PHYSICAL REVIEW B

VOLUME 42, NUMBER 13

Magnetic-susceptibility anisotropy of single-crystal Bi₂Sr₂CaCu₂O₈

D. C. Johnston and J. H. Cho

Ames Laboratory, United States Department of Energy and Department of Physics, Iowa State University, Ames, Iowa 50011

(Received 13 July 1990)

Magnetic susceptibility $\chi(T)$ data from 84 to 300 K are reported for a Bi₂Sr₂CaCu₂O₈ single crystal. The $\chi(T)$ data with H||c exhibit negative curvature up to ≈ 150 K, attributed to superconducting-fluctuation diamagnetism, whereas those with H \perp c are independent of temperature above 90 K. From a theoretical fit to the data with H||c, the Ginzburg-Landau coherence length $\xi_{ab}(0)$ is found to be 10.9 Å. The room-temperature orbital and spin susceptibilities and their anisotropies are estimated and compared with those of YBa₂Cu₃O₇.

The magnetic susceptibility $\chi(T)$ has been found to be strongly anisotropic in La₂CuO₄, Sr₂CuO₂Cl₂, La_{2-x}- Sr_xCuO_4 , and $YBa_2Cu_3O_{7-\delta}$, with the normal-state susceptibility with **H** $\parallel c$ (χ_{\parallel}) greater than for **H** $\perp c$ (χ_{\perp}).¹ For most of the compounds, both χ_{\parallel} and χ_{\perp} increase monotonically with increasing temperature at the higher temperatures; for the first two of these, which are antiferromagnetic insulators, this behavior is as expected for the two-dimensional Heisenberg antiferromagnet on a square lattice for temperatures $T \lesssim J$, where the exchange coupling between nearest-neighbor Cu²⁺ spins $\frac{1}{2}$ is $\mathbf{JS}_i \cdot \mathbf{S}_i$.² For the last two superconducting compounds, the behavior arises from a combination of antiferromagnetic spin correlations and superconducting-fluctuation diamagnetism (SFD).^{3,4} Amazingly, the molar anisotropy $\Delta \chi \equiv \chi_{\parallel} - \chi_{\perp}$ per CuO₂ plane at high temperatures $(\approx 300-400 \text{ K})$ is very similar in each of the four systems $[\Delta \chi \approx (9 \pm 2) \times 10^{-5} \text{ cm}^3/\text{mol CuO}_2]$,¹ despite the fact that the first two are insulators and the last two exhibit metallic and superconducting properties. This suggests that the electronic environments around the Cu atoms in the CuO_2 planes are similar in each system.

Herein, we report $\chi_{\parallel}(T)$ and $\chi_{\perp}(T)$ from $T_c \approx 84$ K to 300 K of a 2.33-mg single crystal of Bi₂Sr₂CaCu₂O₈. Our values are consistent with powder data, ^{3.5} and $\chi_{\parallel}(T)$ shows negative curvature below ≈ 150 K, similar to that seen for the powders and attributed to SFD. From analysis of these data, estimates of the zero-temperature Ginzburg-Landau coherence length parallel to the CuO₂ planes, $\xi_{ab}(0)$, and the room-temperature orbital and spin susceptibilities and their anisotropies are obtained and compared with corresponding values for YBa₂Cu₃O₇.

The Bi₂Sr₂CaCu₂O₈ crystal was grown using the selfflux method by heating the stoichiometric mixture of oxides to 950 °C and slowly cooling. The $\chi(T)$ data were obtained using a Quantum Design superconducting quantum interference device (SQUID) magnetometer in a field of 15 kG. Meissner-effect data in a field of 50 G with H ll c showed a transition onset at 85.0 K, a midpoint of 84.0 K and a 10%-50% width of 0.8 K, with a Meissner fraction at 5 K of 91%. Zero-field-cooled data in the same field showed a volume susceptibility of 240% of $-1/4\pi$; both values are uncorrected for demagnetization factors. With $H \perp c$, the corresponding fractions were 4.2% and 50%.

