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Phenomenological theory of longitudinal spin fluctuations in CsNiCl3
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The recent observation of longitudinal spin excitations at low temperatures in the spin-1 quasi-

one-dimensional antiferromagnet CsNiC13 is contrary to expectations based on conventional spin-

wave theory. AfHeck [Phys. Rev. Lett. 62, 474 (1989)l has proposed a field-theory model which

attributes this unusual gap-mode Auctuation to quantum efkcts resulting from the Haldane con-

jecture. We demonstrate here that the field-theory results are reproduced by a phenomenological

Lagrangian formulation of spin waves, in the spirit of Landau and Lifshitz, that has existed in the

literature for many years.

Experimental investigation into the spin dynamics of
the quasi-one-dimensional, spin-1 antiferromagnet
CsNiC13 has been stimulated by its candidacy for the ob-
servation of effects associated with the Haldane conjec-
ture. ' %'ithin the framework of conventional spin-wave
theory of local-moment systems, only fluctuations trans-
verse to long-range magnetic order occur. It is thus
surprising that polarized neutron-diffraction measure-
ments in the low-temperature ordered phase of CsNiC13
give clear indication of longitudinal (amplitude modulat-
ed) spin excitations. Affieck has recently shown, howev-

er, that this unusual mode follows from a (1+1)-
dimensional field-theory-based model which provides
strong support for the existence of a Haldane gap in this
hexagonal insulator. It is the purpose of this work to
demonstrate that a longitudinal mode caL(q) of precisely
the same form as derived from field theory (in addition to
conventional transverse modes) follows from a classical
formalism describing spin excitations that has existed in

the literature for twenty years. Both models are based
on a Lagrangian approach, with X[&] being used in Ref.
5 [where P(r) is the field variable] and X[s] forms the
basis of the present theory [where s(r) is the spin density].
Differences arise in the physical interpretation of some of
the parameters which appear in each model.

The magnetic Ni + ions form a simple hexagonal lat-
tice with strong antiferromagnetic coupling along the c-
axis chains. Although weak, interchain (antiferromagnet-
ic) interactions are sufficiently strong to stabilize three-
dimensional long-range magnetic order at T/v ] =4.85 K,
characterized by a period-2 modulation along the c axis
and a period-3 structure in the basal plane, with a wave
vector Q given by

Q = +- (4'/3a)x+ (tt/c)i.

A result of weak axial anisotropy is the occurrence of a
second transition' at F2=4.40 K. The Hamiltonian
commonly used to describe this system can be written as"

P =
J~~ g S; S,+J~ g Sl, S(+Dg (S,')

&1,j) &k, 1) I

where J~~ & 0 and J& & 0 represent nearest-neighbor ex-
change interactions along the c axis and in the basal

ds(r)/dt = y[s(r)xh'(r)], (3)

where y is the gyromagnetic ratio, h'(r) is the effective
field,

h'(r) = —bF/6s(r), (4)

and F[s(r)] is the free energy. This formalism follows the
spirit of the Landau description of phase transitions.
These relations can also be derived from the quantum-
mechanical equation of motion for the magnetization
operator ' (based on a Hamiltonian formalism) in the
semiclassical approximation (replacing F by the energy
E). Only transverse spin waves can result from this ap-
proach. A more phenomenological description of magnet-
ic excitations which has features in common with classical
mechanics is based on a Lagrangian formalism,
X=T—V where T[s(r)] represents the kinetic energy
and, as an extension from basic concepts of classical and
statistical mechanics, the potential energy V[s(r)] is tak-
en to be of the form given by the Landau-type free energy.
Both V and F have the same structure, as noted in Ref. 5.
The equations of motion are of the standard form

