from Eq. (3.8) that only the angular depen
dence of the tip wave function on and beyond the separa-
tion surface matters. For example, according to the ex-

State

px

Py

d p

dxz

dye

dxy

d
X

TABLE III. Tip wave functions.

Wave function

C(vp) 'exp( —~p)

C[(Kp) +(Kp) ]exp( —Kp)cos0

C[(Kp} '+{Kp} ']exp( —Kp}sin0cosg

C[(Kp) '+{Kp} ]exp( —Kp)sin0sing

C[(Kp} '+3(Kp) +3(Kp) ]exp{—Kp)(cos 0—
3 )

C[(Kp } '+ 3(Kp } '+ 3{Kp) ']exp( Kp }sin{20}c—os/

C[(Kp) '+3{Kp} +3(Kp) ]exp( —Kp}sin{20}sing

C[(Kp) '+3{Kp} +3(Kp) ']exp( —Kp}sin 0sin{2$}

C[(Kp) '+ 3{Kp} '+3(Kp) ]exp( —Kp}sin 0cos{2$}

The most important properties of these functions are list-
ed in Appendix A. Obviously, the functions iI(u) diverge
at large u, which does not meet the boundary condition
for tip wave functions. The functions k&(u) are regular at
large u, which satisfies the required boundary condition.
Therefore, a component of tip wave function in the vacu-
um region with quantum numbers I and m must have the
general form

(3.8}
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perimental results of angle-resolved photoemission, ' on
W(001) and Mo(001), the surface state near the Fermi lev-
el has an angular dependence of Y2p(8, $). Therefore, for
this localized surface state, the constants in Eq. (3.8)
should be all zero except C2Q. If a silicon cluster is at the
tip end, the probability of having an sp dangling-bond
tip state is high. ' To describe this state, we take
C&p=P3Cpp and set all other coefficients to zero. The
absolute values of the constants can be determined by
comparison with the results of first-principles calcula-
tions. The validity of the above idealized cases, obvious-

ly, depends on the condition that on the separation sur-
face the electron density from other states in the tip can
be neglected; and the arrangement of the atoms near the
apex atom of the tip satisfies the condition for the
dangling-bond state to exist. The probability of having
this condition is limited. As shown in Sec. VIII, the ob-
served images depend on the actual states of the tip in a
dramatic way. This existence of a large variety of
different tip states as a result of different structures near
the apex of the tip provides an explanation to the ob-
served frequency of spontaneous switching of instrument
resolution. ' '

IV. GREEN'S FUNCTION AND TIP WAVE FUNCTIONS

Similarly, we have

(r)= 4~C a G(r —rp),
K K ()Xp

y» (r)= 4~C 8
G(r —rp) .

K K Bgp

(4.7)

(4.8)

By taking the derivative with respect to xp on both
sides of Eq. (4.5), noting that [k, (u)/u]'= —k2(u)/u
(see Appendix A), the same argument leads to

4mC 8y„(r)=, G(r rp—)
XZ K Bx Bz

(4.9)

4mCx„2(r)=
B2

G(r —rp) —
—,
' G(r —rp)

K Zp
(4.10)

For the wave function of a d 2 & tip state, the extra term
x —y

generated by taking the second derivative cancels.
Therefore,

Similar results can be obtained for the wave functions of
d», and d„»states.

By taking derivative with respect to zp on both sides of
Eq. (4.5), an extra term containing kt(Kp)/p is generated.
Considering that 3k, (u)/u =kp(u) —k2(u) (see Appen-
dix A), we obtain

The Green's function for the Schrodinger equation, Eq.
(3.1), is defined by the differential equation

4~C
Xd

2 2

a2 a2
G(r —rp) .

K2 (jx 2 K2 (jy 2
(4.1 1)

(V' —K')G(r —rp) = —5(r —rp) . (4.1)

With the boundary condition that it is regular at
~
r —

rp~ ~~, the explicit form of the Green's function is22

exP( —K
~
r —

rp~ )
G(r —rp) =

4m /r —
rp/

(4.2)

which can be verified by direct substitution. Denoting
p= ~r —rp~, the Green's function can be written in terms
of the spherical modified Bessel function of the second
kind 22

G(r —rp)= kp(Kp) .
K

(4.3)

Therefore, the s-wave tip wave function is identical to the
Green's function up to a constant, with the center of the
apex atom taken as rp,

4mC
y, (r) = G(r —rp) . (4.4)

By taking derivative to both sides of Eq. (4.3) with
respect to zp and using the relation kp(u) —k, (u) (see
Appendix A), we obtain

K QG(r —rp)= k, (Kp) .
K Bzp 4m P

(4.5)

The second fraction in Eq. (4.5) is (z —zp)/p=cos8 (see
Fig. 2). Therefore, the tip wave function for the p, states
1s

We will use these relations to evaluate tunneling matrix
elements in the next section.

V. THE DERIVATIVE RULE: INDIVIDUAL CASES

In this section, we derive the tunneling matrix elements
M for different tip states using the modified Bardeen for-
mula. " As we have shown, in all cases related to STM,
the tunneling (transmission) matrix element can be evalu-
ated as a surface integral on the separation surface X (see
Fig. 2) between the tip and the sample, "

fiM= f (y'Vg —QVy*) dS,
2m

(5.1)

where f is the sample wave function, y is the tip wave
function, and d S is the surface element on X, see Fig. 2.

Consider first the s-wave tip state. Using Eq. (4.4),

$2
M, =— y, V —Vy .dS

2m, , x

J [G(r—rp)VQ —QVG(r —rp)] dS . (5.2)
2~CA

Kme

Using Green's theorem, it can be converted into a volume
integral over QT, i.e., the volume of the tip or the space
to the right of the separation surface (Fig. 2}:

2 CA
M, = f [G(r rp}V g PV G(r —rp)]d~ . — —

T

(r)= 4mC
G(r —rp} .