The magnetic susceptibilities $\chi_{\parallel}(T)$ and $\chi_{\perp}(T)$ for temperatures $T \gtrsim T_c$ are shown in Fig. 1(a). $\chi_{\parallel}(T)$ exhibits

negative curvature from T_c up to ≈ 150 K, then is nearly independent of temperature up to 300 K, increasing linearly at the small rate 1.5×10^{-10} cm³/gK. On the other hand, to within the experimental precision, χ_{\perp} is independent of temperature from ≈ 90 to 300 K. This is expected. The superpair effective-mass ratio for this compound is $\sim 3 \times 10^3$ (Ref. 6), so the SFD for $H \perp c$ should be less than that for H||c by the square root of this fac-

FIG. 1. (a) Magnetic susceptibility χ_g vs temperature for a 2.33-mg single crystal of Bi₂Sr₂CaCu₂O₈ for $H \parallel c(\chi_{\parallel})$ and $H \perp c(\chi_{\perp})$. (b) Expanded plot of the data for $H \parallel c$ in (a) below 150 K. The solid curve is a fit of superconducting fluctuation diamagnetism theory (Refs. 3 and 7-9) to the data above 90 K (see text).

8711

tor, ³ i.e., should be unobservable in our measurements except for very close to T_c . From Fig. 1(a), $\Delta \chi$ decreases with decreasing temperature and becomes negative below 87.4 K, which is about 3 K above T_c as determined above. This crossover occurs significantly above the bulk T_c because the SFD is increasing much faster with decreasing temperature for H || c than for $H \perp c$, as just noted, and because the sensitivity of the magnetometer is much greater for H = 1.5 T than for H = 50 G. The values of $\chi_{\parallel}, \chi_{\perp}, \Delta \chi$, and $\langle \chi \rangle$ at 300 K are listed in Table I. The powder data for Bi_{2-x}Pb_xSr₂CaCu₂O₈ at 300 K in Refs. 3 and 5 lie between our χ_{\parallel} and χ_{\perp} values, but are above the powder average in Table I; this suggests preferred orientation of the powders with c||H.

An expanded plot of the $\chi_{\parallel}(T)$ data from T_c to 150 K is shown in Fig. 1(b). We fitted the data above 90 K to the expression $\chi(T) = \chi_0 + \chi_{\rm fl}(T)$ using the Lawrence-Doniach theory⁷ as modified by Klemm^{3,8} for the SFD, $\chi_{\rm fl}(T)$, in the two-dimensional low-field regime with H lc:

$$\chi_{\rm fl}(T) = -\left[g_{\rm eff}\pi k_B \xi_{ab}^2(0) T/3\phi_0^2 s\right]\left[T_c/(T-T_c)\right],\qquad(1)$$

where $T_c \equiv T_c(H)$, $g_{\text{eff}} = 2$ is the number of independently fluctuating CuO₂ layers per CuO₂-layer repeat distance

s = 15.4 Å, ϕ_0 is the flux quantum hc/2e, and χ_0 is the background susceptibility. We believe that our data are in, or close to, the low-field regime, since the applied field $H = 1.5 \text{ T} \ll H_{c2}(0) \sim 100 \text{ T}^{.3,8,9}$ The fitting parameters obtained were $T_c = (84.6 \pm 1)$ K, $\chi_0 = (1.97 \mp 0.02) \times 10^{-7}$ cm³/g, and $\xi_{ab}(0) = (10.9 \mp 0.9)$ Å. The fit is shown as the solid curve in Fig. 1(b). From the value of $\xi_{ab}(0)$, one obtains $H_{c2}(0) = \phi_0/2\pi\xi_{ab}^2(0) \sim 280$ T, consistent with $H \ll H_{c2}(0)$ and with the small inferred value of $T_c(0) - T_c(H = 1.5 \text{ T})$. The inferred value of $\xi_{ab}(0)$ would increase and $H_{c2}(0)$ would decrease if the data in Fig. 1(b) were corrected for a Curie-like term due to undetected magnetic impurities and/or isolated Cu²⁺ defects; the inferred $T_c(H)$ would also be affected. Thus, our $\xi_{ab}(0)$ and $H_{c2}(0)$ values should be considered as lower and upper limits, respectively. $\xi_{ab}(0)$ is about the same as that for YBa₂Cu₃O₇ (13.6 Å) (Ref. 3) and $Bi_{2-x}Pb_xSr_2Ca_2Cu_3O_{10}$ (11.8-18.0 Å),⁵ but is about one-half the value previously inferred for $Bi_{2-x}Pb_xSr_2$ -CaCu₂O₈ (20.4 Å), ⁵ where all of these $\xi_{ab}(0)$ values were derived from fits to $\chi_{\rm fl}(T)$ data. The discrepancy between our $\xi_{ab}(0)$ value and that in Ref. 5 might be partially explained if the grains in the powder sample studied there were preferentially aligned to some extent with c||H, as