6X/Ss, = BX/Bs, ,

with s, =ds, /dt. The present study was motivated by the
work of Izyumov and Laptev who use this approach to
investigate the spin dynamics of incommensurate helical
magnetic structures and find a longitudinal-mode excita-
tion (as well as conventional transverse modes). We

plane, respectively, D & 0 is the single-ion anisotropy, and
JI» J~, ~D~. [As noted in Ref. 11, our definitions of in-
trachain and interchain coupling are related to those of
Refs. 1-5 (J,J') by J~~ 4J and J& 4J'. ] At very low

temperatures (where the effects of D are small), the mag-
netic order is close to that of a 120' spin structure with
moments lying in a plane containing the c axis. It is useful
to note that such a structure can be characterized as a hel-
ically polarized spin density. ' ' We will adopt here the
simplification used by AfHeck of setting D=0 (also see
Ref. 1).

Conventional spin dynamics are governed by the torque
equation ' (omitting relaxation effects)
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adopt here their expression for T[s(r)] and a Landau free
energy derived from a mean-field treatment of the Hamil-
tonian (2).

Consider first the Landau free energy and equilibrium
magnetic structure. An expression for F derived from a
general Heisenberg Hamiltonian

with Sq=S, +S . and

F=F + —,
' g QS~R&.(q', q)sp

a,P ij
(i7)

The susceptibility of a helical spin structure can be diago-
nalized by choosing a rotating (orthonormal) coordinate
system, ' ' in the present case as

P=
2 gJ(R; —R, )S; SJ,

within the molecular-field approximation follows from the
method of Ref. 16 (also see Ref. 17). The result, to fourth
order in the spin density, can be expressed as

F = 1/(2V ) drdr'A(r —r')s(r) s(r') with

e+(r) =[p~e' '+p2e 'Q']/J2,

(r) =i[p)e'Q' —p2e 'Q']/J2,

&0 P3

pi =(x+ii)/J2, pp=p), p3=y.

(19)

(2o)

(2i)

with

+8/(4V) dr[s(r) s(r)]'

A(r) aT+ J(r), 8 bT,

(7)

p(r) SeiQ r+See —iQ r (io)

With these expressions, the free-energy simplifies to the
result

where a —', and b —,', for spin-1 systems. The long-
range magnetic order of CsNiC13 can be well described by
a single Fourier component of the spin density'2'3

s(r) (V/N) gp(r)B(r —R), (9)
R

with

R, (q) =~Q+4uq+68S',

R (q) -~Q+4uq+28S',

RP(q) AQ+4vq+2BS2,

(22)

(23)

(24)

4uq 2 (Aq+Q+r4q —Q) AQ

Note that the equilibrium magnetization can be written as

p (r) use~~(r). The susceptibility expressed in these
coordinates (p, v +, —,0) is straightforward to derive,
with the result g„„(q,q') g„(q)B„„hqq, where g„(q)
=R„(q) ' and

F=WQS2+8S + —,'8~$ S~ =2J~~[1 —cos(cq, )]+J&(3—f„), (2s)
where S $ S* and AQ a(T —TQ). With nearest-
neighbor interactions only, as described by (2) (and with
D 0), one finds'2

aTQ ~JQ —
2J~~ cos(cQ, ) + 2J~fQ,

fQ cos(a Q„)+2 cos( 2 a Qg )cos O'Qy ),
(i2)

(i3)

where/ (J3/2)a. For J~i,J& )0, the free energy is min-
imized by Q given in (1), so that the Neel temperature is
expressed by

T~ Tg (2Jr+3J&)/a . (i4)

The polarization of the vector S is determined by the last
term in (11)so that S S 0 is the preferred configuration
since 8) 0. This describes a helical spin density, 'p' '3
e.g. ,

4vq=Aq —AQ =2J~~[1+cos(cq,)]+J~(3+2fq),
and fq given by (13). Noting that uq-q 2 at small q and
that S = —Ag/(28) for T( T~, it can be seen that
(22)-(24) represent the usual mean-field expressions for
the static susceptibility in the ordered phase: '

(26)