K i3Z
(4.6) (5.3)
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22rC2ti
~( )

Kme
(5.4)

Mathematically, this is the result of Tersoff and
Hamann. (Notice that the original meaning of the s
wave in the theory of Tersoff and Hamann is the repre-
sentation of the wave function of a macroscopic spherical
potential well, not as an s-wave component of an atom-
like orbital. ) As shown, the siinplicity of this result is a

Since the sample wave function g satisfies Schrodinger s
equation (3.1) in QT, the first term of the integrand be-
comes G(r —ro)~ g. On the other hand, the Green's
function satisfies Eq. (4.1}. Therefore, the second term of
the integrand becomes —/[a G(r —ro) —5(r —ro)].
Hence,

consequence of choosing the Green's function to
represent the tip wave function. As Tersoff and Hamann
derived this very simple result using a rather cumbersome
plane-wave expansion method, the present proof is much
more straightforward. Besides, this proof is valid on any
surface separating the tip and the sample, not necessarily
a plane. More importantly, using this method, the tun-
neling matrix elements for other components of the tip
wave function can be easily obtained, in virtue of the rela-
tion between tip wave functions and the Green's function,
as shown in the previous section. For example, by taking
the derivative with respect to zo on both sides of Eqs.
(5.1) and (5.2}, noticing that zo is a parameter in the in-

tegral (which does not involve in the integration process),
and using the expression of the p, tip wave function, Eq.
(4.6), we find

22rCR B (ro} 22rCA' B f [G(r—ro)VQ —QVG(r —ro)] dS
0 ao 0 ao x

22rCiri B
J [G(r—ro))VQ —PV [G(r —ro)] dSa

Km 0 X (3ZO Bzp
L

$2
J [y~ (r)V& PVy~ (r—)] dS

(5.5)

TABLE IU. Tunneling matrix elements.

State Misvalue at ro

Therefore, we find that the tunneling matrix element for a

p, tip state is proportional to the z derivatiue of the sample
ioaue function at the center of the apex atom

Using the expressions for other tip wave functions in

terms of Green s functions in the previous section, we im-

mediately obtain the tunneling matrix elements for all the

tip states listed in Table III. Table IV is a summary of
the results.

The tunneling matrix elements listed in Table IV can

be summarized in terms of an extremely simple derivative

rule. By writing the angle dependence of the tip wave
function in terms of x, y, and z, then replacing them with
the following rule:

x 8/Bx,

y ~B/By,
z B/Bz,

and acting on the sample wave function, we obtain all the
tunneling matrix elements immediately, except that for
d 2 2. Actually, since B /Bx +B /By +B /Bz =a. , a

direct consequence of the Schrodinger equation (3.1), we
find that all the tunneling matrix elements in Table IV
follow the derivative rule.

p [z]

d [zx]

d [zy]

d [xy]

d [z' ——,'r']

B

Bz
Bq

X

Bg
By
Q2p

Bz Bx
Q2p

dz By
B2$

Bx By

BZ2 3

$2$ Q2f

Bx

VI. THE SUM RULE

The simple derivation of the nine tunneling matrix ele-
ments presented in the previous section generates the
tunneling matrix elements individually. In the following
sections, we present an alternative proof, which is more
elegant and provides a general formula of the tunneling
matrix element for an arbitrary tip state. This derivation
is based on a sum rule, which is valid in most curvilinear
coordinate systems. This sum rule is a consequence of
the analytic property of the Schrodinger equation in free
space, or the modified Helmholtz equation. ' We state
the sum rule first, then prove it.

We consider an orthogona1 curvilinear coordinate sys-
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tern g, , (2, and g3, see Fig. 3, assuming that Schrodinger s

equation, Eq. (3.1), is separable in this coordinate sys-
tern, which means that every solution of Eq. (3.1) can
be expanded in terms of basic solutions of Eq. (3.1), as a
product of functions of individual coordinates. Since
both the vacuum tail of the tip wave function and the
vacuum tail of the sample wave function satisfy Eq. (3.1),
they can also be expanded in terms of these basic func-
tions. The sum rule states that the tunneling matrix ele-
ment is the sum of the product of corresponding
coefficients in these two expansions, multiplied by a
universal constant.

Following is the proof. To make it easy to read, we fol-
low the notation in the textbook of Morse and Fesh-
bach. 3 Let the surface g, =g,o be the separation surface.
Region g~ & g&o denotes the region of the tip, and g~ & (to
denotes the region of the sample, see Fig. 3. Bardeen's
integral, in terms of curvilinear coordinates, "

'It I' h2h3 BX g Bf

1 ~3 8

h, h2h3, , t)g,

h)h2h3 (jig —a 4=0.
h

(6.2)

Equation (6.2) is called separable if any solution of it can
be expanded as

e= y C„.X„'."(g,)X„".'(g, )X."'(g,),
n, m

(6.3)

where each of the factors satisfies a Sturm-Liouville equa-
t ion 22' 23

X(n)
p„(g„) +[q„(g„)+A„r„(g„)].X'"'(g„)=0 .

n n

(6.4)

For most of the separable coordinate systems, one of
the coordinates can be separated first. We denote it as

(6.1)

In terms of curvilinear coordinates, Eq. (3.1) has the
form

g3. The boundary condition for its Sturm-Liouville equa-
tion is that the function X' '(g3) must be regular in the
entire range of (3. It leads to an eigenvalue problem,
which gives a series of eigenvalues for A, 3 and a series of
eigenfunctions which are orthonormal with the weighting
function r, ((3):

fX."'r, (g, )X.",' dg, =fi.. (6.5)

The Sturm-Liouville equation for g2 generates another
series of eigenfunctions,

fX„~.'~r, (g, )X„".' dg, =fi„„,, (6.6)

and eigenvalues for A3. Both X' '((2) and X' '(g&) are
bounded

The Sturm-Liouville equation for X'"(g, } deserves spe-
cial attention. Since the parameter A, , in this Sturm-
Liouville equation is already fixed by the energy level of
Schrodinger s equation, i.e., ~, it is no longer an eigen-
value problem. By the analytic nature of the modified
Helmholtz equation, i.e., Schrodinger s equation for the
vacuum, the solution cannot be regular on the entire
range of (,. Actually, as we show in Appendix B, if the
absolute value of a solution of Eq. (3.1) is finite in the en-

tire space, then it must be zero everywhere. This is a
theorem very similar to Liouville's theorem in the theory
of analytic functions of complex variables. The actual
wave function of the tip satisfies Eq. (3.1) (and is regular)
only in the sample region, i.e., only for g, & g~o (see Fig. 3}.
In the region g, &g&o, the actual tip wave function does
not satisfy Eq. (3.1). The Sturm-Liouville equation of the
tip wave function X "(g, ) in the region g, &g,o defines

the vacuum continuation of the vacuum tail of the tip
wave function into the tip body, a concept similar to the
analytic continuation in the theory of the functions of
complex variables. In analogy to the situation in the
theory of functions of complex variables, the tip wave
function X"'( g, ) must have at least one singularity, or
divergence, in the tip body. We denote this solution as
X„"'(g~). Similarly, in the sample body, i.e., as g, & g, o

(see Fig. 3), the actual sample wave function does not
satisfy Eq. (3.1). The Sturm-Liouville equation for
X"'(g, ) in the region g, &g,o defines the vacuum con-
tinuation of the vacuum tail of the sample wave function
into the sample body. We denote the second solution as
X„"'(g, ). Since these two functions are linearly indepen-
dent solutions of the same Sturm-Liouville equation, their
Wronskian ' ' must be proportional to I/p, (g, ). We
choose the normalization of this pair of functions such
that the constant in the Wronskian is unity. In other
words, we define the normalization of these functions
such that

dx" ~' dX" '

~( $g) nm ~( ] 7 ) nm
(6.7)

SAMPLE

6'6o
SEPARATION

SURFACE

TIP

6'6o
FIG. 3. Derivation of the sum rule. The separation surface is

the coordinate surface g, =g,o, a constant.