TABLE I. Magnetic susceptibility data at 300 K for single-crystal Bi₂Sr₂CaCu₂O₈ (this work) and grain-aligned high-purity polycrystalline YBa₂Cu₃O₇ (Ref. 1). χ_{\parallel} and χ_{\perp} are, respectively, the susceptibility with H||c and H \perp c at 300 K, $\Delta \chi \equiv \chi_{\parallel} - \chi_{\perp}$, $\langle \chi \rangle$ is the powder-averaged value, χ^{core} the atomic core diamagnetism, K_a^L the orbital Knight shifts for ⁶³Cu in Bi₂Sr₂CaCu₂O₈ derived here, and in YBa₂Cu₃O₇ from Ref. 10, χ_a^{vV} the derived Van Vleck susceptibilities of the Cu²⁺ ions, χ_a^{spin} the derived spin susceptibilities, and $g_{\parallel}/g_{\perp} \equiv (\chi_1^{spin}/\chi_2^{spin})^{1/2}$ the ratio of the spectroscopic splitting factors. The g_a values ($\alpha = a, b, c$) were computed independently using the corresponding χ_a^{VV} values. All susceptibilities are in units of 10⁻⁵ cm³/mol. In YBa₂Cu₃O₇, Cu(1) is in the Cu-O chains and Cu(2) is in the CuO₂ planes. Note that the χ^{spin} values for YBa₂Cu₃O₇ include the contributions from Cu in both the CuO₂ planes and Cu-O chains, whereas Bi₂Sr₂CaCu₂O₈ contains no Cu-O chains.

Entity	Bi ₂ Sr ₂ CaCu ₂ O ₈	YBa ₂ Cu ₃ O ₇
X II	17.1(10)	41.0
χ_	-5.4(13)	25.2
Δχ	22.5(16)	15.8
$\langle \chi \rangle$	2.1(16)	30.5
χ^{core}	-20.6	-17.5
$K_c^L(\%)$	1.79	1.28(1)[Cu(2)],0.25(1)[Cu(1)]
$K_{b}^{L}(\%)$	0.45	0.28(2)[Cu(2)],0.27(4)[Cu(1)]
$K_a^L(\%)$	0.45	0.28(2)[Cu(2)],1.08(4)[Cu(1)]
$\chi_{a}^{VV}[Cu(1)]$		8.1
$\chi_b^{VV}[Cu(1)]$		2.0
$\chi_c^{VV}[Cu(1)]$		1.9
$\chi^{VV}_{\parallel}[Cu(2)]$	13.4	9.6
$\chi_{\perp}^{VV}[Cu(2)]$	3.3	2.1
$\chi_{\parallel}^{\rm VV}$	26.7	21.1
χ_{\perp}^{VV}	6.7	9.2
χ^{spin}	11.0	37.4
$\chi^{\rm spin}_{\perp}$	8.5	33.5
g_{\parallel}/g_{\perp}	1.14	1.06
g _a	2.09	2.06[Cu(2)],2.22[Cu(1)]
g _b	2.09	2.06[Cu(2)],2.06[Cu(1)]
g _c	2.36	2.26[Cu(2)],2.06[Cu(1)]
\overline{g}_{c}	2.36	2.20
$\overline{g}_{a,b}$	2.09	2.10
$\bar{g}_c/\bar{g}_{a,b}$	1.13	1.05

8712

(8)

(9)

inferred above, whereas random alignment was assumed.⁵ Also, the superconducting transition width of the crystal is much smaller than in the powders.⁵ Therefore, we believe the value for the single crystal studied here may be the more reliable.

Above ≈ 200 K where the superconducting fluctuation diamagnetism is negligible, a principal value $\chi_a(T)$ is written as the sum of an orbital term and a spin term:

$$\chi_a = \chi_a^{\text{orb}} + \chi_a^{\text{spin}} \,. \tag{2}$$

Both terms are anisotropic in general. In a localized moment picture for the Cu²⁺ spins $\frac{1}{2}$, ¹⁰ the orbital terms are the sum of the isotropic core diamagnetism χ^{core} and the anisotropic Van Vleck paramagnetism χ^{VV}_{α} of the Cu²⁺ cations. The χ^{VV}_{α} per mole of Cu²⁺ is given by

$$\chi_a^{\rm VV} = 2N_A \mu_B^2 \Lambda_a \,, \tag{3}$$

where

$$\Lambda_{\alpha} = \sum_{n} |\langle n | L_{\alpha} | 0 \rangle|^{2} / \Delta E_{n}$$