R+ =2a(T~ —T)+4uq, R —=4uq, Rp=4vq. (27)

dSq/dt = yg (SqPxHq-q ),

It is instructive to consider the spin excitation behavior
resulting from the Landau-Lifshitz torque equations (3)
and (4). With the inverse susceptibility defined by (17),
the Fourier transform of these equations take the con-
venient form '

S =S(x+iz)/J2. (is) 0„'q = —P Ps~ R„„(q,q') .
p

(29)

p(r) =QSqe"',
q

(i6)

Eff'ects arising from the axial anisotropy, not considered
here, are discussed in Refs. 10 and 13.

For later purposes it is convenient at this point to derive
results for the static inverse susceptibility R (q, q')
=g(q, q) ' following the method described in Ref. Ig.
This is accomplished by expanding the free-energy func-
tional of the spin density away from equilibrium [p (r)]
to second order. Formally, one writes

(3i)

and the resulting frequency dispersion

rv'=2y'S R (q)Rp(q) =32y S uqvq. (33)

Using results derived in the previous sections for CsNiC13
leads to the following equations of motion

S+q =0, (3o)

S —
q =%2ysRp(q)spq,

Sp = —v2ysR —(q)S —q, (32)
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ai- =- [(Jiq,c)'+JiJi(3 —f,)] '" (34)

and that for q, -z/c, the canting mode is strongest with a
frequency

In the zero-temperature limit where 2J2S =1, this result

(using y=l) becomes co =4uzv~, which is identical to
the conventional spin-wave dispersion calculated in Ref. 1

(also see Refs. 19 and 20).
Clearly, from (30)-(32) and the basis-vector definitions

(18)-(20), there is no longitudinal-mode excitation within
this formalism. The coupled transverse modes correspond
to a rotation of the spin density in the xz plane (S—) and
a canting out of this plane (So), where S—/So
—(U~/u~)

' . Since J&&&Ji, it becomes clear from the
expressions (25), (26), and (33) that the rotation mode is
dominant at q, -0 with a frequency

study of structural phase transitions. Identification with
AIIIeck's model is made by putting 1/(2p) =s and by not-

ing that the field-theory Lagrangian contains a mass term
(h, /2v)p; for a single c-axis chain i C. omparison with
the free energy (7)-(14) then leads to the relation

AQ+3J~ =6 /a .

Using this result, the longitudinal frequency becomes

t02+=-(e q, c)'+~J&(9—fq) —2a',

(41)

(42)

for q, -0. This is precisely the amplitude-mode frequen-

cy c0L of AIIIeck's model. Within the context of field-

theory, however, the quantity 5 is related to the Haldane

gap of an isolated chain. Note from (40) and (25) that
co+ has its minimum value at q 0 so that the gap (for the
three-dimensional system) can be expressed as

c00= [(Jiq,c) +JiJ&(3+2')] ' (35) a+ -2+a(T~ —T), (43)

where q, q, —z/c. These are the transverse modes de-
scribed by Afileck's model.

Finally, we consider the spin excitations resulting from
the Lagrangian formalism. The kinetic energy used by Iz-
yumov and Laptev for helical magnetic structures with

spins lying in the xz plane is written

T=p drs (r)+o drs~(r)

x [s„(r)s,(r) —s„(r)s,(r)], (36)

where p and a are a priori unknown parameters. The first
term is analogous to the kinetic energy of classical
mechanics and appears in Afileck's model as I/(2v)p,
with the parameter s a posteriori identified as 4J=Ji.
From the analogy with classical mechanics, it can be ex-
pected that the coefficient of s is related to the "mass"
—1/J of spin excitations. 2' The second term (which does
not appear in Afileck's model) was inspired by the work of
Dzyaloshinskii and Kukharenko who introduce terms of
this type (linear in d/dt) using symmetry arguments and

guidance from Onsager's theory of thermodynamic fiuc-
tuations. As noted in Ref. 9, and as is demonstrated
below, the o term is necessary in order to reproduce the
transverse spin-wave results of the torque equations; this
is achieved by taking o = (2yS ) '. We adopt here the
pedantic approach of investigating the consequences of
this model kinetic energy applied to CsNiCI& without fur-
ther justification.

