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We study the stability of the staggered-flux phase in the t-J model away from half filling using
a systematic large-N slave-boson approach. Found, below a critical doping concentration
8, a(J/t)', is a flux-density-wave instability with an incommensurability wave number -8'1.
The instability towards a modulated-flux state is due to low-lying phase fluctuations of the valence
bonds. When the doping parameter exceeds 8'„we find a fully gapped d-wave superconducting
state due to residual quasiparticle interactions.

The study of doped Mott insulators has received
renewed interest following Anderson's formulation of the
resonating-valence-bond (RVB) theory of high-temper-
ature superconductivity. ' To quantify Anderson's sugges-
tions, it is useful to construct soluble models that contain
some of the essential ingredients of the Mott phenomena.
Affleck and Marston extended the magnetic superex-
change interaction to accommodate electrons transform-
ing under SU(N), and carried out a 1/N expansion. At
half filling they found an insulating state with an excita-
tion spectrum characterized by point zeros. This state, in-
dependently discovered in a diferent mean-field decou-
pling of the t-J model, is a nontrivial example of a Mott
insulating state. It was later found that, on the square lat-
tice, this state is linearly unstable against dimerization.
However, the analysis of Ref. 4 showed that the dimeriza-
tion was due to a finite-amplitude instability. Therefore it
can be avoided by adding quartic terms involving only am-
plitude modes to the Lagrangian, leaving the low-energy
dynamics of the phase modes unperturbed. Marston and
Afflecks argued that frustration stabilizes the flux phase
against dimerization. When one dopes away from half
filling the self-consistent mean-field flux is no longer given

by tr but by a staggered array of fluxes P= + tr(1 —8t/J)
We will refer to this state as the staggered-flux phase
(SFP). A diff'erent state having uniform flux different
from tr away from half filling, has been studied recently by
variational methods. This is the uniform-flux phase
which displays remarkable commensurability effects at
special filling factors. Important questions concern the
physical properties of these states.

In this paper, we investigate the properties of the
staggered-flux state by studying the leading 1/N correc-
tions to the N ~ solution for small but finite density of
holes. The large-N expansion is not perturbative in the
hopping parameter t, or the exchange parameter J of the
t-J model. It allows us to study analytically the competi-
tion between the kinetic energy t of the holes and the mag-
netic exchange energy J. We find that the staggered-flux
phase is unstable, for J) an't, towards a modulated-flux
state in which the staggered flux is modulated by slowly

varying uniform flux. On the other hand, when J( a JBt
the SFP is stable. In this region, the residual interaction
between the quasiparticles mediated by low-energy phase
fluctuations gives rise to a fully gapped d-wave supercon-
ducting phase.

The generalized t Jmodel -studied in this paper is de-
scribed by the Hamiltonian

H = ——g (c; c~ +H.c.) +—g c;~; c~ ct
(i,j ),a (ij )

subject to systems of local constraints: P c;~; ~ N/2.
The o and cr' are flavor indices running from 1 to N. To
treat a finite concentration of holes we use the slave-boson
approach and introduce a boson operator b; in the decom-
position of the electron operator c; =b; c; . We follow the
analysis of Dombre and Kotliar, who investigated the op-
tical conductivity in this model. But we focus on the stat-
ic, co 0, q)) m limit of the response functions. The par-
tition function at temperature P is given by the func-
tional integral

Z=& 2)d2)h Xlc2)c 23b&b 24, exp —
Jl dt's

cj itF ct +bz b~+—i) ~ c~~j +b~ bj ——t) +—X I&;,, +,I'+&,
l, p

(2)