 N_A is Avogadro's number, μ_B is the Bohr magneton, $\Delta E_n \equiv E_n - E_0$, L_a is the angular momentum operator in the α th principal direction, $|0\rangle \equiv |x^2 - y^2\rangle$ is the crystalfield ground hole state of the Cu²⁺ ion with energy E_0 , and the excited states $|n\rangle$ are $|xy\rangle$, $|xz\rangle$, and $|yz\rangle$ (the matrix elements to the state $|z^2 - r^2\rangle$ all vanish). The Λ_a values are

$$\Lambda_z = 4/\Delta E_{xy}, \ \Lambda_x = 1/\Delta E_{yz}, \ \text{and} \ \Lambda_y = 1/\Delta E_{xz}$$
 (4)

if the uniaxial direction is z. The spectroscopic splitting factors g_{α} of the Cu²⁺ ions are related to the (same) Λ_{α} values via

$$g_a = 2(1 - \lambda \Lambda_a), \qquad (5)$$

where $\lambda = -710$ cm⁻¹ = -88.2 meV is the spin-orbit coupling parameter for Cu²⁺.¹⁰ The spin susceptibilities $\chi_{\alpha}^{\text{spin}}(T)$ per mole of formula units are written as

$$\chi_a^{\rm spin}(T) = n_f N_A g_a^2 \mu_B^2 F/J , \qquad (6)$$

where here n_f is the number of CuO₂-plane units per formula unit, F is a dimensionless function of temperature which is the same for different α , and J is a characteristic energy. In insulating local moment antiferromagnets like La₂CuO₄, Sr₂CuO₂Cl₂, or YBa₂Cu₃O₆, the parameter $J \sim 1500$ K is the antiferromagnetic intralayer exchange coupling constant, where the nearest-neighbor exchange energy is $\mathbf{JS}_i \cdot \mathbf{S}_j$, and F = F(T/J). For Bi₂Sr₂CaCu₂O₈, Cu nuclear resonance shift data are not yet available to aid in computing the χ_{α}^{VV} and/or χ_{α}^{spin} terms, and thereby evaluate the ΔE_n values. We therefore assume that the relevant ΔE_n values are the same $\equiv \Delta$. The susceptibility is uniaxial. Gathering together the above terms into Eq. (2) yields

$$\chi_{\parallel} = \chi^{\text{core}} + 8n_f N_A \mu_B^2 / \Delta + 4n_f N_A \mu_B^2 (1 - 4\lambda/\Delta)^2 F/J$$

and (7)

$$\chi_{\perp} = \chi^{\text{core}} + 2n_f N_A \mu_B^2 / \Delta + 4n_f N_A \mu_B^2 (1 - \lambda / \Delta)^2 F / J ,$$

where χ_{\parallel} refers to the uniaxial (c) direction. Multiplying

Eqs. (7) by λ and defining dimensionless susceptibilities

$$\chi'_{\parallel} = \lambda (\chi_{\parallel} - \chi^{\text{core}}) / 4n_f N_A \mu_B^2$$

and

$$\chi'_{\perp} = \lambda (\chi_{\perp} - \chi^{\text{core}}) / 4n_f N_A \mu_B^2$$

Eqs. (7) become

$$\chi'_{\parallel} = 2r + (1 - 4r)^2 F \lambda / J$$

and

$$\chi'_{\perp} = r/2 + (1-r)^2 F \lambda/J$$

where $r \equiv \lambda/\Delta$. Eliminating $F\lambda/J$ from Eqs. (9) yields a cubic equation for r:

$$6r^3 + a_2r^2 + a_1r + a_0 = 0, (10)$$

where

$$a_0 = \chi'_{11} - \chi'_{\perp},$$

$$a_1 = 8\chi'_{\perp} - 2\chi'_{11} - \frac{3}{2}$$

and

$$a_2 = \chi_{\parallel}' - 16 \chi_{\perp}'$$

Solving the first of Eqs. (9) for $F\lambda/J$ yields

$$F\lambda/J = (\chi_{\parallel}' - 2r)/(1 - 4r)^2.$$
(11)