It is interesting to note that these two solutions, if they
exist, must be unique up to a constant. In fact, since any
solution of that Strum-Liuoville equation must be a linear
combination of these two, a function with two nonzero
coefficients must diverge in both regions.
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Therefore, we obtain the most general form of the
wave functions of the tip and the sample, as follows:

n, m

X()s)(g )X(2)(g )X(3)(g (6.8)

y= g (8„.X('"(g, )X(')(g, )X")(g,) .
n, m

(6.9)

In Appendix C, we prove that for most of the curvilin-
ear coordinate systems, the following elimination equa-
tion is valid:

hzh3/h) =p)(g))r2((2)r3((3) . (6.10)

g rzn~P. m .
~ n, m

(6.11)

That is, the tunneling matrix element is the sum of the
corresponding coefficients in the expansions, Eq. (6.8) and
Eq. (6.9), multiplied by a universal constant. All the
coordinate dependences are eliminated by virtue of Eq.
(6.10).

As an immediate application of the sum rule, we will
derive a general expression for the tunneling matrix ele-
ments in spherical coordinates, and recover the derivative
rule. Another example, in parabolic coordinates, is out-
lined in Sec. IX.

VII. THE DERIVATIVE RULE: GENERAL CASE

In this section, we apply the above sum rule to the case
of spherical coordinates p, 8, and P, and derive a formula
for tunneling matrix elements for a general tip wave func-
tion. For the angular coordinates, 8 and P, the Strum-
Liouville equations, (6.4), lead to spherical harmonics.
The differential equation with respect to p is Eq. (3.3),
which leads to solutions for the tip and the sample in
terms of spherical modified Bessel functions. The most
general forms of those wave functions are

1((=g a( i(((rp) Y( (8, ()())

l, m

(7.1)

Substituting Eqs. (6.8) and (6.9) into Eq. (6.1), using the
orthonormal relations, Eqs. (6.5), (6.6), and the Wronski-
an, (6.7), we obtain an extremely simple result, the sum
rule:

The coefficients P( are determined by fitting the tip
wave function on and beyond the separation surface us-
ing Eq. (7.2). Inside the tip body, the actual tip wave
function does not satisfy Eq. (3.1), and the expansion (7.2)
does not represent the actual tip wave function. Instead,
it represents the Uacuum continuation of the vacuum tail
of the tip wave function into the tip body. According to
the general discussion in Sec. VI, such a function must
have at least one singularity in the tip body. Indeed, at
the origin of the spherical coordinates, which is the nu-
cleus of the apex atom, every term in expansion (7.2)
diverges. It is a singularity in the tip wave function as
well as Eq. (3.1). Nevertheless, in the entire region of the
tip body except this singular point, both the vacuum con-
tinuation of the tip wave function (7.2) and the sample
wave function satisfies Schrodinger s equation in the vac-
uum, Eq. (3.1). Under this condition, the actual separa-
tion surface for calculating tunneling matrix elements us-
ing Bardeen's formula is irrelevant, as long as it encloses
this singular point. [Actually, it is easy to show that for a
Bardeen integral on a closed surface, if both y and )('j

satisfy Eq. (3.1) in the entire volume enclosed by this sur-
face, then the integral is zero. ] Therefore, for evaluating
the integral using the vacuum continuation of the vacu-
um tail of the tip wave function, one may take any sphere
around the singularity, which is the nucleus of the apex
atom.

An observation on Eq. (7.4) reveals immediately that in
spherical coordinates, the sum rule simply means that for
each component of the tip wave function with angular
dependence characterized by I and m, the tunneling ma-
trix element is proportional to the corresponding com-
ponent of the sample wave function with the same angu-
lar dependence.

In the following, we show that the coefficients aI in

Eq. (7.1) are related to the derivatives of the sample wave
function with respect to x, y, and z at the center of the
apex atom (i.e., the center of the spherical coordinate sys-
tem) in an extremely simple way. We thereby obtain the
derivative rule again, from a completely different point of
view.

The key of the proof is the properties of the spherical
modified Bessel function of the first kind, i(((rp) For.
small values of p, the function i(((rp) has the following
form:

and

y=gl3( k((ap)Y( (8,$), (7.2)

i((((p)= [1+O(p ) j .
(~p)'

(21+ 1)!!
(7.5)

i((x )k('(x) ('('(x)k((x) = ——x (7.3)

The sum rule, Eq. (6.11), immediately gives the general
expression for the tunneling matrix elements,

$2
pa( (8(*

2meK I m

(7.4)

I, m

where i((x ) and k((x ) are spherical modified Bessel func-
tions of the first and second kind, respectively, see Ap-
pendix A. The Wronskian of these functions is

By multiplying it with a spherical harmonics of order I,
this term becomes a homogeneous polynomial of x, y, and
z or order l. By taking a partial derivative of i((zr ) with
respect to x, y, and z with (summed) order n, and taking
the value at r =0, all the terms with powers of x, y, and z
of l & n drop off. In particular, for the cases of I =0 and
I = 1, there is only one term left in the derivative at p=0,
i.e., a term containing only one coefficient in Eq. (7.4).
For I =2, the derivative may contain the second term in

io(Kp), which should be subtracted off to obtain the
coefficient for an I =2 component.

We start our derivation by writing down the explicit
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form of the vacuum asymptote of a tip wave function (as
well as its vacuum continuation in the tip body). As we
have explained in Sec. III, for the simplicity of relevant
mathematics, the rather complicated normalization con-

stants of the spherical harmonics are absorbed in the ex-
pression of the sample wave function. Up to 1=2, we
define the coefficients of the expansion by the following
expression:

P=Pooko(KP)+ [Pio(z/P)+Pii(x /P)+Pi2(y IP)]ki(KP)

+[P2o(z Ip —,
')—+P3](xz/p )+1322(yzlp )+P33(xy Ip )+1334(x Ip —y Ip )]k3(Kp) . (7.6)

Similarly, for the sample wave function, up to the lowest significant term in the power expansion of the spherical
modified Bessel function of the first kind, il(Kp),

4irg=aoo[1+ —,'(Kp) ]+aioKZ+aiiKX+a, 2Ky+a2o(3K /4)(z &p )

+aii(K xz)+a23(K zy)+a33(K xy)+a34[K (x —y )]+O(p ) . (7.7)

The factor 4m. is introduced for convenience. Now, it is straightforward to obtain a relation between the coefficients ai
and the derivatives of sample wave functions. For example, because of p =x +y +z, we have

(4n. /K )(B /Bz )P(ro) =a3o+ —,'a~ .