The equations of motion (5), using X = T —F with T
given by (36) and F given by (7), reduce to the following
(linearized) form in the rotating coordinate system

~ ~

2pS+~ = —R+(q)S+~, (37)

2pS ~+ J2oSSoq = —R —(q)S —~,
~ ~

2pS0& v 2o'SS —
&
= Ro(q)SO&, (39)

(38)

~+ =I/(?p)R+(q) =1/(2p)[ —2&Q+4uq], (40)

which has a form (co -g ') also encountered in the

giving a longitudinal mode (S+) not coupled to the trans-
verse modes, as in the field-theory model. The associated
amplitude-mode frequency is given by

showing the decrease in h~ as the Neel temperature is ap-
proached. This has been discussed by AIIIeck and ob-
served experimentally by Steiner etal At . T=1.5 K,
this expression (with ~-4J and Ttv =4.85 K) gives
A+ =0.538 THz, in poor agreement with the experimental
value' of 0.19 THz. Note, however, that (43) is based on
an expansion of the Landau free energy to low order in

s(r), an approximation which can be expected to break
down at temperatures well below Ttv. At higher tempera-
tures, the omission of uniaxial anisotropy from the present
model will be important.

The frequencies of the coupled transverse-mode excita-
tions from (38) and (39) are determined by

(R —2pc0') (Ro —2pt0') =2o'S't0'. (44)

From this expression, it is clear that the torque-equation
result (33) is reproduced by setting p =0 and
o =(2yS ) '. With o =0 and p =I/(2v), however, the
transverse modes to- =g R and too2=a.RO are obtained,
which reproduce the field-theory results (34) and (35)
(valid only for small q, ). Evidently, our model with o =0
closely resembles, in form, the model proposed by Aleck.
It is clear that the cx term must be present in the kinetic
energy in order to obtain a proper description of trans-
verse spin waves in regions of q space away from the re-
stricted values of q, treated by the field-theory model. '

It would, of course, be more satisfying to construct a
derivation of the equations of motion (37)-(39) starting
from the Hamiltonian (2). This appears to be a formid-
able task, an observation which served to motivate
AfHeck's, and the present, phenomenological approach.

In conclusion, it has been demonstrated by this work
that a classical Lagrangian formulation of spin excitations
for spiral spin systems, exciting in the literature for some
time, reproduces the results of ANeck's field-theory based
model for spin-waves in CsNiC13. In particular, the non-
conventional longitudinal mode resulting from each model
was shown to have a frequency dispersion of identical
form. This result is not surprising in retrospect as both
models are based on Lagrangians of similar structure.
Differences lie in the physical interpretation of some of
the terms in the two model Lagrangians used. Much of
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Afl]eck's theory was inspired by quantum eA'ects responsi-
ble for the Haldane gap in one-dimensional spin-1 sys-
tems, whereas the present model is motivated purely on
the basis of a general classical Lagrangian whose lowest-
order terms are justified by symmetry arguments. Within
the present classical approach, the gap (43) exists even for
one-dimensional spin- 2 systems, in contrast with the Hal-
dane conjecture. The good quantitative agreement be-
tween experimental results and the field-theory prediction
is strong evidence for the existence of the Haldane gap in
CsNiC13. It is nevertheless of interest that amplitude-
mode fluctuations in localized spin systems are not neces-

sarily entirely a consequence of unusual quantum states.
Note added. Results of an unconventional quantum

spin-wave theory for one-dimensional antiferromagnets
have recently been reported which yield an energy gap
for both integer and half-odd-integer spin systems.
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