We take the χ^{core} values as -25, -15, -8, -12, and -12×10^{-6} cm³ per mole of Bi, Sr, Ca, Cu, and O, respectively,¹¹ giving the molar χ^{core} value for Bi₂Sr₂-CaCu₂O₈ ($n_f = 2$) shown in Table I. Using the above λ and the χ_a data in Table I, Eq. (10) predicts r = -0.0455 and $\Delta = 1.94$ eV. The χ_a^{VV} [Eq. (3)] and g_a [Eq. (5)] ($\alpha = \parallel, \perp$) values for Bi₂Sr₂CaCu₂O₈ were computed using these λ and Δ values and are listed in Table I. From Eq. (11) and the value of r, one obtains $F\lambda/J = -0.0266$, and $F/J = 0.301 \text{ eV}^{-1}$. The χ_a^{spin} values computed from Eq. (6) are listed in Table I. Also listed are the orbital ⁶³Cu NMR shifts predicted using the χ_a^{VV} values in Table I and Eq. (12) below. In Table I, $g_{\parallel}/g_{\perp} \equiv (\chi_{\parallel}^{\text{pin}}/\chi_{\perp}^{\text{pin}})^{1/2} = 1.14$ [cf. Eq. (6)]. This ratio is computed independently from the g_a values ($\alpha = a, b, c$) to be 1.13, nearly the same. This agreement strongly supports the local moment picture for Cu²⁺ used here and (e.g., Ref. 10) elsewhere.

A similar analysis for YBa₂Cu₃O₇ has been carried out using NMR shift data.¹⁰ The anisotropic $\chi_{\alpha}(300 \text{ K})$ data from Ref. 1 are listed in Table I. The χ_{α}^{VV} values per mole of Cu can be estimated from the ⁶³Cu-NMR orbital shifts K_{α}^{L} of the Cu(1) (in the Cu-O chains) and Cu(2) (in the CuO₂ planes) ions in YBa₂Cu₃O₇ at 4.2 K according to¹⁰

$$K_{a}^{L} = 2N_{A} \langle 1/r^{3} \rangle \chi_{a}^{\vee \vee} , \qquad (12)$$

as shown in Table I, where $\langle 1/r^3 \rangle = 6.0/(5.3 \times 10^{-9} \text{ cm})^3$ (Ref. 10). Using Eqs. (3) an (4) and the χ_a^{VV} values for YBa₂Cu₃O₇ in Table I, the ΔE_n values are found to be $\Delta E_{xy}(2) = 2.7$ eV and $\Delta E_{xz}(2) = \Delta E_{yz}(2) = 3.1$ eV for Cu(2), where z = c, x = a, and y = b.¹⁰ For Cu(1), the uniaxial (z) crystal-field axis is along a; noting this, we have $\Delta E_{xz} \simeq \Delta E_{yz} = 3.2$ eV, and $\Delta E_{xy} = 3.2$ eV. From Eq.

8713

(5), the predicted g_{α} values for Cu(1) and Cu(2) in YBa₂Cu₃O₇ are found and listed in Table I, referred to the **a**, **b**, and **c** crystal axes. From the measured values of χ_{α} and the deduced values of χ_{α}^{orb} , the values of χ_{α}^{spin} were computed from Eq. (2) and are listed in Table I.¹² The listed value of $g_{\parallel}/g_{\perp} \equiv (\chi_{\perp}^{\text{spin}}/\chi_{\perp}^{\text{spin}})^{1/2} = 1.06$. The average values \bar{g}_a derived from the listed g_a values (a = a, b, c) are also listed, where it is seen that $\bar{g}_c/\bar{g}_{a,b} = 1.05$, close to the value of 1.06 derived independently above. Thus, the anisotropies in both χ^{spin} and χ^{VV} in both Bi₂Sr₂CaCu₂O₈ and $YBa_2Cu_3O_7$ are quantitatively and self-consistently accounted for in the localized picture. Note that both the orbital and spin susceptibility anisotropies of YBa₂Cu₃O₇ are reduced from the values for the CuO₂ layers alone, because the respective anisotropies of the Cu in the Cu-O chains partially cancel those due to Cu in the CuO₂ layers. We remark that a χ^{spin} anisotropy similar to those in Table I was inferred for the tetragonal insulating antiferromagnet ($T_N \simeq 300$ K) Sr₂CuO₂Cl₂ above T_N ($g_c = 2.46$, $g_{ab} = 2.01$),¹³ which has the same CuO₂ layers as in the other layered cuprates.