Noticing that

4m y(ro) =am

we obtain

(7.8)

(7.9)

a2o=4m(K B /Bz —
—,')f(ro) . (7.10)

The derivations for other components are very straightforward. Therefore, the tunneling matrix element for an arbi-
trary tip state, up to I =2, is

2 A B B B B a2 B2

m, K
'

KBZ
"

KBx '
KBy K Bz '

K Bx Bz K By Bz

K Bx By K Bx K By
(7.11)

The values of the derivatives are taken at ro.
Again, we obtain the "derivatives rule" from a com-

pletely different point of view. The second derivation
gives a general formula to calculate the tunneling matrix
element for an arbitrary tip wave function, with its vacu-
um tail expanded in terms of spherical harmonics.

The present approach is convenient for treating a sin-

gle localized surface state at the tip. If the tip wave func-
tion is more complicated, the expansion (7.2) may con-
verge very slowly or not converge at all. An example is
the case of two tip atoms at almost the same vertical dis-
tance to the sample surface, but with a large horizontal
distance in x,y. This is a commonly occurring pathologi-
cal condition, the double tip. In this case, the total tun-
neling current can be considered as the sum of the two
components of tunneling current, each from one of these
two tip atoms, evaluated separately using the derivative
rule.

VIII. EFFECT OF DIFFKRKNT TIP STATES

Using the expressions of the tunneling matrix elements
derived in the previous sections, theoretical predictions

p(x, z)= g ~g(r)~'=ao(z)+a, (z}cos ( —,'qx),
E~EF

(8.1}

where q =2m/a is the length of the primitive reciprocal-
lattice vector, and the sum is carried over the entire
valence band (Fig. 4). The origin of z is defined as the
plane of the top layer nuclei of the sample. The square of
the cosine is more convenient than the cosine itself be-
cause it is easier to be correlated with corrugation ampli-
tudes as well as surface wave functions.

To correlate the surface change density with the sur-

for STM images can be made. Instead of discussing actu-
al examples of solid surfaces, in this section we illustrate
the effect of different tip states by considering a simple
metal surface with a one-dimensional periodicity a as well

as a reflection symmetry at x =0. In the following dis-
cussion, we will use the method of Harris and Liebsch
to relate the surface charge density as well as the STM
images to the Bloch waves at several symmetric points.
This method has been used extensively in analyzing heli-
um scattering data. The general form of the surface
charge density, up to the lowest nontrivial Fourier com-
ponents, is
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face Bloch functions, we consider the contributions from
different regions in the first Brillouin zone, similar to the
method of Harris and Liebsch. To simplify the nota-
tion, all the constants that are independent of coordinates
are denoted as const. As is shown in Fig. 4, the term
ao(z) in Eq. (1) originates from the constant term in the
Bloch functions, i.e., the Bloch functions near point I,
whose lowest Fourier component is

A. s-wave tip state

This case has been discussed extensively by Tersoff and
Hamann. For metals, the tunneling current is

I=const X
EF —E EF+eV

~Coexp( —21')+C, exp[ —2(a + —,'q )' z]cos ( —,'qx) .

fr =const X exp( —I~z ), (8.2) (8.7)

which makes

ao(z)=constXexp( —2az) . (8.3)

The contribution to the second term of Eq. (8.1) comes
from Bloch functions near, the K points. In general, a
surface Bloch function at that point has the form

gz =const Xexp( ,'iqx )—
Xg expI —[i~ +( —,'q+nq) ] z Iexp(inqx ),

(8.4)

where ( —,'q ) is the magnitude of the wave vector at point
E in the reciprocal space (Fig. 4). In addition to the term
with n =0, the term with n = —1 has the same decay
length, and thus the same magnitude. Also, the Bloch
function that generates the symmetric charge density
must also by symmetric. The only possible symmetric
lowest-order Fourier sum of the Bloch function near
point E is

In the s-wave model of Tersoff and Hamamm, ro is the
center of the spherical potential well with radius R,
which is used to represent the tip. For free-electron
metals, the local density of states near the Fermi level is
proportional to the total valence-electron charge density.
Therefore, up to an overall constant depending on bias V,
the tunneling current is

I=c onstXp( xz) . (8.8)

+O(expI —4[(a + —,'q )'~ —a]z) } . (8.9)

Thus, for small corrugations, the theoretical topographic
image arising from an s-wave tip state is

The corrugation amplitude (or simply corrugation' )

defined as the difference of the maximum z and the
minimum z (over the entire surface under consideration)
with a constant tunneling current, follows immediately
from Eq. (8.6):

hz, =(C, /Co)(2~) 'expI —2[(a. + —,'q )' —a]z I

f~ =const X exp[ —(a + —,'q )' z]cos( —,'qx } . (8.5) z(x) = b,z, cos ( —,'qx ) (8.10)

p(r)= g P(r)l
E(E

= Co exp( —2~z )

+C, exp[ —2(~ + —,'q )' z]cos'( —,'qx ), (8.6)

where CO, C, are constants. As shown below, for predict-
ing theoretical images, the only relevant quantity is

C, /Co.
In the following, we discuss the intercorrelation be-

tween tip states and images one by one.

The charge density is proportional to ~gK~ . Combining

with Eq. (8.3), the total charge density is then

and the corresponding constant-z current image is

I(x)=IO(1+(C, /Co)expI —2[(a + —,'q )' —~]zI

Xcos ( —,'qx)) . (8.1 1)

B. p, tip state

By substituting the actual numbers into Eq. (8.1), we
recover this well-known fact: Even at an extremely short

0

tip-sample distance, e.g. , 3 A, and with an unrealistically
small tip radius R, e.g., zero, for low-Miller-index metal
surfaces, the corrugation amplitude of such a Fermi-level
LDOS is smaller than 0.03 A, which is at least one order
of magnitude smaller than what has been observed exper-
mentally.

