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Optical properties of one- and two-dimensional Hubbard and t-J models
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The optical conductivity for the Hubbard and t-J models is calculated numerically by use of a

Lanczos algorithm. One- and two-dimensional systems of up to 16 sites with periodic and open

boundary conditions are examined for the j-J model, as well as Hubbard-model systems of up to
9 sites. In the one-dimensional (1D) case, the low-frequency part of the conductivity away from

half filling is shown to consist almost entirely of a single b function (Drude peak) even for J of
the order of t. This is a direct consequence of the decoupling of charge and spin in 1D. In two

dimensions there is an additional broad absorption band above the Drude peak, consistent with

the experimentally observed midinfrared band in the copper oxide superconductors. The impor-

tance of vertex corrections is demonstrated by comparing the exact conductivity with the convolu-

tion integral of the exact single-particle Green's function.
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This effective Hamiltonian consists of the Heisenberg
Hamiltonian plus a restricted hopping term for the holes,
where c; c; (1 n; — ).—We choose t 1 as our unit of
energy. The Heisenberg exchange is J 4t 2/U, when de-
rived from the one-band Hubbard model.

The Kubo formula for the real (absorptive) part of the
optical conductivity at zero temperature may be written in
the form
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The discovery of superconductivity in the copper ox-
ides in the vicinity of the Mott-Hubbard metal-insulator
transition has intensified interest in the electronic proper-
ties of strongly correlated electronic systems. One very
detailed probe of the electronic structure of these high-
temperature superconducting (HTSC) compounds is
given by their optical properties. In particular, with either
electron or hole doping an anomalous midinfrared (mid-
IR) band emerges in the charge-transfer gap of these com-
pounds. ' We show in this Rapid Communication that
the optical conductivity of the 2D Hubbard model is
indeed in good agreement with these and other experimen-
tal observations, and discuss further tests for the applica-
bility of this model.

As originally emphasized by Anderson, ' the essential
aspects of the electronic structure of the Cu02 planes may
be described by the two-dimensional (one-band) Hubbard
model, with the Hamiltonian given by
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in standard notation. In Eq. (1), (i,j) represents a
nearest-neighbor pair. For large on-site repulsion U, the
Hubbard-model Hamiltonian can be transformed into the
t-J-model Hamiltonian acting on the space with no dou-
bly occupied sites, s

where the current operator is'
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In this work we will always use the restriction a P =x, so
the tensor indices of the conductivity will henceforth be
suppressed. In accordance with this convention, the vec-
tor a is a unit vector in the x direction. The operators c~

appearing in (4) are normal Fermionic annihilation
operators for the Hubbard model, but must be replaced by
the restricted operators ci for the t-J model. The calcu-
lation of such dynamical correlation functions by means
of the Lanczos algorithm is straightforward. s

The analog of the f-sum rule for both models is'
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where on the right-hand side the subscript x indicates the
contribution to the expectation value of kinetic energy
from hopping in the x direction. This sum rule is valid for
systems with open boundary conditions (OBC) with q 0,
and with periodic boundary conditions (PBC) for
qWO.

' " The nonexistence" of such a sum rule with
PBC for q 0 is consistent with the conventional recipe
that the thermodynamic limit should be taken before the
limit q 0, and corresponds to the physically reasonable
requirement of a nonzero momentum transfer in order to
generate real absorption for a finite noninteracting
single-band system for example.