M Ciaci+pa 1"-ki,i+p+ ~i+p~i + C-C ~

l, p, cy N
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where 6;;+„ is a complex link variable (valence bond)
used to decouple the exchange term in (1), and the link in-
dex p = ~ x, ~y on a square lattice. In this paper, we re-
strict ourselves to a two-sublattice structure with the in-
dices i and j running over A and both A and 8 sublattices,
respectively. The integration over the time-independent
Lagrange multipliers enforces the constraint of no double
occupancy. In the large-N limit, the bosons are condensed
b~ -btt - ~b( JbN/2 with the absolute phase set to zero.
ikg and iA, tt take the value Xv consistent with the Bose-
condensation assumption while the chemical potential pF
is adjusted to have b/2 holes per flavor. To set up the no-
tation we review the large-N limit of the model. The
saddle point is described by the mean-field Hamiltonian

~O PF

XP PF &Bk,
P M F

=g Cgk ~,CiIk, cr (3)

where

ek = —2[(A„+th)cosk, + (d»+ t8)cosk»] =
~ek ~e

We take h~ +„=Qe '~, A~ ~»=ge'q consistent with
SFP ansatz. SMF can be diagonalized by a Bogoliubov
transformation

&Ak, e uk P+,ko' vk I[ —,ka ~

CBk, a Vk P+ k~+uk y- k

with uk =vk (I/J2)e ' ', leading to two quasiparticle
fermion bands with dispersion

space according to

A„—(q) = —,
' [8„(q)+ 8-p(q)l;

x —(q) = —,
' h,p(q)+ gati(q)l;

R„—(q) - —,
' [R„(q)~R-„(q)l;

r —(q) = —,
' [rz (q) ~ re (q) ] .

The fields (A„,l ) correspond to the transverse and lon-
gitudinal components of the unbroken uniform U(1) sym-
metry and the (A„+,)j. +) are related to those of the broken
staggered symmetry.

We have carried out a detailed analysis of the fluctua-
tions around the saddle point. At half filling, the fields
A„are massless which decouple from the other fields.
Away from half filling, they mix with charge excitations
and acquire a small mass proportional to the hole concen-
tration. The rest of the fields are strongly coupled togeth-
er but their spectral weight is distributed over energies of
order t or J. In this paper we concentrate on the low-

energy part of the fluctuation spectrum. The low-energy
eff'ective Lagrangian is given by

2 2

/F=QEkitt. 'k y.k +gP.&+N QA„(q)A„( q)—P

P,tt
—2QQA„(q)v,"p(q, k)y, k+q ~yak, ~+c.c

qkcr

Here we set A„:-A„, and P,~(a,P= ~ ) describes the
coupling of quasiparticles to phase fluctuations with ver-
tices

Ek =+ 2[(g cosp—+ tb) '(cosk„+cosk») '

+Q sin p(cosk„—cosk») ] t2. (5)
v" —(q, k) =sink„cos(pk+pk+q —p„) =v++ (q, k)

v" +(q, k) =i sink„sin(pk+pk+q —p„), p~,»
=+ p.

The MF value of Q is self-consistently determined by

2 g cosk„cos(2yk —p)f(Ek )sgn(Ek ),
k

where the summation is restricted to the reduced Brillouin
zone and f(Ek) is the Fermi-Dirac function. The spec-
trum (5) has two zeros at k~ 2=(z/2, ~ x/2). We calcu-
lated the compressibility in this phase

dn Np (6)
dp I + 2tp(f ] + f2/f] ) Jpf2

where p=pkb(Ek —pF) is the Fermi-level density of
states and f~ =pF/2(gcosp+tb), pf2=+qb(Ek —pF)
x(cosk„+cosk») . We verified that at small doping the
compressibility (6) is positive.