0

r

q=2v/a
I
I

K "x

According to the derivative rule, the tunneling matrix
element for surface wave function at point I from a p,
tip state is identical to that from a spherical-tip tip state.
However, for a surface wave function at point j:,the tun-
neling matrix element from a p, tip state is

REAL SPACE REC IPROCAl SPACE
Mg=constX(1+ ,'q /a. )' Qg— (8.12)

FIG. 4. A metal surface with one-dimensional periodicity,
with a reflection symmetry at x =0. See the discussion of the
effect of different tip states on the images. The reciprocal space
is also shown.

and the topographic image arising from a p, tip state is

z(x)=(1+—,'q /a )bz, cos ( —,'qx) . (8.13)

Therefore, the tunneling matrix element arising from a p,
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FIG. 5. Enhancement of tunneling matrix elements arising
from nonspherical tip states. The tunneling current is propor-
tional to the square of the tunneling matrix element. Therefore,
the enhancement factor for the tunneling current is the square
of the enhancement factor for the tunneling matrix element.

state gains a factor of (1+—,'q /» )'/ over the s-wave tip
state, and the corrugation amplitude arising from a p, tip
state gains a factor of (1+—,'q /» ) over that of the
charge-density contour (see Fig 5). .This is the quantita-
tive explanation of the resolution enhancement due to p-
like localized tip states. '

the lowest Fourier component, a single sinusoidal wave

may dominate the surface wave function. By consider-
ing the 5-wave tip state only, Tersoff argued that the no-
dal structure of this state could give rise to very large cor-
rugations 25 e g b,z) 3 A. Lawunmi and Payne26made a
careful analysis of Tersoff's model. They show that in

any realistic case, on a real tip, the existence of a small

component of the p wave is always expected. With any
realistic value of the p component, the corrugation will

reduce to less than 1 A. Therefore, Lawunmi and Payne
concluded that Tersoff's s-wave model for the observed
large corrugation on graphite cannot be correct.

E. d 2tipstate

A straightforward calculation using the tunneling ma-
trix elements listed in Table IV shows that the d 2 state

results in a very large corrugation amplitude on metal
surfaces, because the tunneling matrix element for the
sample wave function at the I point vanishes. Similar to
the previous case, the existence of other states must be
taken into account. Also, since there is very little study
of the existence of these localized states on the tip, we
will leave it for further investigation.

C. d 2 tipstate IX. RESULTS IN PARABOLIC COORDINATES

z (x ) = ( 1+ ,'q /» ) b,z, cos (—,' qx ) . — (8.14)

The enhancement for the tunneling matrix element is
shown in Fig. 5. The enhancement factor for corrugation

amplitude (1+—', q~/» ) could be substantial. For exam-

ple, on most close-packed metal surfaces, a =2.5 A,
which implies q =2.5 A . An enhancement of 11.2 is
expected. As we have mentioned, all the commonly used
tip materials are d-band metals for example, W, Pt,
and Ir. Experiments and theories have shown that local-
ized d & states often occur on the surfaces. ' ' The
derivative enhancement of corrugation amplitude, due to
these d 2 tip states, is probably the prime origin of atomic
resolution observed by STM. '

D. p tip state

According to the derivative rule, for a d & tip state, the

tunneling matrix element for a sample wave function at
point I picks up a factor —'„whereas for a sample wave

function at point K picks up a factor ( —', + —,'q /» ). Simi-

lar to the case of the p, tip state, the topographic image is

x =&grl cosg,

y =&gg sini|},

z =(g—ri)/2,

and it follows that

r =((+ri)/2 .

(9.1)

(9.2)

(9.3)

(9.4)

The separation surface is described by a paraboloid
r —z =go. The interior and the exterior of the tip corre-
spond to regions g & go and g & go, respectively.

The Schrodinger equation in the vacuum, Eq. (3.1), in

terms of parabolic coordinates, is

As we mentioned in Sec. VI, the sum rule is valid for a
number of curvilinear coordinate systems. In a certain
sense, the spherical coordinate expansion of the tip wave
functions may not be the most convenient one for STM.
In STM, there is a center (the apex atom) as well as a
direction (the sample surface). For treating such prob-
lems, for example, a hydrogen atom in an external electri-
cal field, i.e., the Stark effect, the parabolic coordinate
system (g, g, iI}} is a natural choice. It is defined as

For a pure p„tip state, the tunneling matrix element to
the sample wave function at point I is negligible,
whereas for sample wave functions at point E, a phase
shift of 90 is obtained. The tunneling current is

4 a ae a ae
(+„ag ag +a„"a„ 1 B4

+g~ ay'

(9.5)

I=const X ( —,
'
q /» )sin ( —,

' qx ) . (8.15)
With the substitution

The meaning of this result was discussed" in conjunction
with TersofFs model for STM images of semiconductors
and semirnetals, where the relevant surface wave func-
tion may occur only at the edge of the first Brilluoin
zone, i.e., the E point. In one-dimensional models, for

e
—«(0+ q)/2(g~ ) ImI /2f ( ~ )g (g)eim P (9.6)

one finds that both f(g) and g(g) satisfy the confiuent
hypergeometric equation, or Kummer's equation. The
boundary condition for g(g} is that it should be regular at
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both /=0 and g= ~. It leads to an eigenvalue problem
and yields the well-known associated Laguerre polynomi-
als, which appear in the problem of hydrogen atom:

g(g) —L I l(ii)} (9.7)

It does not have any solution which is regular at both
g =0 and g= 00. Therefore, different solutions have to be
assigned for the sample and the tip. The sample wave
function should be regular at g=0, which is the first
Kurnmer function:

fs(g) =M(n+ ~~1+1,I~I+1;~g) . (9.9)

It diverges at large g, which means that inside the sample
body, there should be some singularities, which are as ex-
pected. On the other hand, the tip wave function should
be regular at g= 00, i.e., on the sample side, which im-
plies that Kummer's second function is the right choice,

fT(q) = U(n+ ~m~+1, [m ~+1;tcrl) . (9.10)

It diverges as g~0, which means that at the focus of the
tip, there should be some singularity. Since the focus of
the paraboloid is the center of the acting atom, the singu-
larity is also as expected. The basic sample wave func-
tions and basic tip wave functions in terms of parabolic
coordinates are as follows:

=e "'~+"' (gee) I M(n+ )m(+1, [m(+1;xq)

XL I~l( gg)eimP

i 0+ m i &
( g& ) I

m
I && U( n +

(
m ( + 1, [ rn

(
+ 1;a g )

(9.11)

XL I mI (K()e™ (9.12)

Those Kummer functions, although unfamiliar at first
sight, provide a reasonable and understandable descrip-
tion of the tip wave functions and sample wave functions,
especially when they are converted into Cartesian coordi-
nates.

According to the general method described in Sec. IV,
the most general forms of the sample wave function and
the tip wave function are

X +nm Wnm ~ 1 —90 (9.13)

where n is an integer. The equation for f(g) is

agf '(a7l)+ (1+
~
ml a'q)f (ag) —(n+ I

in I, + 1)f(KY/) 0.—
(9.8)

The subscripts are assigned according to the irreducible
representations of the point group C„.The coeScients
can be evaluated by taking derivatives of the wave func-
tion with respect to x,y. Denoting the center of the apex
atom, i.e., the focus of the parabolic coordinate system, in
a Cartesian-coordinate system fixed on the sample as ro,
the coeacients are

a =e"'1((r0),

a„„=[e"'1((r0}],= a

iz = [e"'g(r0)],
By

1 B
a&sz, z 2 By&

2

e"'g(r0),
By

2

as = — [e"'g(r0)] .
2 Bx

Those coeScients have a direct relation with the tunnel-
ing matrix elements.