The Hubbard model has three energy scales on which
interesting optical effects may be expected: U, t, and
J 4t 2/U in decreasing order for the parameter range of
interest here. Let us first consider the two larger energy
scales, U and t. In the half-filled case (nt, =0), a Mott-
Hubbard gap for charge excitations AMH is expected,
perhaps for U above some critical value for spatial dimen-
sionality larger than l. Within the present context this

may be described simply with the following argument:
The half-filled ground state has essentially no doubly oc-
cupied sites for U large compared to t. The application of
the current operator (4) to this state then necessarily
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creates a state with one doubly occupied site and one emp-

ty site, that is a state belonging to the upper Hubbard
band (UHB). This then immediately leads to an absorp-
tion band centered near U. It is obvious from the above
argument that the spectral intensity of this interband
transition will decrease upon hole doping, reflecting the
decreased probability of generating a doubly occupied site
upon application of the current operator. Additional ab-
sorption will also appear at low energy due to the possibili-
ty of intraband transition within the lower Hubbard band
(LHB). The results of numerical calculations on 3 X 3
Hubbard-model clusters with OBC shown in Fig. 1(a)
support the simple picture outlined above. In the absense
of holes (solid line) there is a gap hMH = U —3t. With
hole doping, spectral weight is transferred to the low-

energy region cu = t, and the lower edge of the UHB shifts
to higher energy. This upward shift is a direct conse-
quence of the narrowing of the UHB upon doping. These
trends are in good agreement with experiment, and imply
effective parameters t =0.2-0.3 eV and U= 2.0 eV for
Nd2Cu04, for example. The integrated conductivity
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FIG. l. (a) Frequency-dependent optical conductivity aud
(b) integrated conductivity for a 3& 3 Hubbard model with open
boundary conditions and U=8(r I). A relatively large
broadening 8 0.4 has been used in (a) in order to display cr(c0)
for several fillings, resulting in a finite conductivity for co & AMH

at zero doping for example. The actual thresholds may be seen
in (b), where Z(ro) has been calculated with 8 0. Curves are
labeled by the number of holes away from half filling, as
specified in (b). Inset: Doping dependence of integrated con-
ductivity Z(~) (squares) indicating the total sum rule, aud the
absorption in the lower Hubbard band Z(hMH = 5.5) (circles).
The lines are merely guides to the eye.

for the same data is displayed in Fig. 1(b) in order to il-
lustrate a further interesting point: Not only does intensi-
ty shift from the energy region of the UHB to the LHB
with hole doping, also the total sum rule Z(~) increases,
at least up to doping levels = 30%. This point is impor-
tant because the observation of such dependence would be
a clear indication of the dominance of correlation effects
even in the range of doping where metallic behavior exists.
This information is summarized for a larger range of dop-
ing concentration in the inset of Fig. 1(a). In a weakly
correlated semiconductor model with rigid band behavior
the integrated conductivity decreases monotonically upon
hole doping, as opposed to the initial increase starting
from a value 0(t /U) in the Hubbard model. Note also
that the doping dependence of the full sum rule Z(~) for
the t Jmo-del is similar to the integrated conductivity of
the LHB Z(hMH), and that there is negligible spectral in-
tensity in the UHB for hole concentrations beyond quarter
filling.

In order to examine the physics on the scale J, and at
the same time to look more carefully on the scale t, it is
useful to move on to the t-J model, where it is practical to
diagonalize larger clusters. As a prelude to the examina-
tion of numerical results for this model let us first briefly
recall some insights gained regarding the single-particle
excitations. Near half filling, coherent quasiparticle
(QP) excitations with a bandwidth =2J are observed,
separated by a gap cx' J from a continuum of width 7t. In
the most naive picture for the optical conductivity at small
doping one might expect the emergence of a Drude-like
peak associated with intraband absorption within the QP
band. In a finite system this must appear at a finite ener-
gy, which should, however, be a fraction of the total
coherent bandwidth -2J. Further, an additional absorp-
tion band due to interband transitions involving the QP
band and the continuum should appear. While this pic-
ture cannot be entirely correct for finite doping, it does at
least provide a scheme for interpreting the results of the
numerical calculations. The J dependence of the
frequency-dependent conductivity for a single hole of 4 X 4
clusters with OBC is shown in Fig. 2. The tendency for
the conductivity to take the form of a low-energy peak
(ro & 0.5) separated by a gap or pseudogap =J from a
broad absorption band is clearly evident here. The low-

energy peak (or peaks due to the use of OBC) move to-
ward ro 0 with increasing system size, and may be called
the Drude peak.