From Table I, the magnitudes of χ_a^{spin} are smaller in Bi₂Sr₂CaCu₂O₈ than in YBa₂Cu₃O₇ by factors of 3-4, even though the respective T_c 's are within $\approx 8\%$ of each other. Even if the χ_a^{VV} values in the former compound are taken to be identical to those of Cu(2) in the latter, the χ_a^{spin} values are still found to be smaller by factors of 2-3. What this means is unclear. At first sight, the similarity of T_c and the differences in χ_a^{spin} between the two compounds suggest that the mechanism for superconductivity in these materials involves factors other than, or in addition to, the magnetic character of the Cu²⁺ ions.

- ¹W. C. Lee and D. C. Johnston, Phys. Rev. B **41**, 1904 (1990), and references cited.
- ²A. Auerbach and D. P. Arovas, Phys. Rev. Lett. **61**, 617 (1988).
- ³W. C. Lee, R. A. Klemm, and D. C. Johnston, Phys. Rev. Lett. **63**, 1012 (1989).
- ⁴D. C. Johnston, S. K. Sinha, A. J. Jacobson, and J. M. Newsam, Physica C **153-155**, 572 (1988); D. C. Johnston, Phys. Rev. Lett. **62**, 957 (1989).
- ⁵W. C. Lee, J. H. Cho, and D. C. Johnston, Phys. Rev. B (to be published).
- ⁶D. E. Farrell, S. Bonham, J. Foster, Y. C. Chang, P. Z. Jiang, K. G. Vandervoort, D. J. Lam, and V. G. Kogan, Phys. Rev. Lett. **63**, 782 (1989).
- ⁷W. E. Lawrence and S. Doniach, in *Proceedings of the Twelfth* International Conference on Low Temperature Physics, Kyo-

In conclusion, we find a substantial temperaturedependent anisotropy in the susceptibility of Bi2Sr2-CaCu₂O₈ between $T_c \simeq 84$ K and $\simeq 150$ K with $\chi_{\perp} < \chi_{\parallel}$ for $T \gtrsim T_c$, as is the case for all cuprate superconductors (not containing magnetic ions other than Cu^{2+}) studied to date. The temperature dependence of the anisotropy arises primarily from that of the anisotropy in the superconducting fluctuation diamagnetism; from a fit with theory, we find $\xi_{ab}(0) = 10.9$ Å. The room-temperature value for χ_{\perp} is in agreement with the recent data of Ref. 14, but our χ_{\parallel} is much larger. The reason for this discrepancy is not known, but we note that the data of Ref. 14 are also inconsistent with powder data.^{3,5} Assuming a local moment picture for the Cu^{2+} ions, where the system has a single spin degree of freedom, the anisotropy $\Delta \chi \equiv \chi_{\parallel} - \chi_{\perp}$ at 300 K is found to arise from anisotropy in both the Van Vleck susceptibility χ^{VV} of the Cu²⁺ ions and from anisotropy in the spin susceptibility χ^{spin} . About 90% of $\Delta \chi$ arises from the former anisotropy and the remainder from an anisotropic χ^{spin} originating from an anisotropic g factor of the Cu²⁺ ions. The magnitudes of χ_a^{spin} in Bi₂Sr₂CaCu₂O₈ are three to four times smaller than in YBa₂Cu₃O₇, even though the respective T_c 's are quite comparable. The origin of these differences in χ_a^{spin} and their bearing on the T_c 's are interesting issues for future theoretical and experimental clarification.

Ames Laboratory is operated for the U.S. Department of Energy by Iowa State University under Contract No. W-7405-Eng-82. This work was supported by the Director for Energy Research, Office of Basic Energy Sciences.

to, 1970, edited by E. Kanda (Keigaku, Tokyo, 1971), p. 361. ⁸R. A. Klemm, Phys. Rev. B **41**, 2073 (1990).

- ⁹Michael Tinkham, *Introduction to Superconductivity* (McGraw-Hill, New York, 1975), Chap. 7.
- ¹⁰S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 41, 6283 (1990). An extensive list of previous work is cited.
- ¹¹P. W. Selwood, *Magnetochemistry*, 2nd ed. (Interscience, New York, 1956), p. 78.
- ¹²The values of χ^{spin} for YBa₂Cu₃O₇ in Table I are slightly different than listed in Ref. 1, because here we use the recent more accurate NMR shift data of Ref. 10.
- ¹³D. Vaknin, S. K. Sinha, C. Stassis, L. L. Miller, and D. C. Johnston, Phys. Rev. B 41, 1926 (1990).
- ¹⁴F. Mehran, T. R. McGuire, and G. V. Chandrashekhar, Phys. Rev. B 41, 11583 (1990).