The low-energy excitations are closely related to the
symmetry of the original Lagrangian X under U(1) gauge
transformations c~ c~~' ', b~ b~e' ', A~ A J + 8~,

4;;+„e ' ' " . The two-sublattice structure
i(e, -e, „)

splits the full U(1) group of invariance into two parts; the
uniform part associated with 8~ =8ti=8 and the stag-
gered part with OA

= —08 =0. The complex order param-
eter 6 of SFP breaks the staggered U(1) symmetry and
leaves the uniform part unbroken at half filling. %e cor-
respondingly parametrize the fluctuations in the~ial
gauge 4;,;i„=lb;,„+R„(i+2 p)]e " "; iX~ =ko

+i'll;

b~ =b(1+r~), which are decomposed in momentum

4Q2+ ' ' f(E —)+ Q

Ek+q —Ek

II„'",'"(q) = -2Q'g v~ (q, k) v" (q, k)
k

f(Ek+q) -f(Ek )

Ek+q —Ek

At half filling the lower subband is full, and the gauge
field is massless. Away from half filling, the finite hole
concentration breaks the gauge symmetry and the gauge
field acquires a small mass proportional to the hole con-
centration due to the Anderson-Higgs mechanism. The
gauge-field polarization operator in Eq. (7) has the form

~ginter+ gintra
PV PV PV

II„„(q)-, (q'b„, q„q,)+ b„t,v2—1

e2 q)
(1O)

Integrating out the fermions, we obtain the effective La-
grangian for the gauge field

g.a = ——g [II„'","'(q)+II„'",'"(q)]A„(q)A,( —q), ( )
1V

q

where the II„'"„"'and II„'"„'"are the interband and intraband
polarization bubbles given by
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The mass was calculated from Il'"'"(0) —
co I= —Qv'b/z and II'"""(0)-coi+ co2, coz -J2Qtb/J T. hese

parameters determine the optical-absorption spectrum of
the SFP. We calculated numerically the inverse of the
renormalized "charge" e (q) and it is plotted in Fig. l.
There are two contributions. The contribution from the
interband polarization is constant and positive for q «2kF
and is proportional to 1/q for q»2kF. This large-q be-
havior was noticed in Refs. 10 and 11. The intraband po-
larization is a negative constant at q«2kF and rapidly
approaches zero for q & 2kF. For q & 2kF the intraband
contribution dominates. The renormalized charge is ap-
proximately given by the expression'2 1/e2 —Q/32trkF,
and EF —2QkF —4Qdtcb is the Fermi energy. The
gauge-field propagator is obtained for q & 2kF

—&ale,J (i2)

where a-442tr-10. For b 0.01, this criteria corre-
sponds to a critical value (J/t), =1. For a fixed ratio J/t,

U'

cl) O

0

I-

0 0~0 0 0 0
0

Q

D„,(q) -(A„(q)&,( —q)) - le'1
+N2

The instability of the model is signaled by the appearance
of a pole in the propagator at q co2 co21e 1& (2kF) .
We thus established the instability of the SFP when

the SFP is stable only if the hole density exceeds
b, -(J/ta) '.

When J»t Jb the system prefers to reduce energy by
spontaneously generating additional uniform flux. A
mean-field theory of this effect can be constructed by let-
ting the gauge bosons A„(q) condense in a state of finite
momentum qp- (0,8 / ), A„=(22pcosqpy, 0). Since A„
corresponds to the uniform part of the U(1) symmetry on
the two-sublattice structure, 30~0 gives rise to a pla-
quette flux 41Apqpl sin(qpy). The condition for a nontrivi-
al solution of Ap is precisely given by Eq. (12). We hence
identify the J/t & aJb instability with the onset of flux-
density-wave formation. The state is characterized by a
modulated flux 4 + 4ttip+4Apqpsin(qpy) with an in-
commensurate wave-number proportional to 8 . The ap-
pearance of the incommensurate flux phase at low hole
density is a result of the competition between hopping and
exchange energies. This phase has close analogies to the
incommensurate magnetic structures found in the Hub-
bard model. '