This interpretation of the low-energy part of o(ru) of
the Hubbard or t-J models at low doping as being
describable in terms of a Drude peak separated from a
mid-IR band by a gap or pseudogap =J is further sup-
ported by the results for 4x4 clusters with PBC shown in
Fig. 3. Figure 3(a) shows cr(ro) for momentum transfer
q =(n/2, 0) in a system with two holes. The separation of
the low-energy Drude peak from the mid-IR band
(r0~ 1) is clearly visible, with a gap =J for both one
(not shown) and two holes in this cluster size.

With PBC there is the previously mentioned technical
difficulty that the quantity of physical interest is actually
limq p of the momentum- and frequency-dependent con-
ductivity. For a small finite system this implies the re-



8738 W. STEPHAN AND P. HOg, SCH

0.8
I

0.6
8=0.5

0.2

striction to rather large moment 0en a. ne can calculate us-

roblem m
ing q=0, but no sum rule of the form (5)

'
. Texists. T e

p em manifests itself in the form of un h sic I b h

ior at least at low frequencies. For example f h
there is a ole at nI 0

e, or one ole
po e a nI 0, whose very existence shows the

"Drude"
I

I

I

/

0.0
0 1 2 3 4 5 6

~/t
FIG. 2. Fre u

4X4 t-J mod
q ency-dependent optical cond t' 't fuc ivi y or

le do
mo e cluster with open boundary c d't'on i ions ano asin-

ge oped hole. The curves are labeled by J, and have b
i ~ or clarity of presentation. The inset

s ows one example (J 0.5) plotted with h' h

0.02.
wi a ig er resolution

nonexistence of a sum rule similar to (5)
band startin at a

'
' o, Plus a mid-IR

q = ~/2 0 . Th
g a approximately the same frequenc fuency as orq-, ). Th't" -h 1 --h-. 1-;d IRb, h

ior, but has no peak at all below this band. Thiis an . is momen-
pen ence is shown for two holes in Fi . 3(b) F

the aboveove discussion it should be clear that the lar e
ig. ~ rom

r a e arge peak
r e q =t,0' curve should not be connected

with the Drude contribution, but is rather t h 1

g o e mid-IR band. At higher energ the t d f
'

g o intensity from low to high energ with in-
«easing q are physically reasonable, including thing e

q —, esults. This contmuous evolution of th d'

bution of spectral mtensity with momentum transfer, to-

'
n o e istri-

gether with the results with OBC, make it 1

the "interband" art of t
, ma e it plausible that

"in er an part of the conductivity is given correctly
or q=0 with PBC. Thus, as a whole th

s or q= are not inconsistent with the near I/nI
ependence for large co found by Rice and Zhang.

In Fig. 3 c) the conductivity for a system with three
doped holes is shown. The mid-IR band be

'

fre uenc thq y an with one or two holes, as indicated by the

below nI 1.
position of the shoulder of the q =(0 0) ccurve solid line)

e ow nI 1. A further difference between th 1ese resu ts

tween the
ose or lower doping is the vanishin of th b-'

go egap e-

(x 20
he Drude peak and the mid-IR b d

q /, ). This tendency for the spectral intensit to
shift to lower frequency is at 1 t

'
a east in qualitative agree-

de
ment wit experimental observations of th d

ence of HTSC materials, where the f
e oping epen-

the mid-IR bane mi - an moves to lower frequency w'th '
di increase

It is amusing to contrast the above described behavior

has be
for the 2D t-J model with that of the 1Do e case. In 1D, as

as een pointed out by Anderson ' th ere is clearly
up ing o charge and spin excitations, at least within

escription. Whatt e context of the Bethe-ansatz (BA) d
appears to be a nontrivial problem h owever, is the con-

o.s
c5
Q

0

0 .0
(

1.5—
t

1.0 r
Il

l

2

O.5 ~ nJ Z, o) ~ ~,(~.0)

0.0
0 I 3 5 6 7

~/t
FIG. 3. Frequenc -dey- pendent optical conductivity for a 4X4

t -J-model cluster with riodic
a Two holes, momentum transfer q-(z/2, 0) with

broadening b 0.02 (solid line) and 0.2 (dashed line). In ( )
the conductivit is

'
y shown for diff'erent momentum transfers for

two holes with a broadening 8 0.2 f 1or c arity. (c) As in (b),
ut measured in the three-hole ground state.