Next, we consider the meaning of the tip states. Since
the tunneling is due to the tail of tip wave functions out-
side the tip in the —z direction, we are interested in the
asymptote of those wave functions for large —z. For the
n =0 states,

e
K'f

10'
2r

e x
+77

4r

In Appendix D, the lower-order tip and sample wave
functions in the parabolic coordinate system are listed.
For clarity, the arguments of the wave functions are con-
verted into Cartesian coordinates using the definition of
parabolic coordinates, Eqs. (9.1)—(9.3). For the sample
wave functions, every component has a common factor
exp( —az ), which is multiplied by simple polynomials of
x,y, z.

Consider the polynomials with n =0 first. Up to
m =2, the sample wave function near the focus of the tip
1s

f=e "'[a +a x+a y+as (x —y )+2as xy] .
x —y

(9.17)

n, m

g ~lmXnm ~ (9.14)

e '"y
X~ 2 7

4r
(9.18)

W(M U)= — ' ' ""(~ )-' I-'
(n+ ~m~)!

(9.15)

n, m

According to the general sum rule, remember that the
Wronskian of the standard Kurnmer functions is

KP(x 2
y 2)

X$

e "'xy
X$ 4r

%e find the tunneling matrix element

sruti ~ (n+~m~)!
2m ~~ +nm nm

n, m

(9.16)

Apparently, those asyrnptotes of tip wave functions are
identical to the atomic wave functions of a spherical po-
tential well with s,p, d symmetry, which describe the ex-
tension of atomic wave functions beyond the apex of the
tip.
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TABLE V. Derivative rule in the parabolic coordinate sys-

tem.

Tip state

Z

5 2
y

2

5„y

Tunneling matrix element

(up to a constant factor)

f (ro)

a@
(ro)

X

a@
(rp)

By

$2@ $2@
(ro)

$2@
(rp)

Using the sum rule for paraboloidal coordinate system,
Eq. (9.16), and the explicit expression of coefficients a' s,
Eq. (9.18), we obtain the derivative rule for tip states in
the parabolic coordinate system, as shown in Table V.

X. MACROSCOPIC LIMIT

(1+ ~q~ /v )=1 . (10.2)

Using the derivative rule, we find immediately that for
those large features (1) the tunneling matrix elements for
1%0, m =0 states are identical to that for an s-wave tip
state, and (2) the tunneling matrix elements for any m %0
tip state is much smaller than that for an s-wave tip state.
Therefore, by considering the long-wavelength com-
ponents only, the tunneling current is proportional to the
LDOS, or the charge density (for metals}, at the center of
the tip.

Let us examine the meaning of the condition Eq. (10.2).
In terms of the wavelength L, related to the lateral wave
vector q, Eq. (10.2) becomes

I.»2~/~ . (10.3)

Since ~ is the thickness of the electron tail on the sur-

In this section, we show that the s-wave model is the
macroscopic limit of the microscopic theory under very
general conditions. In this macroscopic limit, the per-
sonality of different tip states disappears, and the image
becomes the macroscopic contour of the surface, i.e., the
contour of the local density of states.

The macroscopic limit can be approached from two
different points of view: either by considering only the
large features on the surface, i.e., features with linear di-
mensions much larger than the typical diameter of an
atom, or by assuming a large tip-sample separation such
that the atomic information fades away.

To illustrate the first point of view, we consider again
the Fourier expansion of the surface wave functions. A
component with lateral wave vector q is

f(q)=C(q)exp[ —(~'+ ~q~
)'~ z]exp(iq x), (10.1)

where x=(z,y). The large features contain only long-
wavelength Fourier components, which satisfy the validi-
ty condition of the Tersoff-Hamann model:

face, Eqs. (10.2} and (10.3) simply mean that the feature
scale under consideration is much larger than the typical
thickness of the electron tail. In this case, there is a
uniquely defined contour on the surface, that is, the
LDOS contour. This contour is exactly the macroscopic
(jellium) contour of the metal surface. This point can be
further clarified by considering the z dependence of the
corrugation amplitude. Under the condition ~q~ &&v, the
corrugation amplitude varies with z as

b,z =const X exp( —
—,'a '~q~ z) . (10.4)

Since ~q~ &&a., the corrugation amplitude varies much
more slowly with z, compared with the variation of the
absolute value of current with z. In other words, the im-

age represents a contour that is roughly independent of
the distance from the solid surface within a reasonable
distance.

The typical value of ~ is 1 A '. Therefore, Eq. (10.3)
means

L»6 A. (10.5)

XI. CONCLUSION

We have derived and listed the tunneling matrix ele-
ments for tip states up to I =2 using two completely in-
dependent methods, the Green's-function method and
through the sum rule. We have shown that the tunneling
matrix elements are related to the derivatives of the sam-
ple wave functions at the center of the apex atom in a

0
Since the typical diameter of an atom is 2-5 A, condition
(10.5} simply means to disregard atom-scale features from
the very beginning.

The second way to approach the macroscopic limit is
to assume a large tip-sample distance, for example, larger
than 6 A. ' Again, from an observation of Eq. (10.1) one
finds that the Fourier components with ~q~ larger than or
comparable with a. have much larger decay constants
than Fourier components with ~q~ &&~. Therefore, at the
large-distance limit, only the Fourier components with

~q~ &&~ could survive. An interesting fact is that for all
long-wavelength Fourier components, the decay constant
is roughly the same, z, whereas for the short-wavelength
components, the decay constants (v + ~q~

)'~ vary from
component to component. In other words, the corruga-
tion amplitudes of atom-size features decay at much fas-
ter rates with z than the long-wavelength components,
and the rates differ from feature to feature according to
their dimension. On the other hand, the equal-LDOS
contours of the macroscopic features, i.e., the long-
wavelength components in the Fourier expansion of the
surface wave function, vary only slightly within the entire
operational distance of STM. Considering the macro-
scopic features only, the exact definition of the "center"
of the tip is not critical. Therefore, the conclusion of
Tersoff and Hamann that the STM image is directly con-
nected to the LDOS contour at the center of curvature of
the tip is valid, only in the macroscopic limit Actually, .
the basic parameters in the s-wave model, the radius of
curvature and the center of curvature of the tip, have no
physical meaning from a microscopic point of view.
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simple and straightforward way. Physical meanings of
these matrix elements as well as implications to imaging
mechanism of scanning tunneling microscopy are dis-
cussed. The results can be used to predict the image us-
ing the knowledge of the tip state, and to infer the tip
state from the observed image.