The SFP is stable when J & at JB As .the concentra-
tion of holes increases, the flux decreases and a transition
to a Fermi-liquid state takes place at a finite value of
Ptb/J. ' The parameter P turns out to be close to a so
there is a region of hole concentration (PB & J/t & aJB)
in which the staggered-flux state is stable. In this phase
the excitations are the fermionic quasiparticles (4) with a
small Fermi surface consisting of two small circles cen-
tered at kpIz (tr/2, ~x/2). They interact via the ex-

change of the gauge field (11). This effect is of order I/N,
and we can treat this interaction in the BCS weak cou-
pling framework. The residual interaction between the
quasiparticles is given by

V ff(k, k', q) —v"- —(q, k)D„,(q)v' —(q, k') . -

O

U'
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We will show that this interaction is attractive for fre-
quencies co~ cop= (co2 —4kF)' '. The gap equation for
the superconducting order parameter t4 =e gk V,ir
x (k, k', k' —k)(itck I itc k.I) has the usual form

gSC
gSC V"" ((E —E )'+1~ 1')I/2

Quasiparticles on different sections of the Fermi surface
do not interact to leading order in b. It is, therefore, con-
venient to work in the shifted zone by transforming
k k+ki 2. The effective interaction V„„,has a simple
form on the Fermi circles

41"lQ'
—2kF [1 —cos(8 —8')]+ co2

where 0 and 0' denote the angles that k and k' make with
the x axis.

%e have found two solutions to the gap equation on a
single circle

q

FIG. l. Contributions to the inverse renormalized charge
(open triangles) in Eq. (10) from interband (open circles) and
intraband (solid circles) polarization bubbles. (a) J/t 1, and
the hole concentration 8 0.01. (b) J/t 0.5 and b 0.001.

tt sc(g) y cist) sc. gsc(g) y e
—

&8gsc' (i3)

where hp =2cope ', i=SaN(t Jb/J) . The ) i and yz are
arbitrary phases. Besides this degeneracy within one Fer-
mi circle, there is an additional degeneracy which corre-
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sponds to the relative phase of the gap functions on the
two Fermi circles. All these states have a full gap and
break time-reversal invariance. It is instructive to relate
the pair amplitude of the SFP quasiparticles to the order
parameter of the original electrons (c;tc 1) b gk
xe'" ' J (cklc —kl&. Using Eq. (4), we find (c~ klcg —kt&

and (cg ktcg —pi& = —e' 'gk with 4k
= (—pfl tIf a—l&

Since (* is nonzero only near the Fermi circles, the
Fourier transform involves an angular average over the
circles. This leads to (c;tcjl& 0 when i and j are on the
opposite sublattices. To study the symmetry of the same

1(2y& -y)
sublattice pairing, we use the expansion e
-exp(i8~), exp( i82—) which is valid near the I (centered
at k~) and 2 (centered at k2) Fermi circles, respectively.
We note that from Eq. (13), an order parameter with d-
wave symmetry is obtained if one chooses the gap function
b, s y~e

' on circle I and d, s —y~e's on circle 2.
This solution automatically satisfies (c;lc;1& 0. This d-
wave pairing state, however, is very different from the d-
wave RVB state"' and differs little from the convention-
al s-wave pairing in that it opens a full gap in the quasi-
particle spectrum, like a conventional s-wave state.

In conclusion, we used the large-N approach to study
the physics of the staggered-flux phase. To leading order
in I/N, we find an instability towards incommensurate
flux structure when J & IOJbt. The most unstable wave
vector is proportional to 8 ~ . When J( IOJBt a stag-
gered array is the most stable configuration of the flux.
However, the residual interaction between quasiparticles
mediated by the low-energy phase fluctuations of the
valence bonds leads to a fully gapped d-wave supercon-
ducting phase with singlet pairs on the same sublattices.
The emergence of incommensurate magnetic structures as
one dopes a Mott insulator seems to be very general. It is
known to happen in ordered structures. "' In this paper
we showed that this effect also takes place when one dopes
one of the possible phases of the disordered spin liquid.
Indeed, using similar techniques, we also found an incom-
mensurate flux-density-wave instability for the doped uni-
form RVB phase in some range of hole concentrations. 's
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