30

I

20- II

II

I

I

II

10

I

i.0

M

M
+ 0.5

0.0
0

I I I I I I I I I I

0.0 0.5 1.0 1.5 2.0

FIG. 4. Fre uenc-q y-dependent optical conductivit for
hole in a 16-site 10 t-J-model c

ivi y or one
t - -mo el cluster with open boundary con-

itions and J 0.5. , plotted with broadening 8 0.01. The solid
line is the result measeasured in the spin- —, ground state, and the

~ I

dashed line is the result in the s in- —" f
which is identica

in e spin- 2 ferromagnetic state,
w ic is i entica to the spinless-fermion res lt. Th
he integrated conductivity for the same cases



OPTICAL PROPERTIES OF ONE- AND TWO-DIMENSIONAL. . . 8739

nection between the QP excitations of the BA solution and
the physical electrons, which must be determined in order
to calculate the coupling to an external electromagnetic
field for example. There is no such difficulty with diago-
nalization. Some results are shown in Fig. 4, and may be
summarized succinctly by stating that they reflect simple
free-electron or spinless-fermion behavior. Similar results
are also found at higher doping levels. With increasing
chain length the low-energy Drude peak shifts to lower
energy —1/N, and the small higher-energy structures
(ru = 0 5t in. Fig. 4) decrease in intensity. This behavior is
trivial for the case J=0, but the small infiuence of even
rather large J is a remarkable manifestation of charge-
spin separation. The simplicity of this result is all the
more remarkable when we recall that the single-particle
Green's function at half filling for the 1D case is entirely
incoherent, and consists only of a continuum. Any at-
tempt to calculate the conductivity from a convolution of
single-particle Green s functions is destined to fail in 1D.
In 2D the situation is not quite so hopeless, as the convolu-
tion of exact single-particle Green's functions for the one-
or two-hole ground state does tend to produce a conduc-
tivity which falls oK roughly as I/cu. The characteristic
shift of weight to higher energy with increasing ~q~ is not
properly given by such an approach, however. This indi-
cates that vertex corrections are also essential for a proper
estimate of o(ro) in 2D, as is obviously the case in 1D.

Calculations for the 1D Hubbard model with U~ 8t
give similar behavior below the gap to that shown for the

t-J model in Fig. 4. Furthermore, the doping and U
dependence of the fraction of spectral intensity below the
gap (ratio of Drude weight to the total sum rule) is in
good agreement with the calculation performed in the
thermodynamic limit by Schulz' even for very short
chains of N =8 sites with OBC in this parameter range.

Let us now briefly summarize the main points of this
paper. First, the charge-spin separation in the 1D Hub-
bard model is clearly seen in the optical properties, which
are free-electron-like at low energy for large U. Second,
in the 2D case the shift of spectral intensity from the re-
gion of the charge-transfer gap hMH to low energy with
doping would by itself not suffice to rule out a weakly
correlated single-particle semiconductor model for HTSC.
However, the existence of the mid-IR band in both the
Hubbard model and in experiments on HTSC is solid evi-
dence for a strong correlation picture. Furthermore, the
fact that the sum rule Z(~) within the Hubbard model
clearly increases with initial hole doping as compared to
the monotonic decrease expected in the weakly correlated
picture suggests that optical experiments be analyzed to
search for this behavior.

Note added in proof. Related work for the single hole
case was recently reported by Sega and Prelovsek, '

Moreo and Dagotto, ' and based on a variational ap-
proach by Inoue and Maekawa. '
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