It is clear that in order to understand the atomic reso-
lution achieved by STM, as well as the spontaneous
switching of instrument resolution during imaging, the
knowledge about the electronic states at the tip, especial-
ly the localized surface states, is essential. Yet there is
not enough knowledge about these states. The most com-
mon tip material is tungsten. The only first-principles
calculation of the electronic states of a STM tip is the W
cluster calculation by Ohnishi et al. ' Because of the
limited size of clusters, only discrete states are obtained.
The results are important, but not conclusive. The first-
principles calculation of the W(001) surface is
relevant, ' ' but not conclusive either. A more relevant
calculation will probably be an all-electron first-principles
calculation of a W slab of certain orientation with an ex-
tra W atom (or Si atom) adsorbed on an appropriate site.
Thus, the wave function as well as the density of states
can be obtained simultaneously. This kind of calculation
is not beyond the reach of current computational physics.
For example, all-electron calculations of a W(100) slab
and a Mo(100) slab with a Cs atom adsorbed have been
performed. The second most important tip material is
platinum. Since the requirement for calculating localized
surface states on platinum structures is very similar to
that for tungsten, reliable information can be obtained as
well.

Note added in proof. In some cases, the macroscopic
limit of the microscopic theory presented here does not
agree with the Tersoff-Hamann model, especially for the
case of graphite. ' Recently, the case of gra hite has
been treated using the first-principles method. In the
Tersoff-Hamann model, for the case of graphite, at low
bias, the only sample states involved in the imaging pro-
cess are the six sine waves at the corners of the surface
Brillouin zone, and the corrugation amplitude is
infinite. ' The s-wave model also predicts that, on graph-
ite, the average tunneling current should decay about
50—60 times per angstrom. ' Using an improved s-wave
model, the predicted corrugation is finite and independent
of z. Therefore, even at the large-distance limit, the
STM image of graphite predicted by the s-wave models
has a constant corrugation amplitude. ' ' The present
theory is based on a modified Berdeen approach, which
includes the distortion of the sample wave function due
to the existence of the tip. For graphite, such tip-induced
local states (TILS) have dramatic implications. Using
an analytic treatment of TILS, it is shown that the corru-
gation amplitude of the STM images of graphite in ul-
trahigh vacuum should decay about 4—5 times per
angstrom, and the average tunneling current should de-
cay about 8 —9 times per angstrom. This prediction has
been verified experimentally.
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APPENDIX A: SPHERICAL MODIFIED
BESSELFUNCTIONS

It is difficult to find appropriate references for spherical
modified Bessel functions, in spite of their simplicity.
Probably, the only extensive source is in Ref. 28, pp.
443-445. However, the definition found therein is incon-
venient for applications to tunneling problems, and the
notation is confusing. In the following, we provide a list
of important formulas of those functions following the
definition and notation of Arfken.

The spherical modified Bessel function of the first kind,

i„(z)=(~nz)'"r„„„(z),
and of the second kind,

k„(z)= (2/wz ) X + i y2(z)

are linearly independent solutions of the equation

(A 1)

(A2)

d pd (z)
z [z +n—(n+1}]f(z) =0 .

dz dz
(A3}

Function i„(z)is the only solution of Eq. (A3) that is reg-
ular at z =0, and function k„(z)is the only solution that
is regular at z = ~. These so-called special functions are
actually elementary functions with the following general
expression:

di„(z)=z"
ZdZ

sinhz
(A4)

and

k„(z)=(—1)"u" d
Z dz

'n
exp( —z)

Z
(A5)

The first three pairs of these functions are

sinhz

Z

sinhz coshz
ji z

(A6)

(A7}

i2(z) =— 3 1 . 3+—sinhz + — coshz,
Z3 Z Z2

(A8)

1
k {z)=—e0 {A9)

1 1
k, (z)= —+ e (A10}

1 3 3k2(z)= —+ + e
Z Z' Z'

(Al 1}

The function i„(z)has the following power-series ex-

Lang, and V. Moruzzi for inspiring discussions, as well as
M. Gutzwiller and J. Slonczewski for a critical reading of
the manuscript and helpful suggestions, and E. Marino
for proofreading the final manuscript.
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pansion near z =0:

i„(z)=z"
k

p k!(2n+2k+1)!! 2

(2n+1)!!

The first term is proportional to z":

(A12}

(A13)

sphere of radius R centered at ro as the boundary. Using
Eqs. (83}and (84), it is easy to show that

exp( —&R ) sinh(zlr —
rp~ )

g(rp, r)=-
4m.sinh(11R ) ~

r —
rp~

(85)

A direct calculation gives the value of the Green's func-
tion on the boundary:

e ' " (n+k)! 1k„z=
z „pk!(n —k}! (2z)"

(A14)

The following recursion relations are found to be use-
ful, which apply to both i„andk„:

An i„(z)of even order only has an even power of z, and
an i„(z)of odd order only has an odd power of z. Those
properties are essential in a complete derivation of the
derivative rule.

On the other hand, the functions k„(z)have the follow-

ing exact general expression:

[VG)s= (a—/4nR )sinh(zR ) . (86)

Substituting Eq. (86) for Eq. (82) and taking the absolute
value on both sides, we obtain

~X(rp)~ ~M~R /sinh(aR ) . (87)

Letting R ~~, we find that for every point r in the en-
tire space,

X(r)—:0 . (88}

Thus, Liouville's theorem for the modified Helmholtz
equation is proved.

(2n + 1)f„(z)=zf„,(z) —zf„+,(z), (A15)
APPENDIX C: THE ELIMINATION EQUATION

f„(z)=f„+,(z)+ f„(z). —
dz z" (A16)

Finally, the Wronskian of the pair is simply

WI i„(z),k„(z)I:i„(z)—k„'(z)—i„'(z)= —z . (A17)

APPENDIX B: LIOUVILLE%S THEOREM
FOR MODIFIED HELMHOLTZ EQUATION

In this Appendix, we show that if the absolute value of
a solution X(r) of the modified Helmholtz equation,

(V —a. )X(r)=0, (Bl)

X(rp) = — X(rs )[VG(rp, r }], , d S,
S S

(82)

where r~ denotes the points on the boundary. The
Green's function is defined by

G(rp, r)=(4n. ~rp
—r~) 'exp( —~~rp —r~)+g(rp, r), (83)

and the function g is the solution of Dirichlet's problem
of Eq. (Bl) with boundary condition

g(rp, r) ~, , = —(4~~rp —rs ~ ) 'exp( —~~rp —rs ~ ) . (84)

is bounded in the entire space, in other words, ~X(r) ~
(M

(a constant), then X(r) must be zero everywhere in the en-
tire space. Since this statement is very similar to
Liouville's theorem in the theory of analytic functions of
complex variables, it can be considered as a variation of
Liouville's theorem.

It is known that the solution of the Dirichlet problem
for Eq. (81) is unique. In other words, if the value of
X(r) on the boundary S of a volume 0 is given, then the
value of X(r) at any point in the volume 0 is uniquely
determined by Eq. (Bl). Actually, the value of X(r) at
any point ro can be represented by the following
Green's-function solution:

In this Appendix, we will find the conditions for the
validity of the elimination equation, and show that for
most of the separable curvilinear coordinate systems, the
elimination equation is valid.

It is well known that the Helmholtz equation in curvi-
linear coordinates,

1 ~ i}

h, h2h3 „,Bg„

hhh1 2 3 8 1'

Bg„

can be separated into three ordinary di8'erential equations
in which the function P is expressed as a product of three
one-variables functions,

Xl 4(1 }X2 k(2 }X3 k(3 } (C2}

3 detl @„kIf 1 ($1)f2($2)f3(g3)

A consequence of the Robertson condition is

h 2h 3 /h 1 (@22@33 @23@32)flf2f3

(C4)

(C5)

In the following, we will show that if at least one of the
off-diagonal Stackel functions is zero, then the elimina-
tion equation is valid. Without losing generality, we as-
sume that 432=0. Thus, Eq. (C5) reduces to

The most general form of those ordinary differential
equations is

dX„ +«'C'n1+ ~2C'n2+4C'n3)X n=o'
n

(C3)

where n = 1, 2, and 3. The nine functions 4„k(g„)
(n =1—3,k=1 —3) are Stackel functions, and the deter-
minant det

~ 4„k~
is the Stackel determinant. The

Helmholtz equation, Eq. (Cl}, is separable if and only if
the Robertson condition is fulfilled:

To prove Liouville's theorem for Eq. (Bl), we take a h2h3/h, =4 224 33f,f2f3 . (C6)
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dX3
f3 +(K 43i+A3433)X3 0 (C7)

The ordinary differential equation with respect to (3 is Using the well-known Kummer transformation and the
definition of associated Laguerre polynomials,
Kummer's function, Eq. (Dl), can be converted into

J3=f3
e3=K f3C'»2

r3 =f3433

(C8)

(C9)

(C10)

The ordinary differential equation with respect to $2 is
then

1 d dX2
f2 d

+( @31+~2@22+~3@23) 2

The boundary condition that X3 be regular over the en-
tire range of (3 makes Eq. (C7) an eigenvalue problem.
Since there is only one parameter, A, 3, by comparing it
with the standard form of Sturm-Liouville equation, we
find %'ith the expansion formula of Laguerre's polynomials, '

(„+)! L„+k"(u+v)(uv)"
(m +k)!k! (D3)

the sample wave function can be written as a polynomial
of the Cartesian coordinates times a common exponential
factor:

( —1)"[K (x +y )]"g„=e"(x+iy) lml! g
0 m

x L I mll+2&(2KZ ) . (D4)

M( n +m + 1, m + 1;Kg )
=e ""M( n—, m + 1; K—g )

n Im t=e " ' L„(—Ki)) . (D2)
(n +m)!

(C 1 1)

Again, it is an eigenvalue problem. Since A.3 is already
fixed, the only parameter for the eigenvalue is i(,2. A simi-
lar comparison with the standard form of Sturm-
Liouville equation gives

P2=f2

V2 =f2(K 421+k3423),

r2=f2@22 .

(C12)

(C13)

(C14)

Substituting (C10) and (C14) for (C6), we find the elim-
ination equation

hih2~h3=xi(ki) 2(42) 3 4 (C15)

APPENDIX D: SAMPLE AND TIP
WAVE FUNCTIONS IN PARABOLIC COORDINATES

An extensive list of Stakel functions can be found in
the classical paper by Eisenhart. ' As shown, except for
conical coordinates, ellipsoidal coordinates, and para-
boloidal coordinates, the elimination equation (C15) is
valid for all separable coordinate systems. To enumerate,
they are oblate spheroidal coordinates, prolate spheroidal
coordinates, circular cylinder coordinates, elliptic
cylinder coordinates, spherical coordinates, parabolic
coordinates, and parabolic cylinder coordinates. Those
coordinate systems cover a large number of cases of prac-
tical interest.

The sign in Eq. (D4) is the sign of m. The first ten real
wave functions are listed as

n, m

0,0

0, 1

0, 1

0,2

0,2

1,0

1,2

12

KZe

KZ~

e "'y,

e "'(x —y ),

e 2',
e "[1—2Kz K (x +y )],

e "x[2—2Kz K (x +y )],
e "'y[2 —2Kz —K (x +y )],
e "'(x —y )[3—2KZ —

—,'K (x +y )],

e "'2xy[3 —2Kz —
—,
'K (x +y )].

U(1, 1,;x ) =e "E,(x ), (D6)

Next, the tip wave functions. The general form is Eq.
(9.12):

=e "'~+"' ($2))l ' U(n+ ~m~+1, ~m~

+1 Kr))L' '(Kg)e' ~ . (D5)

For n =O, m =0, Kummer's second function is the ex-
ponential integral function

4+gii' (g&)!mls'2M(n + ~m
~

+ 1 ~m~+ 1
~ K&)

XL lml( g) imP (D 1)

In this Appendix, we are going to discuss the general
properties of the sample wave functions and tip wave
functions in the parabolic coordinates. Consider the sam-
ple wave functions first. From Eq. (9.11),

where

E, (x)—= dt .
t

(D7)

The rest of the functions can be calculated by the recur-
sion relations of Kummer functions. One of them gives

U(m+1, m+1;u)= [e"Ei(u)] . (D8)
( —1)

mI dg
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A list of first five tip wave functions is as follows:

n, m

g=2r. Using the asymptotic expansion of the exponen-
tial integral functions,

0,0 e ""e ""E,(trrl), k=O
n+1 (D9)

0, 1 —e ""E,(a.ri)
we find that the tip wave functions are reduced to

0, 1

0,2

0,2

e ""y —e ""Et(try)1

K'g

X
e "" " — +e ""E (tc )

2 (tcri)z try

""xy — +e ""E,(art).1 1

( K'g ) Kr/

n, m

0,0

0,1

0, 1

0,2

0,2

X&

e KP'

2r
Kf~

4r
e ""y

4r
Kr(~2 y2)

8r
e ""xy

4r
We are interested only in the values of tip wave func-

tions outside the tip body, i.e., the region where z = ror—As seen, they are similar to atomic wave functions.
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